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An output feedback controller is proposed for a class of uncertain nonlinear systems pre-
ceded by unknown backlash-like hysteresis, where the hysteresis is modeled by a differen-
tial equation. The unknown nonlinear functions are approximated by fuzzy systems based
on universal approximation theorem, where both the premise and the consequent parts of
the fuzzy rules are tuned with adaptive schemes. The proposed approach does not need the
availability of the states, which is essential in practice, and uses an observer to estimate the
states. An adaptive robust structure is used to cope with lumped uncertainties generated
by state estimation error, approximation error of fuzzy systems and external disturbances.
Due to its adaptive structure the bound of lumped uncertainties does not need to be known
and at the same time the chattering is attenuated effectively. The strictly positive real (SPR)
Lyapunov synthesis approach is used to guarantee asymptotic stability of the closed-loop
system. In order to show the effectiveness of the proposed method simulation results are
illustrated.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The control of nonlinear systems preceded by hysteresis has been a challenging and yet rewarding problem. This is be-
cause hysteresis can be seen in a wide range of physical systems and devices [1]. On the other hand since the hysteresis non-
linearity is non-differentiable the system performance is severely limited and usually exhibits undesirable inaccuracies or
oscillations and even instability [2].

To address such a challenge, it is important to find a model to describe the hysteresis nonlinearity and utilize this model
for controller design. Various models have been proposed for hysteresis nonlinearity, among them, Ishlinskii hysteresis
operator [3], Preisach model [4], Krasnosel’skii–Pokrovkii hysteron [3], Duhem hysteresis operator [5], backlash [6] and
backlash-like hysteresis [7]. However, from modeling point of view an effective model should be simple enough to facilitate
the design, yet complex enough to give the engineer confidence that the model-based designs will work in reality. Inspired
by the recent papers and studies [1–12] it can be seen that the backlash-like hysteresis model is simple enough to facilitate
the controller design, at the same time is complex enough to mitigate the effects of real hysteresis.

To cope with the drawbacks of hysteresis some adaptive schemes for nonlinear systems have been proposed when the
backlash-like hysteresis is used [1,7–12]. The proposed adaptive control schemes assume that the input gain of the plant
is constant and also the plant’s states are available for measurement. In practical situations the states are fully or partially
. All rights reserved.
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unknown because the states not either available for measurement or the sensors or transducers are very expensive to be
used. Thus an observer should be designed to estimate the states. In this situation all the elements of the tracking error can-
not be obtained, therefore the conventional adaptive methods cannot be applied. Also in many nonlinear models preceded by
hysteresis the input gain is not constant and usually is a function of states and/or time.

There are also functional uncertainties in the models that should be considered. To address the functional uncertainty for
the first time Wang in [13] proposed adaptive fuzzy systems where the consequent parts of fuzzy rules were assumed free
and were tuned by adaptive laws, derived using Lyapunov method, which also guaranteed stability of the system. The meth-
od proposed by Wang [13] was developed and progressed by many researchers in this field for instance [14–18]. In all these
methods, parameters of the premise parts of fuzzy rules had to be chosen appropriately, by the designer. However, it is very
difficult in situations where the plant is subject to perturbations and unknown disturbances or when the dynamics of the
systems are too complex. Recently, in [19–21,7] some novel methods for designing adaptive fuzzy control with both premise
and the consequent parts of fuzzy rules have been proposed. However in these proposed methods, all the states of the system
need to be available for measurement.

In this paper, a full adaptive fuzzy observer-based controller is proposed for a class of uncertain nonlinear systems pre-
ceded by unknown backlash-like hysteresis. The input gain is an unknown nonlinear function. The fuzzy systems based on
universal approximation theorem are used to cope with nonlinear functions, where both the premise and the consequent
parts of the fuzzy rules are tuned with adaptive schemes. The proposed approach does not need the availability of the states
and uses an observer to estimate the states. The selection of the upper bound of lumped uncertainties generated by state
estimation error, fuzzy approximation error and external disturbances has a significant effect on the control performance.
However, due to uncertainties it is very difficult to know these upper bounds in advance for practical applications. For
addressing the lumped uncertainties with unknown bounds a robust structure with adaptive gain is used. Due to its adaptive
structure not only the bounds of lumped uncertainties does not need to be known but also since selecting the conservative
gain is avoided the chattering is attenuated effectively. The asymptotic stability of the overall system is guaranteed via
strictly positive real (SPR) Lyapunov theory.

