

C^1 ROBUSTLY MINIMAL ITERATED FUNCTION SYSTEMS

F. H. GHANE

Department of Mathematics, Ferdowsi University of Mashhad, Iran f_h_ghane@yahoo.com

A. J. HOMBURG

Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Netherlands a.j.homburg@uva.nl

A. SARIZADEH*

Department of Mathematics, Ferdowsi University of Mashhad, Iran ali.sarizadeh@gmail.com

> Received 2 March 2009 Revised 6 August 2009

We construct iterated function systems on compact manifolds that are C^1 robustly minimal. On the m-dimensional torus and on two-dimensional compact manifolds, examples are provided of C^1 robustly minimal iterated function systems that are generated by just two diffeomorphisms.

Keywords: Iterated function systems; robust property; minimal systems.

AMS subject Classification: 37E30, 28A20

1. Introduction

Our motivation for this paper comes from a result contained in [3] by Gorodetskii and Il'yashenko on iterated function systems on the circle. They provide an example of an iterated function system generated by two circle diffeomorphisms, that is robustly minimal in the C^1 topology. The example consists of an irrational rigid rotation and a diffeomorphism with an attracting and a repelling fixed point; we refer to [6, Proposition 12] for details of the construction.

We generalize this example to iterated function systems on m-dimensional compact Riemannian manifolds M by constructing examples of C^1 robustly minimal

^{*}Corresponding author

iterated function systems on M. On the m-dimensional torus $\mathbb{T}^m = (\mathbb{R}/\mathbb{Z})^m$ and on two-dimensional compact manifolds, i.e. compact surfaces, robust minimal iterated function systems with two generators exist. A somewhat related problem on minimality of an iterated function system generated by a generic pair of area preserving diffeomorphisms was recently raised in [7].

We begin to introduce definitions and notations of iterated function systems, and then formulate our main results. Consider a collection of diffeomorphisms $\mathcal{L} = \{g_1, \ldots, g_n\}$ on M. The iterated function system $\mathcal{G}(M; g_1, \ldots, g_n)$ on M generated by \mathcal{L} is given by iterates $g_{i_1} \circ \cdots \circ g_{i_k}$ with $i_j \in 1, \ldots, n$. As is well known, iterated function systems are a popular way to generate and explore a variety of fractals [1, 2]. Consider the space $\mathrm{Diff}^1(M)$ of C^1 diffeomorphisms of M, endowed with the C^1 topology. Recall that a map $f: M \to M$ is minimal if each closed subset $X \subset M$ such that $f(X) \subset X$ is empty or coincides with M. An iterated function system $\mathcal{G}(M; g_1, \ldots, g_s)$ on M is minimal if each closed subset $A \subset M$ such that $g_i(A) \subset (A)$ for all i is empty or coincides with M. Equivalently, for a minimal iterated function system $\mathcal{G}(M; g_1, \ldots, g_s)$, for any $x \in M$ the collection of iterates $g_{i_1} \circ \cdots \circ g_{i_k}(x), i_j \geq 0$, is dense in M.

Theorem 1.1. Let M be a compact connected m-dimensional manifold. Then there exist diffeomorphisms T_1, \ldots, T_{m+3} on M and a neighborhood

$$U \subset \underbrace{\operatorname{Diff}^{1}(M) \times \cdots \times \operatorname{Diff}^{1}(M)}_{m+3 \text{ times}}$$

of (T_1, \ldots, T_{m+3}) such that each element in U forms a minimal iterated function system on M.

This result raises the question of the minimal number of generators of C^1 robustly minimal iterated function systems. The following two results provide answers in two cases, iterated function systems on tori and compact surfaces.

Theorem 1.2. There exist two diffeomorphisms T_1, T_2 on the m-dimensional torus \mathbb{T}^m and a neighborhood $U \subset \mathrm{Diff}^1(M) \times \mathrm{Diff}^1(M)$ of (T_1, T_2) such that each element in U forms a minimal iterated function system on \mathbb{T}^m .

Theorem 1.3. Let M be a compact connected surface. There exist two diffeomorphisms T_1, T_2 on M and a neighborhood $U \subset \operatorname{Diff}^1(M) \times \operatorname{Diff}^1(M)$ of (T_1, T_2) such that each element in U forms a minimal iterated function system on M.

These theorems are proved in the following section.

2. Robust Minimal Iterated Function Systems

For $x \in M$, define $\Gamma(x) \subset \mathrm{Diff}^1(M)$ by

$$\Gamma(x) = \left\{ g \in \mathrm{Diff}^1(M) \, \middle| \, 1 < \|Dg^{-1}(g(x))\| < 2 \text{ and } \frac{1}{2} < \|Dg(x)\| < 1 \right\}.$$

Given a small open neighborhood V of a point $a \in M$, put

$$C_V = \{g \in \mathrm{Diff}^1(M) \mid g(\bar{V}) \subset V \text{ and } \forall x \in \bar{V}, g \in \Gamma(x)\}.$$

Note that in the C^1 -topology, C_V is open and the map $\alpha: C_V \to V$ that takes each map to its fixed point in V is continuous.

