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Abstract

The results of thermoelectric power and electron drift mobility in Alx Ga1−x N lattice-matched to GaN are

calculated for different temperatures, free-electron concentrations and compositions. The two-mode nature

of the polar optic phonons is considered jointly with deformation potential acoustic, piezoelectric, alloy and

ionized-impurity scattering. Band non-parabolicity, admixture of p functions, arbitrary degeneracy of the

electron distribution and the screening effects of free carriers on the scattering probabilities are incorporated.

The Boltzmann equation is solved by an iterative technique using the currently established values of the

material parameters. The iterative results are in fair agreement with other recent calculations obtained using

the relaxation-time approximation and experimental methods.
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1. Introduction

III-nitride semiconductors have high prospects for applications in optical and electronic devices and have
already been commercialized in applications such as light-emitting devices. III-nitrides are amenable to the
advanced processes necessary for achieving thermoelectric devices such as independent power supplies for low
electric power devices [1–2]. As an aid to the device-related work, the transport coefficients of the material
need careful investigation. Electron mobility in the ternary alloy has been measured, Monte Carlo calculations
of mobility have also been performed [3]. In the mean time our knowledge of the basic parameters and of
the scattering mechanisms for the alloy has improved. Particularly, it is now known that the polar-phonon
scattering, which is the dominant lattice scattering mechanism in the ternary alloy, has a two-mode character
[4]. It is important to calculate the transport coefficients using such currently available information on scattering
mechanisms and material parameters. We use such information in the present paper to calculate electron
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mobility and thermoelectric power in the Alx Ga1−xN alloy. We consider band non-parabolicity, admixture of
p-type valence-band wave functions, degeneracy of the electron distribution to any arbitrary degree and the
screening effects of free carriers on the scattering probabilities. Electrons in bulk material suffer intravalley
scattering by polar optical, non-polar optical, alloy and acoustic phonons, and piezoelectric scattering and
ionized impurity scattering. Acoustic and piezoelectric scattering are assumed elastic and the absorption and
emission rates are combined under the equipartition approximation which is valid for lattice temperatures above
77 K. Elastic ionized impurity scattering is described using the screened Coulomb potential of the Brooks-Herring
model [5–8]. The Boltzmann equation is solved iteratively for our purpose jointly incorporating the effects of
all the scattering mechanisms. Our calculated results are compared with the available experimental data on
both the temperature and the composition dependence of mobility.

This paper is organized as follows. Details of the iterative model and the electron mobility and ther-
moelectric power calculations are presented in section 2 and the results of iterative calculations carried out on
Alx Ga1−xN structures are interpreted in section 3.

2. Theoretical model

In principle the iterative technique gives exact numerical prediction of electron mobility in bulk semicon-
ductors. To calculate mobility, we solve the Boltzmann equation to get the modified probability distribution
function under the action of a steady electric field. Here, we have adopted the iterative technique for solving
the Boltzmann transport equation. The electron distribution function f(k) in the presence of an electric field
E is expressed as

f(k) = f0(k) +
[
e�E

m∗

]
kf1(k) × (∂f0/∂E) cos θ (1)

where f0(E) is the thermal equilibrium Fermi-Dirac distribution function, e is the magnitude of the electron

charge, θ is the angle between k and E and f1(k) is the perturbation function to be determined from the
Boltzmann equation. The Boltzmann equation for electrons with Fermi-Dirac statistics describes classical
transport phenomena with which we are presently concerned exclusively. Allowing for an electric field E and
a spatial gradient parallel to E , we have [9–10]

v · ∇fT +
e

�
E · ∇kfk =

∫
[s′f ′

T (1 − fT ) − sfT (1 − f ′
T )]dk′ (2)

where f ′
T = fT (k′), s = s(k, k′) and s′ = s(k′, k) is the differential scattering rate for an electron in the state

characterized by k′ to make a transition into the state characterized by k .