This paper is organized as follows: Section 2 formulates the class of nonlinear systems under consideration here, de-
scribes assumptions, backlash-like hysteresis and fuzzy systems. In Section 3, the proposed observer based adaptive fuzzy
controller is presented. The stability analysis of the proposed method is stated in Section 4. To show the effectiveness of
the proposed method, in Section 5 it is applied to a model of inverted pendulum preceded by hysteresis as an uncertain non-
linear system amid significant disturbances. Simulation results indicate the effectiveness of the method in the presence of
uncertainties, unknown states, disturbances and hysteresis. And finally, Section 6 concludes the main advantages of the pro-
posed method.

2. Problem formulation and fuzzy basis function networks

2.1. Problem formulation

In this paper the control of an uncertain nonlinear system preceded by a backlash-like hysteresis is considered. The non-
linearities, external disturbances, states of the nonlinear system and hysteresis are unknown. It is a challenging task to de-
velop an output feedback controller for uncertain nonlinear systems with unknown backlash-like hysteresis. The details of
the nonlinear system and hysteresis will be presented as follows:

Consider a class of SISO n-th order nonlinear systems in the following form:
xðnÞ ¼ f ðX; tÞ þ �gðX; tÞ/ðvÞ þ �dðX; tÞ
y ¼ x;

ð1Þ
where f and �g are unknown bounded nonlinear functions, XT ¼ ½x; _x ; . . . ; xðn�1Þ� ¼ ½x1; x2; . . . ; xn� 2 Ux � Rn is the state vector
of the system where Ux is a compact set which is the controllability region of state vector, y 2 R is the output of the system.

It should be noted that the states of the system are unknown and only the output is available for measurement. For con-
trollability condition we should have �gðX; tÞ – 0 and here, without loss of generality, we assume 0 < �gl < �gðX; tÞ <1 where
�gl is an unknown positive constant. �dðX; tÞ is an unknown but bounded external disturbance, where this bound is also un-
known, i.e., we have the following assumption:

Assumption 1. The disturbance �dðX; tÞ is bounded by an unknown constant D, i.e.,
j�dðX; tÞj 6 D:
v 2 R is the control input and /ðvÞ denotes hysteresis type of nonlinearity described by
d/
dt
¼ a

dv
dt

���� ����ðcv � /Þ þ B1
dv
dt
; ð2Þ
where a; c and B1 are constants, satisfying c > B1. The dynamic (2) can be used to model a class of backlash-like hysteresis as
shown in Fig. 1. In Fig. 1 parameters a ¼ 1; c ¼ 3:1635 and B1 ¼ 0:345, the input signal vðtÞ ¼ 6:5 sinð2:3tÞ and the initial
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Fig. 1. Hysteresis curves given by (2) with a ¼ 1; c ¼ 3:1635; B1 ¼ 0:345 and vðtÞ ¼ 6:5 sinð2:3tÞ.
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conditions vð0Þ ¼ 0 and /ð0Þ ¼ 0 are chosen. In this paper the parameters of the hysteresis in (2), i.e., a; c and B1 are com-
pletely unknown.

Control objective: The control objective is to design the output feedback controller v such that the state of the system X
follows the desired state XT

d ¼ ½xd; _xd; . . . ; xðn�1Þ
d � in the presence of uncertainties and disturbances, that is the tracking error
E ¼ X � Xd ¼ ½e; _e; . . . ; eðn�1Þ�T ; ð3Þ
with e ¼ x� x̂ should converge to zero.

