Extended Abstracts of the 5th Seminar on Geometry and Topology 12-14 May 2009, University of Kurdistan, Sanandaj, Iran.

n-HOMOTOPICALLY HAUSDORFF SPACES

F. GHANE AND Z. HAMED*

ABSTRACT. In this talk, *n*-homotopically Hausdorff and strongly *n*-homotopically Hausdorff spaces are introduced. It is proved that every subset of 3-dimensional Euclidean space is 2-homotopically Hausdorff, and that every strongly *n*homotopically Hausdorff space is *n*-homotopically Hausdorff. Moreover, some conditions are given for metric spaces to be *n*-homotopically Hausdorff or strongly *n*-homotopically Hausdorff at a point.

1. INTRODUCTION AND MOTIVATION

A space X is homotopically Hausdorff at a point $x_0 \in X$, if for all nontrivial $\gamma \in \pi_1(X, x_0)$ there exists a neighborhood U of x_0 such that no loop in U is homotopic (in X) to γ rel x_0 . Furthermore, X is homotopically Hausdorff, if it is homotopically Hausdorff at every point.

Homotopically Hausdorff spaces were first introduced by Cannon and Conner in 2006 ([1]). In [1] it is noted that the name homotopically Hausdorff is motivated by the fact that the path space $\Omega(X, x_0)$ is Hausdorff if and only if X is homotopically Hausdorff at x_0 .

In [3] the property of being homotopically Hausdorff is described and it is proved that every planar set is homotopically Hausdorff. In addition, Conner and Lamoreaux showed that if X is a topological space which is first countable, homotopically Hausdorff, but it is not semilically simply connected, then $\pi_1(X)$ is uncountable ([3]). After that, Fischer and Zastrow proved the same theorem, but in a different and easier approach ([5]).

²⁰⁰⁰ Mathematics Subject Classification. 55P35; 55P55; 55Q05; 55Q07; 54H11.

Key words and phrases. homotopy group; homotopioclly Hausdorff space; strongly homotopioclly Hausdorff space.

^{*} Speaker.

F. GHANE AND Z. HAMED

In this talk, we describe the notion *n*-homotopically Hausdorffness, and extend the above result for higher homotopy groups. Moreover, we prove that every subset of 3-dimensional Euclidean space is 2-homotopically Hausdorff.

Recently, Conner and the others introduced strongly homotopically Hausdorff spaces, and gave some conditions for metric spaces which implies homotopically Hausdorff and strongly homotopically Hausdorff at a point, which were be easier to check for the spaces ([4]).

Here, we extend the notion of being strongly homotopically Hausdorff, and give the same conditions, which will be easier to check for metric spaces to being nhomotopically Hausdorff and strongly n-homotopically Hausdorff. Moreover, we show that every strongly n-homotopically Hausdorff space is n-homotopically Hausdorff.

2. *n*-Homotopically Hausdorff spaces

Definition 2.1. A space X is called *n*-homotopically Hausdorff at $x_0 \in X$, if for any essential n-loop α , based at x_0 , there is an open neighborhood U of x_0 for which α is not homotopic (rel \dot{I}^n) to an n-loop lying entirely in U.

X is said to be *n*-homotopically Hausdorff, if it is *n*-homotopically Hausdorff at each of its points.

Lemma 2.2. Let X be a subset of E^3 and N a closed disk in E^3 whose boundary is not contained in X. Let α_1 and α_2 be 2-loops in $X \cap int(N)$ based at x_0 which are homoyopic in X. Then there is a homotopy F between α_1 and α_2 whose image is contained in $X \cap N$.

Theorem 2.3. Every subset of E^3 is 2-homotopically Hausdorff.

Proof. Let $x_0 \in X \subseteq E^3$. Let α_0 be a 2-loop in X based at X_0 so that given any open set U containing X_0 , α_0 is homotopic (in X rel X_0) to a 2-loop lying entirely in U.

If X_0 is interior to X, then α_0 is homotopic to a 2-loop whose image is in an open set $U \subseteq X$ which is homeomorphic to a Euclidean 3-dimensional disk, and thus α_0 is nullhomotopic.

If X_0 is not interior to X, then there is a sequence of points in $E^3 - X$ which converges to x_0 . If this is the case, let p_0 be a point in $E^3 - X$, and for each $n \in \mathbb{N}$, pick a point $p_n \in E^3 - X$ so that distance between p_n and x_0 is no more that the minimum of $\frac{1}{n}$ and one-half the distance between p_{n-1} and x_0 (i.e. $p_n \in B_{x_0}(\min\{\frac{1}{n}, \frac{1}{2}d(x_0, p_{n-1})\}) \cap (E^3 - X)).$

Let $\epsilon_n = d(x_0, p_n)$. Choose a 2-loop $\alpha_n \subseteq B_{x_0}(\epsilon_n)$ based at x_0 which is homotopic to α_0 (and hence to α_{n-1}). Note that $\alpha_{n-1} \cup \alpha_n \subseteq B_{x_0}(\epsilon_{n-1})$ and

 $\mathbf{2}$

that the boundary of $B_{x_0}(\epsilon_n)$ is a simple 2-loop containing the point p_n . Applying Lemma 2.2, we may choose a homotopy F_n between α_n and α_{n-1} so that $F_n \mid_{I^2 \times \{1\}}$ is α_n , $F_n \mid_{I^2 \times \{0\}}$ and the image of F_n is contained in the closure of $B_{x_0}(\epsilon_{n-1})$. We sequentially adjoin the homotopies F_i to form a homotopy F by defining $F(x,y) = F_n(x,2^{n+1}y-1)$ when $x \in I^2$ and $2^{-(n+1)} \leq y \leq 2^{-n}$, and defining $F(x,0) = x_0$. We show that F is continuous.