Consider electrons in an isotropic, non-parabolic conduction band whose equilibrium Fermi distribution
function is f0(k) in the absence of electric field. Note the equilibrium distribution f0(k) is isotropic in k space
but is perturbed when an electric field is applied. If the electric field is small, we can treat the change from the
equilibrium distribution function as a perturbation which is first order in the electric field. The distribution in
the presence of a sufficiently small field can be written quite generally as

f(k) = f0(k) + f1(k) cos θ (3)
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where θ is the angle between k and E and f1(k) is an isotropic function of k , which is proportional to the

magnitude of the electric field. f(k) satisfies the Boltzmann equation 2 and it follows that

eE cos θ

�

∂f0

∂k
=

∑
i

{∫
cos θ′f ′

1[s
′
i(1 − f0) + sif0]d3k′ − f1 cos θ

∫
[si(1 − f ′

0) + s′if
′
0]d

3k′
}

(4)

where the sum is over scattering processes i . For a more compact notation we have written f(k′)=f ′ ,

si(k, k′)=si and si(k′, k)=s′i . si(k, k′)=si is the probability for scattering out of state k into the differential

element d3k′ at k′ . For the isotropic conduction band si(k, k′) depends on only k , k′ and the cosine of angle
φ between them, and the relation

∫
cos θ′A(cosφ)d3k′ = cos θ

∫
cosφA(cos φ)d3k′ (5)

may be used to manipulate equation 4. Here, A(cos φ) is an arbitrary function of cos φ but does not otherwise

depend on θ and θ′ .

From equation 4 and 5 we obtain

eE

�

∂f0

∂k
=

∑
i

{∫
cosφf ′

1[s
′
i(1 − f0) + sif0]d3k′ − f1

∫
[si(1 − f ′

0) + s′if
′
0]d

3k′
}

. (6)

In general there will be both elastic and inelastic scattering. For example, impurity scattering is elastic and
acoustic and piezoelectric scattering are elastic to a good approximation at room temperature. However, polar
and non-polar optical phonon scattering are inelastic. Several authors have calculated the electron scattering
rates [11–13]. Labeling the elastic and inelastic scattering rates with subscripts el and iel , respectively, and

recognizing that, for any process i , seli(k′, k)=seli(k, k′), equation 6 can be written as

f1(k) =
(−eE/�)(∂f0/∂k) +

∑
j

∫
cosφf ′

1[s
′
ielj(1 − f0) + sieljf0]d3k′∑

i

∫
(1 − cos φ)selid3k′ +

∑
j

∫
[sielj(1 − f ′

0) + s′ieljf
′
0]d3k′ . (7)

Note the first term in the denominator is simply the momentum relaxation rate for elastic scattering. Equation
7 may be solved iteratively by the relation

f1n(k) =
(−eE/�)(∂f0/∂k) +

∑
j

∫
cosφf1(k′)[n − 1][s′ielj(1 − f0) + sieljf0]d3k′∑

i

∫
(1 − cos φ)selid3k′ +

∑
j

∫
[sielj(1 − f ′

0) + s′ieljf
′
0]d3k′ , (8)

where f1n(k) is the perturbation to the distribution function after the nth iteration. It is interesting to note

that if the initial distribution is chosen to be the equilibrium distribution, for which f1(k) is equal to zero,
we get the relaxation time approximation result after the first iteration. We have found that convergence can
normally be achieved after only a few iterations for small electric fields. Once f1(k) has been evaluated to the
required accuracy, it is possible to calculate quantities such as the drift mobility μ , which is given by

μ =
�

3m∗E

∫ ∞
0

(k3/1 + 2αE′)φdk∫ ∞
0

k2f0dk
. (9)
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The thermoelectric power Q is the ratio of electric field E to temperature gradient ∇T across an open-
circuited crystal, i.e., the electron current density J is set equal to zero. Theoretically, the current density in
the presence of electric field E and temperature gradient ∇T in an isotropic crystal is

J = σ [E − (∇EF/e) − Q∇T ] , (10)

where σ is the conductivity and EF is the Fermi energy.

Equation 10 is valid for the small driving forces considered here for which σ and Q are independent of
the field strengths. When J =0, as in the open-circuit measurement of Q , the crystal maintains equilibrium so
that ∇EF=0 and

Q = E/(∂T/∂z), (11)

which is the defining equation for Q . The temperature gradient is taken parallel to the z axis. Since all
driving forces are small, the transport coefficients σ and Q are constant and equation 11 yields Q also in the
short-circuit case when E =0

Q = −
[
∂EF

∂z
/e +

J

σ

]
/
∂T

∂z
. (12)

Substitution Poisson’s equation and Fermi-Dirac distribution function in equation 12, the thermoelectric
power is

Q =
k

e

[∫
k2f(1 − f)(E/T )dk∫

k2f(1 − f)dk
− EF

kT

]
− J/σ

∂T/∂z
. (13)

Important parameters used throughout the simulations are listed in Table 1.