We start with some lemmas.

Lemma 2.1. For $\mathcal{L} = \{g_1, \dots, g_s\}$ with $g_i \in C_V$, $i = 1, \dots, s$, there exists a unique non-empty compact set Δ such that the iterated function system $\mathcal{G}(\Delta; g_1, \ldots, g_s)$ is minimal.

Proof. Take $\mathcal{L}^0(\bar{V}) = \bar{V}$, $\mathcal{L}^1(\bar{V}) = \mathcal{L}(\bar{V}) = \bigcup_{i=1}^n g_i(\bar{V})$, $\mathcal{L}^p(\bar{V}) = \mathcal{L}(\mathcal{L}^{p-1}(\bar{V}))$ for p > 1. Since $\mathcal{L}(\bar{V}) \subset V$,

$$\bar{V} \supset \mathcal{L}(\bar{V}) \supset \mathcal{L}^2(\bar{V}) \supset \cdots \supset \mathcal{L}^p(\bar{V}) \supset \cdots$$

Now $\triangle = \lim_{p\to\infty} \mathcal{L}^p(\bar{V})$ is a nonempty compact set that is invariant for \mathcal{L} . Since g_i are contractions on \bar{V} , \triangle is the unique compact set that is invariant for \mathcal{L} [4]. Thus the iterated function system $\mathcal{G}(\Delta; g_1, \ldots, g_s)$ is minimal.

An ordered set of points $\{p_1,\ldots,p_{m+1}\}\subset\mathbb{R}^m$ is called affine independent if $\{\overrightarrow{p_1p_2}, \overrightarrow{p_1p_3}, \dots, \overrightarrow{p_1p_{m+1}}\}\$ is linearly independent.

Lemma 2.2. In Lemma 2.1, it is possible to choose $\mathcal{L} = \{g_1, \ldots, g_{m+1}\}, g_i \in C_V$ for $1 \leq i \leq m+1$, so that the interior of \triangle is nonempty.

Proof. In coordinates we may assume that $V \subset \mathbb{R}^m$. Choose $\{g_1, \ldots, g_{m+1}\} \subset C_V$ such that the subset $\{\alpha(g_1), \ldots, \alpha(g_{m+1})\}$ is affine independent. Moreover, choose $g_i, i = 1, \ldots, m+1$, so that $Dg_i(\alpha(g_i))$ is a multiple of the identity. Take a linear system $\mathcal{L} = \{k_1, \ldots, k_{m+1}\}$, where $k_i(x) = Dg_i(\alpha(g_i))(x - \alpha(g_i)) + \alpha(g_i), i = 1\}$ $1, \ldots, m+1$. By shrinking V, if necessary, k_i is arbitrary close to g_i on \overline{V} . It is clear that the set $\triangle = \text{conv}\{\alpha(g_1), \dots, \alpha(g_{m+1})\}\$ is an invariant set for $\hat{\mathcal{L}}$, where $\operatorname{conv}\{a_1,\ldots,a_{m+1}\}\$ is the convex hull spanned by $\{a_1,\ldots,a_{m+1}\}.$

Take $\alpha_i' \subset \operatorname{int}(\tilde{\triangle})$ close to $\alpha(g_i), i = 1, \dots, m+1$. Let $\triangle^2 = \operatorname{conv}\{\alpha_1', \dots, \alpha_{m+1}'\}$. Then

$$\triangle^2 \subset \tilde{\mathcal{L}}(\triangle^2) \subset \cdots \subset \tilde{\mathcal{L}}^n(\triangle^2) \subset \cdots$$

which implies that $\lim_{n\to\infty} \tilde{\mathcal{L}}^n(\triangle^2) = \bigcup_{n>0} \tilde{\mathcal{L}}^n(\triangle^2) = \operatorname{int}\tilde{\triangle}$. Since g_i is close to k_i on V,

$$\Delta^2 \subset \mathcal{L}(\Delta^2) \subset \dots \subset \mathcal{L}^n(\Delta^2) \subset \dots \tag{1}$$

and hence int $\triangle \supset \bigcup_{i>0} \mathcal{L}^n(\triangle^2)$.

The proof of Lemma 2.2 gives more than its statement as it includes arguments for C^1 robust occurrence of invariant sets with nonempty interior.

