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Abstract. In this paper, we define a notion of a fuzzy metric (X, M, ∗). Our definition
enable us to define a natural topology on the space. Using Stone’s metrization Theorem,
we will show that the fuzzy topology on (X, M, ∗) is metrizable. Our method will permit
us to associate a system of quasi ∗-metrics to space (X, M, ∗), which in return generate
a fuzzy metric space (X, M ′, ∗) in such a way that under suitable conditions M ≡ M ′.
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1. Introduction

The celebrated paper of Zadeh [10], motivated many authors to generalize the
notion of metric space to fuzzy framework. Several authors defined and studied
different notions of a fuzzy metric space from different points of view (e.g. [1],
[3]–[9]). In particular, George and Veeramani in [3] modified a notion of a fuzzy
metric space which was introduced by Kramosil and Michalek [9]. Later, in [4],
they have introduced a Hausdorff topology for this fuzzy metric. In 2000, Gregori
and Romaguera [5], introduced a uniformity on the topology of this fuzzy metric
to show that this topology is compatible with a metric on the space. However, we
are unable to determine which metric generates the fuzzy metric topology.

In the next section of this paper, we give a new definition of a fuzzy metric
space. Our definition enable us to employ Stone’s Theorem, to show that the fuzzy
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metric space is metrizable. In Section 3, we will use of the power of our definition
to define a system of quasi ∗-metrics {dα}α∈(0,1) on a space X. This will let us
to obtain a close relationship between a fuzzy metric space and its associated
system of quasi ∗-metrics. In fact, we will show that under some restrictions,
there is a one-one correspondence between fuzzy metric spaces and systems of
quasi ∗-metrics.

2. Basic properties of fuzzy metric spaces

We start this section by some definitions.

Definition 2.1. Following [3], a binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is
called a continuous t-norm if ([0, 1], ∗) is an ordered abelian topological monoid
with unit 1.

Example 2.2. There are numerous possible choice for a continuous t-norm ∗. For
example, for each a, b ∈ [0, 1], we may define a ∗ b = min{a, b}, a ∗ b = max{a, b},
a ∗ b = ab or a ∗ b = a + b− ab.

Definition 2.3. Let X be a nonempty set, by a fuzzy metric on X, we mean an
ordered triple (X,M, ∗), where ∗ is a continuous t-norm and M is a fuzzy set on
X2 × (0,∞) satisfying the following conditions for all x, y, z ∈ X and s, t > 0.

(a) M(x, y, t) > 0,

(b) M(x, y, t) = 1 for all t > 0, if and only if x = y,

(c) M(x, y, t) = M(y, x, t),

(d) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s),

(e) lim
t→∞

M(x, y, t) = 1.

It follows from (b) and (d) that for each x, y ∈ X, M(x, y, ·) : (0,∞) → [0, 1]
is increasing. In fact, if s < t, then

M(x, y, t) ≥ M(x, y, s) ∗M(y, y, t− s) = M(x, y, s).

One may regard M as a function which associates to each pair (x, y) ∈ X2 and
t ∈ R+ the truth of the following statement:

”The distance between x and y is less then t.”

Example 2.4. Let (X, d) be a metric space define

M(x, y, t) =





t

d(x, y)
if t < d(x, y)

1 if t ≥ d(x, y)
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It can be easily verified that (X, M, ∗) is a fuzzy metric space, where a ∗ b =
= min{a, b}, a, b ∈ [0, 1].

The difference between our definition of a fuzzy metric space with the one given
by A. George, P. Veeramani in [3] is in condition (e). In fact, by their definition,
a fuzzy metric space is a 3-tuple (X, M, ∗), where X is an arbitrary set, ∗ is a
continuous t-norm and M is a fuzzy set on X2 × (0,∞) which satisfy (a)− (d) of
the above definition and

(e′) M(x, y, ·) : [0,∞) → [0, 1] is left-continuous for each x, y ∈ X.