Assumption 2. The desired trajectory vector Xd is a known, continuous, differentiable and bounded function
kXdk 6 bd;
where bd is a positive constant.
2.2. Fuzzy basis function networks and universal approximation theorem

The fuzzy logic systems (FLS) are briefly reviewed below for continuity of discussion [22–24]. FLS perform a mapping
from U1 � U2 � � � � � Un ¼ U � Rn to a compact set V � R. Any fuzzy system consists of a fuzzifier, a fuzzy rule base, a fuzzy
inference engine and a defuzzifier. The fuzzy rule base consists of a collection of canonical fuzzy IF-THEN rules such as,
RðlÞ : IF x1 is Fl
1 and � � � and xn is Fl

n THEN y is Gl; l ¼ 1; . . . ;M; ð4Þ
where X ¼ ½x1; x2; . . . ; xn�T 2 U and y 2 V are the input and output of the fuzzy system, respectively; M is the total number
of rules; Fl

i and Gl are fuzzy sets in Ui and V, respectively. The fuzzy inference engine performs a mapping from fuzzy sets in U
to fuzzy sets in V, based on fuzzy rule base. Furthermore, the fuzzifier maps a crisp point in U to a fuzzy set in U and the
defuzzifier maps fuzzy sets in V to a crisp point in V. Using singleton fuzzifier, product inference engine and center average
defuzzifier, the output of fuzzy system can be expressed as,
y ¼
PM

l¼1Wlð
Qn

i¼1lFl
i
ðxiÞÞPM

l¼1ð
Qn

i¼1lFl
i
ðxiÞÞ

¼ nTðxÞW ; ð5Þ
where W ¼ ½W1; W2; . . . ; WM �T 2 RM is the center of output fuzzy membership functions, Fl
i and Gl are characterized by fuz-

zy membership functions lFl
i
ðxiÞ and lGl ðyÞ, respectively, and nðXÞ ¼ ½n1ðXÞ; n2ðXÞ; . . . ; nMðXÞ�T 2 RM is the vector of fuzzy basis

functions defined as below,
nlðXÞ ¼

Qn
i¼1

lFl
i
ðxiÞ

PM
l¼1
ð
Qn
i¼1

lFl
i
ðxiÞÞ

; l ¼ 1; . . . ;M: ð6Þ
Based on [22–24,19], since in this paper the linguistic fuzzy IF-THEN rules, are only used for the purpose of approximating
the required functions, we define the defuzzifier as a weighted sum of each rule’s output. Thus (6) can be written as (Fig. 2),



Fig. 2. FBFN structure.
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nlðXÞ ¼
Yn

i¼1

lFl
i
ðxiÞ; l ¼ 1; � � � ;M: ð7Þ
The shape of each membership function lFl
i
ðxiÞ is chosen as the Gaussian function, i.e., lFl

i
ðxiÞ ¼ e�xi2

l
ðxi�ci

l
Þ2 where ci

l and xi
l are

the center and the inverse radius of the width of Gaussian membership function. Therefore, the architecture of this fuzzy
system called fuzzy basis function network (FBFN) can be represented by a three-layer network with Gaussian functions
as its activation functions in the hidden layer and weights Wl connecting hidden layer and output layer (Fig. 2). Thus, the
output vector of FBFN can be expressed as
yðX; c;x;WÞ ¼ nTðX; c;xÞW ; ð8Þ
where X ¼ ½x1; x2; . . . ; xn�T 2 Rn; c ¼ ½cT
1; cT

2; . . . ; cT
M �

T 2 RnM; x ¼ ½xT
1; xT

2; . . . ; xT
M �

T 2 RnM; cl ¼ ½c1
l ; c2

l ; . . . ; cn
l �

T 2 Rn;

xl ¼ ½x1
l ; x

2
l ; . . . ; xn

l �
T 2 Rn; W ¼ ½W1; W2; . . . ; WM �T ; nðX; c;xÞ ¼ ½n1; n2; . . . ; nM�T , and nl ¼ e�

Pn

i¼1
xi2

l
ðxi�ci

l
Þ2 .