Table 1. Material parameter selections for wurtzite GaN and Al0.2 Ga0.8 N [3–8].

Bulk material parameters GaN Al0.2Ga0.8N
Density ρ(kgm−3) 6150 3814
Lattice constant a0 (Å) 3.139 3.12
Polar optical phonon energy �ωpo (eV) 0.0995 0.0992
Longitudinal sound velocity vs(ms−1) 4330 4522
Low-frequency dielectric constant εs 9.5 8.7
High-frequency dielectric constant ε∞ 5.35 4.88

Valley dependent parameters Γ U K

GaN:
Effective mass (m∗/m0) 0.18 0.4 0.3
Nonparabolicity (eV−1) 0.189 0.065 0.7

Al0.2Ga0.8N:
Effective mass (m∗/m0) 0.28 0.35 0.49
Nonparabolicity (eV−1) 0.29 0.41 0.16
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3. Calculation results

Figure 1 shows the temperature dependence of electron drift mobility in Alx Ga1−xN for x=0.2, 0.4 and

0.5. In curve 1, the carrier concentration is taken to be n=1017 cm−3 . The ionized impurity concentration is

put equal to the electron concentration. In curve 2, n is taken to be n=5×1017 cm−3 and in curve 3, n is given

the value of 1018 cm−3 . It can be observed that the mobility of electrons decrease with increasing temperature
because of increasing optical phonon scattering rate. Also, it is seen that with increasing composition from 0.2
to 0.5 the calculated electron mobility is decreased because of a higher impurity scattering rate.

Figure 2 shows the mobility of electrons versus composition for various doping concentration. The
difference can be understood by considering difference in the electric parameters of the materials like electron
effective mass in the central Γ valley.

The temperature variation of thermoelectric power Q for x=0.2 is shown in Figure 3. The magnitude of Q

increases with temperature mainly because the material becomes more nondegenerate with a rise in temperature.

Also, assuming that the material is uncompensated, the thermoelectric power for n=1018 (curve 3) is larger in

magnitude than for n=1017 (curve 1) since the Fermi level is higher in the latter case. Considering curves 1
and 3, we find that the magnitude of Q for a compensated sample is larger. This is due to the enhancement of
ionized impurity scattering.

The room temperature values of Q for an uncompensated material are plotted as a function of x in
Figure 4. The effective mass decreases with x , causing an upward movement of the Fermi level with a rise in x .
This results in the decrease of Q with increasing x . It is clear from Figure 4 that inclusion of ionized impurity
scattering enhances Q while that of alloy scattering reduces Q . Our calculated results on thermoelectric power
could not be compared with experiments since no such data could be traced in the literature.
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Figure 1. Variation of electron drift mobility with tem-

perature for Alx Ga1−x N lattice-matched to GaN, for

x=0.2 (curve 1), x=0.4 (curve 2) and x=0.5 (curve 3).

In curve 1, n=1017 cm−3 ; in curve 2, n=5×1017 cm−3 ;

and in curve 3, n=1018 cm−3 .

Figure 2. Variation of electron drift mobility with com-

position for Alx Ga1−x N lattice-matched to GaN at room

temperature. Calculated curves are for n=1017 , 5×1017

and n=1018 cm−3 .
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Figure 3. Temperature dependence of thermoelectric

power of Alx Ga1−x N lattice-matched to GaN for x=0.2.

In curve 1, n=1017 , in curve 2, n=5×1017 and in curve

3, n=1018 cm−3 .

Figure 4. Composition (x) dependence of room tem-

perature values of thermoelectric power of Alx Ga1−x N

lattice-matched to GaN. In curve 1, n=1017 , in curve 2,

n=5×1017 and in curve 3, n=1018 cm−3 .

4. Conclusions

Electron mobility and thermoelectric power of Alx Ga1−xN lattice-matched to GaN by an iterative
solution of the Boltzmann equation have been carried out. The details of band structure and scattering
mechanisms are included without applying Matthiessen’s rule. Our results show that the experimental values of
mobility can be explained with a lower degree of compensation than indicated by some previous simple analysis.
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