The condition (e), in Definition 2.3, implies that for each 0 < α < 1 and x, y ∈ X,
the set {t > 0 : M(x, y, t) ≥ α} is a nonempty. Therefore, we can define

(2.1) dα(x, y) = inf{t > 0 : M(x, y, t) ≥ α},
for each 0 < α < 1 and x, y ∈ X.

In the following proposition, some properties of {dα}α∈(0,1) are exhibited.

Proposition 2.5. Let (X,M, ∗) be a fuzzy metric space. For 0 < α < 1, Then
the following hold:

(a) dα(x, y) = 0 if x = y.

(b) dα(x, y) = dα(y, x).

(c) If α1 < α2, then dα1(x, y) ≤ dα2(x, y).
For all x, y ∈ X and α, α1, α2 ∈ (0, 1).

Proof. (a) If x = y, then M(x, y, t) = 1 for all t > 0. Therefore

dα(x, y) = inf{t > 0 : M(x, y, t) ≥ α} = inf(0,∞) = 0.

(b) is evident.

(c) If α1 < α2, then M(x, y, t) ≥ α2 implies that M(x, y, t) ≥ α1. Hence

{t > 0 : M(x, y, t) ≥ α2} ⊆ {t > 0 : M(x, y, t) ≥ α1}.
It follows that dα1(x, y) ≤ dα2(x, y).

Definition 2.6. Let (X,M, ∗) be a fuzzy metric space, x ∈ X, ε > 0 and
0 < α < 1. Define

Bα(x, ε) = {y ∈ X : dα(x, y) < ε}.
The following result in an immediate consequence of the property (c) of

Proposition 2.5.

Corollary 2.7. If α1, α2 ∈ (0, 1) and α1 < α2, then

Bα2(x, r) ⊂ Bα1(x, r), for each r > 0.
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Theorem 2.8. Let (X, M, ∗) be a fuzzy metric space and {αn} be a sequence in
(0, 1) such that lim

n→∞
αn = 1. Let τ be the topology generated by the set

{Bαn(x, r) : x ∈ X, n = 1, 2, 3, ... and r > 0},
and let τ ′ be the topology generated by the set

{Bα(x, r) : x ∈ X, 0 < α < 1, ... and r > 0}.
Then τ = τ ′.

Proof. By the definition τ ′ ⊂ τ . If 0 < α < 1, we choose some n ∈ N such that
α < αn. By Corollary 2.7, Bαn(x, r) ⊂ Bα(x, t). This proves the theorem.

By the above result the following definition is well-defined.

Definition 2.9. Let (X,M, ∗) be a fuzzy metric space. The fuzzy metric topology
τM of the space is defined to be the topology generated by a family

{Bαn(x, r) : x ∈ X, n = 1, 2, 3, ... and r > 0},
where {αn} is an arbitrary increasing sequence in (0, 1) such that lim

n→∞
αn = 1.

Remark 2.10. Let {αn} be an increasing sequence in (0, 1) such that αn → 1 as
n →∞. By the continuity of ∗, for every n ∈ N, there is some m > n, such that

αm ∗ αm ≥ αn.

We use this simple observation in the following result:

Lemma 2.11. Let (X, M, ∗) be a fuzzy metric space and dα be as Proposition 2.5.
Let dn = dαn, where {αn} is an increasing sequence in (0, 1) such that αn → 1 as
n →∞. Then for each n = 1, 2, 3, ..., there is some m > n, such that

dn(x, y) ≤ dm(x, z) + dm(z, y) for each x, y, z ∈ X.

Proof. Let x, y, z be in X and n ∈ N. The above argument shows that there is
some m > n such that αm ∗ αm ≥ αn. If for some t, s > 0, M(x, z, t) ≥ αm and
M(z, y, s) ≥ αm, then

M(x, y, s + t) ≥ αm ∗ αm ≥ αn.

Therefore

{t > 0 : M(x, z, t) ≥ αm}+{s > 0 : M(z, y, s) ≥ αm} ⊆ {r > 0 : M(x, y, r) ≥ αn}.
Hence

dn(x, y) ≤ dm(x, z) + dm(z, y).
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Hereafter, we fix an increasing sequence {αn} in (0, 1) such that lim
n→∞

αn = 1

and we let dn = dαn . In order to show that the topology τ , defined in Theorem
2.8 makes X into a Hausdorff space, we need to the following observation:

Lemma 2.12. Let for each n ≥ 1, dn(x, y) = 0 then x = y.