The following is a proven theorem [22–24]:

Theorem 1. For any given real continuous function gðXÞ on the compact set U � Rn and arbitrary e > 0, there exists a FBFN
f �ðXÞ ¼ n�TðX; c�; x�ÞW� in the form of (8) such that
sup
X2U
jf �ðXÞ � gðXÞj < e: ð9Þ
The above theorem states that the FBFN mentioned above can approximate any real continuous function to any degree of
accuracy, which means has universal approximation property as also has been reported earlier in [22–24].
3. The proposed observer-based adaptive fuzzy control

Based on the analysis in [1], (2) can be solved explicitly as
/ðvÞ ¼ cvðtÞ þ d1ðvÞ; d1ðvÞ ¼ ½/0 � cv0�e�aðv�v0Þsgn _v þ e�avsgn _v
Z v

v0

½B1 � c�eag sgn _v dg; ð10Þ
where vð0Þ ¼ v0 and /ðv0Þ ¼ /0. Based on above solution it is shown in [1,5] that d1ðvÞ is bounded. Thus using (10), (1) can
be reformulated as
xðnÞ ¼ f ðX; tÞ þ gðX; tÞvðtÞ þ dðX; tÞ
y ¼ x;

ð11Þ
where gðX; tÞ ¼ c�gðX; tÞ and dðX; tÞ ¼ �gðX; tÞd1ðvÞ þ �dðX; tÞ. Since �gðX; tÞ; d1ðvÞ and �dðX; tÞ are bounded thus dðX; tÞ is
bounded. Therefore there exists positive constant D such that the disturbance-like dðX; tÞ is bounded by D, i.e., jdðX; tÞj 6 D.

The nonlinear system (11) can be rewritten as follows:

_X ¼ AX þ Bff ðt;XÞ þ gðt;XÞv þ dðt;XÞg
y ¼ CX;

ð12Þ
where
A ¼

0 1 0 0 � � � 0 0
0 0 1 0 � � � 0 0
� � � � � � � � � � � � � � � � � � � � �
0 0 0 0 � � � 0 1
0 0 � � � � � � � � � � � � 0

26666664

37777775
n�n

; ð13Þ
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and
BT ¼ 0 � � � 0 1½ �1�n; C ¼ 1 � � � 0 0½ �1�n: ð14Þ

It is obvious that ðA; BÞ is controllable and ðC; AÞ is observable.

Two FBFNs as (8) are used as follows:
f ðX;xf ; cf ;Wf Þ ¼ nTðX;xf ; cf ÞWf ð15Þ
gðX;xg ; cg ;WgÞ ¼ nTðX;xg ; cgÞWg : ð16Þ
to approximate the unknown nonlinear functions f ðt; XÞ and gðt; XÞ. Based on Theorem 1 for f ðt; XÞ there exist ideal param-
eters W�

f ; c�f and x�f such that
f ðt;XÞ ¼ n�Tf ðX;x�f ; c�f ÞW
�
f þ Df ;
where Df is the approximation error of the FBFN (15). Thus
f ðt;XÞ � f̂ ðbX ;cW f ; x̂f ; ĉf Þ ¼ n�Tf ðX;x�f ; c�f ÞW
�
f � n̂T

f ðbX ; x̂f ; ĉf ÞcW f þ Df ; ð17Þ
where ĉf ¼ ½ĉT
f 1; ĉ

T
f 2; . . . ; ĉ

T
fMf
�T 2 RnMf ; ĉfl ¼ ½ĉ1

fl; ĉ
2
fl; . . . ; ĉ

n
fl�

T 2 Rn; x̂f ¼ ½x̂T
f 1; x̂

T
f 2; . . . ; x̂

T
fMf
�T 2 RnMf ; x̂fl ¼ ½x̂1

fl; x̂
2
fl; . . . ; x̂

n
fl�

T 2 Rn;

ðl¼ 1; . . . ;Mf Þ;cW f ¼ ½cW f 1;cW f 2; . . . ;cW fMf
�T are the approximation of c�f ; x