Case 1: If $(x, y) \in I^3$ and y > 0, then continuity at (x, y) follows from then continuity of at most two of the functions F_{n-1} and F_n .

Case 2: If $(x, y) \in I^3$ and y = 0, then $F(x, y) = x_0$. Given any $\epsilon > 0$, we may choose a k so that $\epsilon_k < \epsilon$. Now, for any n > k, the image of F_n is contained in $B_{x_0}(\epsilon_n)$ and thus is a subset of $B_{x_0}(\epsilon_k)$. It follows any point in $B_{(x,y)}(2^{-(k+1)})$ would map to a point within ϵ_k and hence within ϵ of x_0 .

Thus the 2-loop α_0 is nullhomotopic and thus the set X is 2-homotopically Hausdorff.

Here, we give a condition for metric spaces which implies n-homotopically Hausdorfness at a point, which will be easier to check for our spaces. The basic idea is that for every small nullhomotopic n-loop, there is a nullhomotopy of small diameter.

Theorem 2.4. Let X be a metric space, and let $x_0 \in X$. Suppose X has the property that for every $\epsilon > 0$ there is $\delta > 0$ such that for every map $f : B^{n+1} \to X$ with $f(S^n) \subseteq B_{x_0}(\epsilon)$, there is a map $g : B^{n+1} \to X$ such that $g \mid_{S^n} = f \mid_{S^n}$ and $g(B^{n+1}) \subseteq B_{x_0}(\epsilon)$. Then X is n-homotopically Hausdorff at x_0 .

We recall a topological space X is called *n*-semilocally simply connected at a point x if there exists an open neighborhood U of x for which any n-loop in U is nullhomotopic in X. Moreover, X is said to be n-semilocally simply connected if it is n-semilocally simply connected at each point (see [7]).

Theorem 2.5. Suppose that X has a countable Basis at x_0 , that X is n-homotopically Hausdorff at x_0 , and that X is not n-semilocally simply connected at x_0 . Then $\pi_n(X, x_0)$ is uncountable.

Definition 2.6. A space X is called *strongly n-homotopically Hausdorff* at $x_0 \in X$, if for each essential n-loop γ in X, there is an open neighborhood of x_0 that contains no n-loop freely homotopic (in X) to γ .

A compact space X is said to be *strongly n-homotopically Hausdorff*, if it is strongly *n*-homotopically Hausdorff at each of its points. **Theorem 2.7.** If X is strongly n-homotopically Hausdorff at $x_0 \in X$, then X is n-homotopically Hausdorff at x_0 .

Proof. Let γ be an n-loop based at x_0 that can be homotoped rel x_o into arbitrarily small neighborhood of x_0 in X. Then since based pointed homotopies are a spacific type of (free) homotopy, we see that since X is strongly *n*-homotopically Hausdorff at x_0 , γ must be nullhomotopic, and therefore X is *n*-homotopically Hausdorff at x_0 .

Finally, we give a sufficient condition for being strongly n-homotopically Hausdorff at a point, which essentially says that for every pair of homotopic n-loops nearby a point, there is a homotopy of small diameter between them.

Theorem 2.8. Let X be a compact metric space and $x_0 \in X$ such that for every $\epsilon > 0$ there is a $\delta > 0$ such that for every map $f : S^n \times [0,1] \to X$ such that $f \mid_{S^n \times \{0\}}$ is not freely nullhomotopic, and $f(S^n \times \{0,1\}) \subseteq B_{x_0}(\delta)$, there is a map $g : S^n \times [0,1] \to X$ such that $g \mid_{S^n \times \{0,1\}} = f \mid_{S^n \times \{0,1\}}$, and $g(S^n \times [0,1]) \subseteq B_{x_0}(\epsilon)$. Then X is strongly n-homotopically Hausdorff at x_0 .

References

- J. W. Cannon, and G. R. Conner, On the fundamental groups of one-dimensional spaces, *Topology Appl.*, to appear.
- 2. G. R. Conner, and H. Fischer, The fundamental group of a visual boundary versus the fundamental group at infinity, *Topology Appl.* **129** (2003) no.1, 73-77.
- G. R. Conner, and J. W. Lamoreaux, On the existence of the universal covering spaces for metric spaces and subsets of the Euclidean plane, *Fundamenta Mathematicae* 187 (2005) 95-110.
- 4. G. R. Conner, D. Repovs, M. Meilstrup, A. Zastrow, and M. Zeljko, On shape injectivity and Hausdorffness of path spaces, preprint.
- 5. H. Fischer, and A. Zastrow, Generalized universal covering spaces and the shape group, preprint.
- H. Fischer, and A. Zastrow, The fundamental groups of subsets of closed surfaces inject into their first shape groups, *Algebraic and Geometric Topology* 5 (2005) 1655-1676.
- F. H. Ghane, Z. Hamed, B. Mashayekhy, and H. Mirebrahimi, Topological homotopy groups, Bull. of the Belgian Math. Soc. 15 (2008) 455-464.

Department of Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159-91775, Mashhad, Iran.

 $E\text{-}mail \ address: f_h_ghane@yahoo.com & z_hamed_l@yahoo.com$