Proof. If dn(x, y) = 0 for all n ≥ 1, then

inf{t > 0 : M(x, y, t) ≥ αn} = 0, ∀n = 1, 2, 3, ....

Therefore
M(x, y, t) ≥ αn, ∀n > 0 and t > 0.

It follows that M(x, y, t) = 1 for all t > 0. Hence, by the definition x = y.

Theorem 2.13. Let (X,M, ∗) be a fuzzy metric space and τ be its associate
topology defined in Theorem 2.8, then (X, τ) is a Hausdorff space.

Proof. Let x and y be two distinct points of X. Then by Lemma 2.12, there
is some n > 1 such that r0 = dn(x, y) > 0. By Lemma 2.11, we can find some
m > n, such that

dn(x, y) ≤ dm(x, z) + dm(z, y)

for each z ∈ X. Then

x ∈ Bm(x, r0/3), y ∈ Bm(y, r0/3) and Bm(x, r0/3) ∩Bm(y, r0/3) = ∅.

In fact, if z ∈ Bm(x, r0/3) ∩Bm(y, r0/3), then

r0 = dn(x, y) ≤ dm(x, z) + dm(z, y) < r0/3 + r0/3 = 2r0/3.

This contradiction proves the theorem.

Definition 2.14. Let U be a covering of a space X and B ⊂ X, the star of B
with respect to U is defined to be the set

St(B,U) = ∪{U : U ∈ U , B ∩ U 6= ∅}.

In order to show that the topology of a fuzzy metric space is compatible with
a metric, we need to the following result:

Theorem 2.15. (Stone’s Theorem) Let X be a topological space. The following
statements are equivalent:

(1) X is metrizable.

(2) X is a T0 space and there a sequence {Un} of open coverings with the pro-
perty: for each x ∈ X and a neighborhood W of x, there is a neighborhood
V of x and n ∈ N such that St(V,Un) ⊆ W .
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Proof. See page 196 of [2].

Now, we are ready to state the main result of this section.

Theorem 2.16. Let (X, M, ∗) be a fuzzy metric space. Then the topological space
(X, τM) is metrizable.

Proof. By Theorem 2.13, (X, τ) is Hausdorff, hence it is T0. Let

Un =

{
Bn

(
x,

1

n

)
: x ∈ X

}
, n = 2, 3, ....

If x0 ∈ X and W is neighborhood of x0, there is some n ∈ N, such that

Bn

(
x0,

1

n

)
⊆ W . Let k > m > 3n be such that

αm ∗ αm ≥ αn and αk ∗ αk ≥ αm.

Let V = Bk

(
x0;

1

k

)
. We will show that St(V,Uk) ⊆ W . Let z ∈ Bk

(
y,

1

k

)
and

w ∈ Bk

(
y,

1

k

)
∩ V . Then

dn(z, x0) ≤ dm(z, y) + dm(y, x0)

≤ 1

m
+ dm(y, x0)

≤ 1

k
+ dk(y, w) + dk(w, x0)

≤ 1

k
+

1

k
+

1

k
=

3

k

<
1

n
.

Hence Bk

(
y,

1

k

)
⊆ W . It follows that St(V,Uk) ⊆ W . By the Stone’s theorem

X is metrizable.

Example 2.17. Let (X, d) be a metric space, define

Md(x, y, t) =
t

t + d(x, y)

where a ∗ b = ab. Then, it is easy to verify that (X, M, ∗) is a fuzzy metric space.

(Md, ·) is called the standard fuzzy metric space induced by d. Let αn = 1− 1

n
for n = 1, 2, .... Then

dn(x, y) = inf

{
t > 0 :

t

t + d(x, y)
≥ 1− 1

n

}

= inf{t > 0 : t ≥ (n− 1)d(x, y)}
= (n− 1) d(x, y).
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Therefore, the topology τ , generated by {dn} on X is equal to τd, the topology of
metric space d.