Corollary 2.3. Let $\{g_1, \ldots, g_{m+1}\}$, $g_i \in C_V$ for $1 \le i \le m+1$, be such that $\{\alpha(g_1), \ldots, \alpha(g_{m+1})\}$ is affine independent (assuming, as in the proof of Lemma 2.2, that $V \subset \mathbb{R}^m$). Then there exists a neighborhood $W \subset \text{Diff}^1(M) \times \cdots \times \text{Diff}^1(M)$

of (g_1, \ldots, g_{m+1}) such that each element $\mathcal{F} = (f_1, \ldots, f_{m+1})$ in this neighborhood admits an invariant set with non-empty interior.

The above lemmas are ingredients in the proof of Theorem 1.1.

Proof of Theorem 1.1. We prove the theorem by establishing the following: there exist an open neighborhood V of a point $q \in M$, an iterated function system $\mathcal{L} = \{g_1, \dots, g_{m+1}\}$ with $g_i \in C_V$ for $1 \leq i \leq m+1$, a diffeomorphism T on M, and a neighborhood $U \subset (\operatorname{Diff}^1(M))^{m+3}$ of $(T, T^{-1}, g_1, \dots, g_{m+1})$ such that each element in U forms a minimal system on M.

Take a gradient Morse–Smale vector field on M with a unique hyperbolic repelling equilibrium q (see e.g. [8, Theorem 3.35] for the existence of Morse functions with unique extrema) and let T be its time-1 map. Let V be a small open neighborhood of q. By following the argument in the proof of Lemma 2.2 for $\mathcal{L} = \{g_1, \ldots, g_{m+1}\}$, we can choose $\alpha'_i \in \operatorname{int}(\Delta)$ sufficient close to $\alpha(g_i)$ for $i = 1, \ldots, m+1$ such that $\Delta^2 = \operatorname{conv}\{\alpha'_1, \ldots, \alpha'_{m+1}\} \subset \operatorname{int}\Delta$. We may assume that q lies in the interior of Δ^2 . The unstable manifold of q for T lies dense in M. Iterates of Δ under T therefore cover a dense subset of M. Finally, choose g_1, \ldots, g_{m+1} so that each of the finitely many critical points of T is mapped into the unstable manifold of q for T by at least one of the maps g_i . It is now easily seen that the iterated function system $\{T, T^{-1}, g_1, \ldots, g_{m+1}\}$ is minimal.

For \tilde{g}_i C^1 -close to g_i , the system $\{\tilde{g}_1,\ldots,\tilde{g}_{m+1}\}$ is minimal on a compact set $\tilde{\Delta}$ containing Δ^2 . A diffeomorphism \tilde{T} that is C^1 -close to T has its fixed points near those of T, in particular a unique hyperbolic repelling equilibrium \tilde{q} inside Δ^2 with dense unstable manifold [9]. It follows that a system $\{\tilde{T},\tilde{T}^{-1},\tilde{g}_1,\ldots,\tilde{g}_{m+1}\}$ whose generators are sufficiently C^1 -close to those of $\{T,T^{-1},g_1,\ldots,g_{m+1}\}$ is minimal.

We finish with the examples of robust minimal systems on tori and compact surfaces. The proofs use arguments similar to the ones above.

Proof of Theorem 1.2. Let T_1 be a C^1 diffeomorphism of \mathbb{T}^m possessing an attracting fixed point $a = (a_1, \ldots, a_m)$, so that $T_1 \in \Gamma(a)$ and $DT_1(a)$ is a diagonal matrix. Let T_2 be a minimal translation on \mathbb{T}^m , see e.g. [5, Sec. 1.4].

Since T_2 is a minimal translation and C_V is open, there exist $n_i \in \mathbb{N}$ such that

$$g_i = T_2^{n_i} T_1 \in C(V)$$

for i = 1, ..., m+1 and the set $\{\alpha(g_1), ..., \alpha(g_{m+1})\}$ is affine independent. We can apply the arguments in the proof of Lemma 2.2 for $\mathcal{L} = \{g_1, \dots, g_{m+1}\}$; let Δ^2 be as in that proof so that (1) applies.

Iterates of \triangle^2 under T_2 cover \mathbb{T}^m ; thus there exists a finite subcover Ω^+ . Moreover, since T_2^{-1} is also minimal, it follows that there exists a finite subcover Ω^- of \mathbb{T}^m by the images of \triangle^2 under the iterates of T_2^{-1} . The same applies when T_2 is replaced by \tilde{T}_2 from a small neighborhood of T_2 in Diff¹(\mathbb{T}^m).

By Corollary 2.3, there exists a neighborhood W of (g_1, \ldots, g_{m+1}) such that for each element (f_1, \ldots, f_{m+1}) in this neighborhood, the iterated function system $\{f_1,\ldots,f_{m+1}\}\$ has a unique compact set $\Delta_{\mathcal{F}}$ with non-empty interior on which it is minimal. The interior of $\triangle_{\mathcal{F}}$ contains Δ^2 .

