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n-HOMOTOPICALLY HAUSDORFF SPACES

F. GHANE AND Z. HAMED∗

Abstract. In this talk, n-homotopically Hausdorff and strongly n-homotopically

Hausdorff spaces are introduced. It is proved that every subset of 3-dimensional

Euclidean space is 2-homotopically Hausdorff, and that every strongly n-

homotopically Hausdorff space is n-homotopically Hausdorff. Moreover, some

conditions are given for metric spaces to be n-homotopically Hausdorff or

strongly n-homotopically Hausdorff at a point.

1. Introduction and Motivation

A space X is homotopically Hausdorff at a point x0 ∈ X, if for all nontrivial
γ ∈ π1(X, x0) there exists a neighborhood U of x0 such that no loop in U is
homotopic (in X) to γ rel x0. Furthermore, X is homotopically Hausdorff, if it is
homotopically Hausdorff at every point.

Homotopically Hausdorff spaces were first introduced by Cannon and Conner in
2006 ([1]). In [1] it is noted that the name homotopically Hausdorff is motivated by
the fact that the path space Ω(X, x0) is Hausdorff if and only if X is homotopically
Hausdorff at x0.

In [3] the property of being homotopically Hausdorff is described and it is proved
that every planar set is homotopically Hausdorff. In addition, Conner and Lamore-
aux showed that if X is a topological space which is first countable, homotopically
Hausdorff, but it is not semilically simply connected, then π1(X) is uncountable
([3]). After that, Fischer and Zastrow proved the same theorem, but in a different
and easier approach ([5]).
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In this talk, we describe the notion n-homotopically Hausdorffness, and extend
the above result for higher homotopy groups. Moreover, we prove that every subset
of 3-dimensional Euclidean space is 2-homotopically Hausdorff.

Recently, Conner and the others introduced strongly homotopically Hausdorff
spaces, and gave some conditions for metric spaces which implies homotopically
Hausdorff and strongly homotopically Hausdorff at a point, which were be easier
to check for the spaces ([4]).

Here, we extend the notion of being strongly homotopically Hausdorff, and give
the same conditions, which will be easier to check for metric spaces to being n-
homotopically Hausdorff and strongly n-homotopically Hausdorff. Moreover, we
show that every strongly n-homotopically Hausdorff space is n-homotopically Haus-
dorff.

2. n-Homotopically Hausdorff spaces

Definition 2.1. A space X is called n-homotopically Hausdorff at x0 ∈ X, if for
any essential n-loop α, based at x0, there is an open neighborhood U of x0 for
which α is not homotopic (rel İn) to an n-loop lying entirely in U .

X is said to be n-homotopically Hausdorff, if it is n-homotopically Hausdorff at
each of its points.

Lemma 2.2. Let X be a subset of E3 and N a closed disk in E3 whose boundary
is not contained in X. Let α1 and α2 be 2-loops in X ∩ int(N) based at x0 which
are homoyopic in X. Then there is a homotopy F between α1 and α2 whose image
is contained in X ∩N .

Theorem 2.3. Every subset of E3 is 2-homotopically Hausdorff.

Proof. Let x0 ∈ X ⊆ E3. Let α0 be a 2-loop in X based at X0 so that given any
open set U containing X0, α0 is homotopic (in X rel X0) to a 2-loop lying entirely
in U .

If X0 is interior to X, then α0 is homotopic to a 2-loop whose image is in an
open set U ⊆ X which is homeomorphic to a Euclidean 3-dimensional disk, and
thus α0 is nullhomotopic.

If X0 is not interior to X, then there is a sequence of points in E3 − X which
converges to x0. If this is the case, let p0 be a point in E3 − X, and for each
n ∈ N, pick a point pn ∈ E3 − X so that distance between pn and x0 is no
more that the minimum of 1

n and one-half the distance between pn−1 and x0 (i.e.
pn ∈ Bx0(min{ 1

n , 1
2d(x0, pn−1)}) ∩ (E3 −X)).