Remark 2.18. Let (X, M, ∗) be a fuzzy metric space and τM be its associated
topology. The proof of Lemma 2.11 shows that if α ∗ α ≥ α for all α ∈ (0, 1), for
example when a ∗ b is equal to max{a, b}, min{a, b} or min{a + b− 1}, then each
dn satisfies the triangle inequality. It follows that in such a situation

ρ(x, y) =
∞∑

n=0

1

2n

dn(x, y)

1 + dn(x, y)
∀x, y ∈ X

defines a metric on X. It can be easily verified that the metric topology τρ is
equal to the fuzzy metric topology τM on X.

Example 2.19. Let (X, d) be a metric space, define

M(x, y, t) = e−
d(x,y)

t , ∀x, y ∈ X and t > 0.

Let a ∗ b = min{a, b}. If M(x, y, t) ≥ M(y, z, s) for x, y ∈ X and t, s > 0, then
1

t
d(x, y) ≤ 1

s
d(y, z), therefore

d(x, z) ≤ d(x, y) + d(y, z)

≤ t

s
d(y, z) + d(y, z)

=
t + s

s
d(y, z).

It follows that M(x, z, t + s) ≥ M(y, z, s) = min{M(x, y, t),M(y, z, s)}. By Re-
mark 2.18, τM = τρ.

3. Correspondence between a system of quasi ∗-metrics
and a fuzzy metric on X

In this section we are going to establish one to one correspondence between fuzzy
metric spaces and a system of quasi ∗-metrics. In order to show the correspon-
dence, we need to the following definition:

Definition 3.1. Let X be a nonempty set and ∗ : [0, 1] → [0, 1] be a continuous
t-norm. Let {dα}α∈(0,1) be a family of nonnegative functions on X2, such that for
each x, y, z ∈ X and α ∈ (0, 1) the following conditions hold:

(1) dα(x, x) = 0;

(2) dα(x, y) = dα(y, x);

(3) if x 6= y, then dβ(x, y) > 0 for some β ∈ (0, 1);

(4) if β, γ ∈ (0, 1) and β ∗ γ ≥ α, then dα(x, z) ≤ dβ(x, y) + dγ(y, x).
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Then {dα}α∈(0,1) is said to be a system of quasi ∗-metrics on X.

Theorem 3.2. Let X be a nonempty set, ∗ be a continuous t-norm and {dα}α∈(0,1)

be a system of quasi ∗-metrics on X. Define

(3.1) M(x, y, t) = sup{α ∈ (0, 1) : dα(x, y) < t},

where x, y ∈ X, t ∈ R and α ∈ (0, 1), then

(i) (X, M, ∗) is a fuzzy metric on X.

(ii) If d(·)(x, y) : (0, 1) → R is left continuous and

(3.2) d′α(x, y) = inf{t > 0 : M(x, y, t) ≥ α},

then dα = d′α for each α ∈ (0, 1).

Proof. To prove (i), we have to show that the conditions (a)–(e) of Definition 2.3
hold. (a) and (c) immediately follows from the definition.

If x = y, then dα(x, y) = 0 < t for each t > 0 and α ∈ (0, 1). Therefore
M(x, y, t) = 1 for each t > 0. Conversely, suppose that M(x, y, t) = 1 for each
t > 0. Then for each α ∈ (0, 1) and t > 0, dα(x, y) < t. This means that
dα(x, y) = 0 for each α ∈ (0, 1), by (3) x = y. This proves (b).

Let β = M(x, y, t), γ = M(y, z, s) and α = β ∗ γ. Let β1 < β and γ1 < γ and
α1 = β1 ∗ γ1. It follows from the definition that

dβ1(x, y) < t and dγ1(y, z) < s.

Therefore, by (4), we have

dα1(x, z) ≤ dβ1(x, y) + dγ1(y, z) < t + s.

Hence M(x, z, t + s) ≥ α1, By the continuity of ∗,

M(x, z, t + s) ≥ α = M(x, y, t) ∗M(y, z, s).