We conclude that there is a small neighborhood U of (T_1, T_2) so that for each $(\tilde{T}_1, \tilde{T}_2)$ in $U, \{f_1, \dots, f_{m+1}\}$ with $f_i = \tilde{T}_2^{n_i} \tilde{T}_1$ acts minimally on a set that contains Δ^2 , and forward and backward iterates under \tilde{T}_2 of Δ^2 cover \mathbb{T}^m . This implies that (\mathbb{T}^m, T_1, T_2) is C^1 robustly minimal.

Proof of Theorem 1.3. Let T_1 be the time-1 map of a gradient Morse–Smale flow on M, with a unique attracting fixed point q_1 and a unique repelling fixed point p_1 . Let T_2 likewise be the time-1 map of a gradient Morse–Smale flow on M, with a unique attracting fixed point q_2 and a unique repelling fixed point p_2 , with q_2 close to p_1 and p_2 close to q_1 . Further, choose T_1 , T_2 so that T_2 maps fixed points of T_1 into the stable manifold of q_1 (which lies dense in M).

Take T_1 with $DT_1(q_1)$ close to identity and with complex conjugate eigenvalues. Take T_1 and T_2 so that further $T_2T_1^k$ for some $k \in \mathbb{N}$ possesses a hyperbolic attracting fixed point q_{12} near q_1 , with $DT_2T_1^k(q_{12})$ close to identity and with complex conjugate eigenvalues. Moreover, we can ensure that T_1 and $T_2T_1^k$ are linear in coordinates near $\{q_1\} \cup \{q_{12}\}$, and time-1 maps of flows φ_1^t , φ_{12}^t .

We claim that $\mathcal{L} = \{T_1, T_{12}\}$ is minimal on a unique compact set Δ with a nonempty interior that contains q_1 , q_{12} . To see this, write l for the closed line piece connecting q_1 and q_{12} and consider the set U which is the union of $\bigcup_{t>0} \varphi_1^t(l)$ and $\cup_{t\geq 0}\varphi_{12}^t(l)$. Since q_1 and q_{12} are attracting fixed points for T_1 and T_1T_2 , U is a closed set that contains q_1 and q_{12} in its interior. Since $DT_1(q_1)$ and $DT_1T_2(q_{12})$ are near the identity, one has $\mathcal{L}(U) \supset U$. Hence $U \subset \Delta$. Noting that U contains a slightly longer linepiece that extends l, one sees that $U \subset \operatorname{int} \mathcal{L}^n(U)$ for some $n \in \mathbb{N}$. Then, for T_1 , T_2 C^1 -close to T_1 , T_2 , also $U \subset \operatorname{int} \mathcal{L}^n(U)$ for $\tilde{\mathcal{L}}=\{\tilde{T}_1,\tilde{T}_2\}$. Thus $\tilde{\mathcal{L}}$ is minimal on a compact set that contains U in its interior.

Finally, choose T_1 , T_2 so that the repelling fixed point p_2 of T_2 will be contained in U. It is easily checked that this can be done: in complex coordinates near $\{q_1\}$ \cup $\{q_{12}\}\$ one may take $T_1(z)=az,\, T_2(z)=bz+1$ and $T_2T_1^k(z)=ba^kz+1,\,$ and by varying a, b, k while keeping ba^k fixed one may assume that the fixed point of T_2 is near 0 and hence lies in U. The properties of T_1 , T_2 now imply that $\mathcal{G}(M; T_1, T_2)$ is C^1 robustly minimal, compare the proof of Theorem 1.1.

Acknowledgments

We thank the referees for their comments and suggestions that helped a lot to improve the paper. A.S. is grateful for the hospitality of the Korteweg-de Vries Institute for Mathematics. The first and third authors were supported by a grant from Ferdowsi University of Mashhad (No. MP88070GAN).

References

- 1. M. F. Barnsley, Fractals Everywhere, 2nd edn. (Academic Press, 1993).
- 2. K. Falconer, Techniques in Fractal Geometry (John Wiley & Sons, 1997).
- A. S. Gorodetskii and Yu. S. Il'yashenko, Certain properties of skew products over a horseshoe and a solenoid, Proc. Steklov Inst. Math. 231 (2000) 90–112.
- J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981) 713– 747.
- A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, Vol. 54 (Cambridge Univ. Press, 1995).
- V. A. Kleptsyn and M. B. Nalskii, Contraction of orbits in random dynamical systems on the circle, Funct. Anal. Appl. 38 (2004) 267–282.
- 7. A. Koropecki and M. Nassiri, Transitivity of generic semigroups of area-preserving surface diffeomorphisms, to appear in *Math. Z.*
- 8. Y. Matsumoto, An Introduction to Morse Theory, Translations of Mathematical Monographs, Vol. 208 (Amer. Math. Soc., 2002).
- 9. J. Palis, On Morse–Smale dynamical systems, Topology 8 (1968) 385–404.