Let εn = d(x0, pn). Choose a 2-loop αn ⊆ Bx0(εn) based at x0 which is ho-
motopic to α0 (and hence to αn−1). Note that αn−1 ∪ αn ⊆ Bx0(εn−1) and
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that the boundary of Bx0(εn) is a simple 2-loop containing the point pn. Ap-
plying Lemma 2.2, we may choose a homotopy Fn between αn and αn−1 so that
Fn |I2×{1} is αn, Fn |I2×{0} and the image of Fn is contained in the closure of
Bx0(εn−1). We sequentially adjoin the homotopies Fi to form a homotopy F by
defining F (x, y) = Fn(x, 2n+1y − 1 when x ∈ I2 and 2−(n+1) ≤ y ≤ 2−n, and
defining F (x, 0) = x0. We show that F is continuous.

Case 1: If (x, y) ∈ I3 and y > 0, then continuity at (x, y) follows from then
continuity of at most two of the functions Fn−1 and Fn.

Case 2: If (x, y) ∈ I3 and y = 0, then F (x, y) = x0. Given any ε > 0, we may
choose a k so that εk < ε. Now, for any n > k, the image of Fn is contained in
Bx0(εn) and thus is a subset of Bx0(εk). It follows any point in B(x,y)(2−(k+1))
would map to a point within εk and hence within ε of x0.

Thus the 2-loop α0 is nullhomotopic and thus the set X is 2-homotopically
Hausdorff. �

Here, we give a condition for metric spaces which implies n-homotopically Haus-
dorfness at a point, which will be easier to check for our spaces. The basic idea is
that for every small nullhomotopic n-loop, there is a nullhomotopy of small diam-
eter.

Theorem 2.4. Let X be a metric space, and let x0 ∈ X. Suppose X has the
property that for every ε > 0 there is δ > 0 such that for every map f : Bn+1 → X

with f(Sn) ⊆ Bx0(ε), there is a map g : Bn+1 → X such that g |Sn= f |Sn and
g(Bn+1) ⊆ Bx0(ε). Then X is n-homotopically Hausdorff at x0.

We recall a topological space X is called n-semilocally simply connected at a
point x if there exists an open neighborhood U of x for which any n-loop in U is
nullhomotopic in X. Moreover, X is said to be n-semilocally simply connected if it
is n-semilocally simply connected at each point (see [7]).

Theorem 2.5. Suppose that X has a countable Basis at x0, that X is n-homotopically
Hausdorff at x0, and that X is not n-semilocally simply connected at x0. Then
πn(X, x0) is uncountable.

Definition 2.6. A space X is called strongly n-homotopically Hausdorff at x0 ∈ X,
if for each essential n-loop γ in X, there is an open neighborhood of x0 that contains
no n-loop freely homotopic (in X) to γ.

A compact space X is said to be strongly n-homotopically Hausdorff, if it is
strongly n-homotopically Hausdorff at each of its points.
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Theorem 2.7. If X is strongly n-homotopically Hausdorff at x0 ∈ X, then X is
n-homotopically Hausdorff at x0.

Proof. Let γ be an n-loop based at x0 that can be homotoped rel xo into arbitrarily
small neighborhood of x0 in X. Then since based pointed homotopies are a spacific
type of (free) homotopy, we see that since X is strongly n-homotopically Hausdorff
at x0, γ must be nullhomotopic, and therefore X is n-homotopically Hausdorff at
x0. �

Finally, we give a sufficient condition for being strongly n-homotopically Haus-
dorff at a point, which essentially says that for every pair of homotopic n-loops
nearby a point, there is a homotopy of small diameter between them.

Theorem 2.8. Let X be a compact metric space and x0 ∈ X such that for every
ε > 0 there is a δ > 0 such that for every map f : Sn × [0, 1] → X such that
f |Sn×{0} is not freely nullhomotopic, and f(Sn × {0, 1}) ⊆ Bx0(δ), there is a map
g : Sn × [0, 1] → X such that g |Sn×{0,1}= f |Sn×{0,1}, and g(Sn × [0, 1]) ⊆ Bx0(ε).
Then X is strongly n-homotopically Hausdorff at x0.
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