This proves that the condition (d) of Definition 2.3.
Next we will show that lim

t→∞
M(x, y, t) = 1. Let ε > 0. Take some α ∈ (0, 1)

such that α > 1− ε. Then, for each t > dα(x, y), we have

M(x, y, t) ≥ M(x, y, dα(x, y)) ≥ α > 1− ε.

To prove (ii), we will show that

(2.1) dα(x, y) < t ⇒ d′α(x, y) ≤ t and d′α(x, y) < t ⇒ dα(x, y) ≤ t.

Let d′(x, y) < t, then by (3.2), we have M(x, y, t)≥α. Hence, by (3.1), dα1(x, y) < t
for each α1 < α. Thanks to left continuity of d( )(x, y) at α, the relation dα(x, y)≤t
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follows. If dα(x, y) < t, for some α ∈ (0, 1), t > 0 and x, y ∈ X, then by (3.1),
M(x, y, t) ≥ α. Hence, by (3.2), d′α(x, y) ≤ t.

Let (X, M, ∗) be a fuzzy metric space. By the proofs of Proposition 2.5 and
Lemmas 2.11 and 2.12 the family {dα}α∈(0,1), which is defined by (2.1), is a system
of quasi ∗-metrics on X. The following proposition shows that there is a close
relationship between M and its corresponding system of quasi ∗-metrics.

Proposition 3.3. Let (X,M, ∗) be a fuzzy metric space and {dα}α∈(0,1) be its
corresponding system of quasi ∗-metrics. Let x, y ∈ X and α ∈ (0, 1).

(1) If M(x, y, ·) : (0,∞) → (0, 1] is strictly increasing on the set
{t > 0 : 0 < M(x, y, t) < 1} and M(x, y, s) = α then dα(x, y) = s.

(2) If M(x, y, ·) : (0,∞) → [0, 1] is continuous and dα(x, y) = s,
then M(x, y, s) = α.

Proof. (1) If t0 < s < t1 then M(x, y, t0) < M(x, y, s) < M(x, y, t1). Hence

dα(x, y) = inf{t > 0 : M(x, y, t) ≥ α} = inf{t > 0 : t ≥ s} = s.

(2) If dα(x, y) = s, it follows from the definition that

M(x, y, t1) < α, ∀t1 < s,

M(x, y, t2) ≥ α, ∀t2 > s.

By the continuity of M(x, y, ·) at s,

M(x, y, s) = lim
t→s

M(x, y, t) = α.

Let (X, M, ∗) be a fuzzy metric space and {dα}α∈(0,1) be its corresponding
system of quasi ∗-metrics on X. Let M ′(x, y, t) = sup{α ∈ (0, 1) : dα(x, y) < t}
for each x, y ∈ X and t > 0. By Theorem 3.2, (X, M ′, ∗) is a fuzzy metric on X.
In the next result we will show that M ≡ M ′ if for each x, y ∈ X, M(x, y, ·) is a
continuous function on (0,∞).

Theorem 3.4. Under the above notations, we have the following.

(1) M(x, y, t) ≥ M ′(x, y, t) for each x, y ∈ X and t > 0.

(2) If x, y ∈ X and M(x, y, ·) : (0,∞) → [0, 1] is continuous,
then M(x, y, t) = M ′(x, y, t) for each t > 0.

Proof. (1) Let M ′(x, y, t) > α for x, y ∈ X, t > 0 and α ∈ (0, 1). It follows from
the definition that for each α1 < α, dα1(x, y) < t and hence M(x, y, t) ≥ α1. Since
this holds for each α1 < α, the relation M(x, y, t) ≥ α holds. This proves (1).

(2) Let M(x, y, t) > α for x, y ∈ X, t > 0 and α ∈ (0, 1). By the definition,
dα(x, y) ≤ t. If dα(x, y) = t, then by Proposition 3.3 (2), M(x, y, t) = α. Therefore
dα(x, y) < t. Hence, by the definition, M ′(x, y, t) ≥ α. This together with (1)
proves (2).
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