�
f ; W�

f and bXT ¼ ½x̂; _̂x; . . . ; x̂ðn�1Þ� ¼ ½x̂1; x̂2; . . . ;

x̂n� 2 Ux̂, (Ux̂ is a compact set) is the estimate of X, will be defined in (26).
For simplicity considering n�f ðX; x�f ; c�f Þ ¼ n�f ; n̂f ðbX ; x̂f ; ĉf Þ ¼ n̂f and defining ~Wf ¼W�

f � cW f ; ~nf ¼ n�f � n̂f , we have
f ðt;XÞ � f̂ ðbX ;cW f ; x̂f ; ĉf Þ ¼ ð~nf þ n̂f ÞTðfW f þ cW f Þ � n̂T
f
cW f þ Df ¼ ~nT

f
cW f þ n̂T

f
fW f þ ~nT

f
fW f þ Df : ð18Þ
If the vector of Gaussian membership functions is linearized by using Taylor series expansion then ~nf can be written as
~nf ¼

~nf 1

~nf 2

..

.

~nfMf

2666664

3777775 ¼
@n�f 1
@x�

f

@n�f 2
@x�

f

..

.

@n�fMf

@x�
f

26666666664

37777777775 x�
f
¼x̂f

c�
f
¼ĉf

X¼bX
�������

~xf þ

@n�f 1
@c�

f
@n�f 2
@c�

f

..

.

@n�fMf

@c�
f

266666664

377777775
x�

f
¼x̂f

c�
f
¼ĉf

X¼bX
������

~cf þ

@n�f 1
@X
@n�f 2
@X

..

.

@n�fMf

@X

2666664

3777775
x�

f
¼x̂f

c�
f
¼ĉf

X¼bX
������

eE þ hf ¼ Kf ~xf þXf ~cf þ Cf
eE þ hf ; ð19Þ
where ~xf ¼ x�f � x̂f ; ~cf ¼ c�f � ĉf ; eE ¼ X � bX and hf denotes higher order terms. Moreover, we have;
@n�fl
@x�f

¼ 0 � � � 0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ðl�1Þ�n

@n�fl
@x�1

fl

@n�fl
@x�2

fl
� � � @n�fl

@x�n
fl

0 � � � 0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ðMf�lÞ�n

" #
ð20Þ

@n�fl
@c�f
¼ 0 � � � 0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

ðl�1Þ�n

@n�fl
@c�1

fl

@n�fl
@c�2

fl
� � � @n�fl

@c�n
fl

0 � � � 0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ðMf�lÞ�n

" #
ð21Þ

@n�fl
@X
¼ @n�fl

@x1

@n�fl
@x2

� � � @n�fl
@xn

h i
: ð22Þ
Therefore, using (19) in (18) we have
f ðt;XÞ � f̂ ðbX ;cW f ; x̂f ; ĉf Þ ¼ ð ~xT
f K

T
f þ ~cT

f X
T
f ÞfW f þ ð ~xT

f K
T
f þ ~cT

f X
T
f ÞcW f þ n̂T

f
fW f þ ðeETCT

f þ hT
f ÞðcW f þfW f Þ þ Df

¼ ðx�f � x̂f ÞTKT
f
fW f þ ðc�f � ĉf ÞTXT

f
fW f þ ð ~xT

f K
T
f þ ~cT

f X
T
f ÞcW f þ n̂T

f
fW f þ ðeETCT

f þ hT
f ÞW

�
f þ Df

¼ ðn̂T
f � x̂T

f K
T
f � ĉT

f X
T
f ÞfW f þ ð ~xT

f K
T
f þ ~cT

f X
T
f ÞcW f þ ef ; ð23Þ
where ef ¼ ðx�
T

f KT
f þ c�T

f XT
f ÞfW f þ ðeETCT

f þ hT
f ÞW

�
f þ Df . Since in (23) each term is scalar we have
f ðt;XÞ � f̂ ðbX ;cW f ; x̂f ; ĉf Þ ¼ ðn̂T
f � x̂T

f K
T
f � ĉT

f X
T
f ÞfW f þ cW T

f Kf ~xf þ cW T
f Xf ~cf þ ef : ð24Þ
The above procedure can be written for function gðt; XÞ with FBFN (16) and changing the f indices to g. Thus we have:
gðt;XÞ � ĝðbX ;cW g ; x̂g ; ĉgÞ ¼ ðn̂T
g � x̂T

gK
T
g � ĉT

gX
T
gÞfW g þ cW T

gKg ~xg þ cW T
gXg~cg þ eg ; ð25Þ
where fW g ¼W�
g �cW g ; ~xg ¼ x�g � x̂g ; ~cg ¼ c�g � ĉg ; eg ¼ ðx�

T

g KT
g þ c�

T

g XT
gÞfW g þ ðeETCT

g þ hT
gÞW

�
g þ Dg and Dg is the approxi-

mation error of the FBFN (16).
To estimate the states the following observer is proposed:
_bXðtÞ ¼ AbXðtÞ þ Bff̂ ðbX ;cW f ; x̂f ; ĉf Þ þ ĝðbX ;cW g ; x̂g ; ĉgÞv þ uc þ urg þ KoCeE; ð26Þ
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where eE ¼ X � bX ¼ ½~e; _~e; . . . ; ~eðn�1Þ�T ; ~e ¼ x� x̂ ¼ x1 � x̂1 and Ko is chosen such that A� KoC becomes Hurwitz, (since ðC; AÞ is
observable such Ko exists). The control term ur is a robust structure with adaptive gain as follows:
urð~ejq̂Þ ¼ q̂sgn ð~eÞ; ð27Þ
where q̂ is the free parameter to be adapted. uc is a compensation term as follows:
uc ¼ KT
oP1
bE: ð28Þ
Assumption 3. The ideal parameter vectors W�
f ; x�f ; c�f ; W�

g ; x�g ; c�g and q� lie in some compact regions:
UWf
¼ fWf 2 RMf jkWf k 6 mWf

g; UWg ¼ fWg 2 RMg jkWgk 6 mWgg;
Uxf
¼ fxf 2 RnMf jkxf k 6 mxf

g; Uxg ¼ fxg 2 RnMg jkxgk 6 mxgg;
Ucf
¼ fcf 2 RnMf jkcf k 6 mcf

g; Ucg ¼ fcg 2 RnMg jkcgk 6 mcgg;
Uq ¼ fq 2 Rjjqj 6 mqg;
where the radiuses mWf
; mxf

; mcf
; mxg ; mcg ; mWg and mq are constants,
ðW�
f ;x

�
f ; c
�
f Þ ¼ arg minbW f2UWf

;x̂f2Uxf
;ĉf 2Ucf

sup
X2Ux ;bX2Ux̂

f ðt;XÞ � f̂ ðbX ;cW f ; x̂f ; ĉf Þ
��� ���

24 35;
ðW�

g ;x
�
g ; c

�
gÞ ¼ arg minbW g2UWg ;x̂g2Uxg ;ĉg2Ucg

sup
X2Ux ;bX2Ux̂

gðt;XÞ � ĝðbX ;cW g ; x̂g ; ĉgÞ
��� ���

24 35;
q� ¼ Dþ �d;
where �d is an unknown positive constant which will be defined in Lemma 4.

Now, the following control law is proposed:
v ¼ 1

ĝðbX ;cW g ; x̂g ; ĉgÞ
�f̂ ðbX ;cW f ; x̂f ; ĉf Þ � Kc

bE þ xðnÞd � ur � uc

h i
; ð29Þ
where Kc is chosen such that A� BKc becomes Hurwitz, (since ðA; BÞ is controllable such Kc exists). Therefore, there exist
positive-definite matrices P1 and Q 1 such that
ðA� BKcÞT P1 þ P1ðA� BKcÞ ¼ �Q1; ð30Þ
Thus using (29) in (26),
_bE ¼ _bX � _Xd ¼
_bX � AXd � BxðnÞd ¼ ðA� BKcÞbE þ KoCeE: ð31Þ
The observation error dynamics by using (12) and (26) can be given by
_eE ¼ _X � _bX ¼ ðA� KoCÞeE þ Bfðf ðt;XÞ � f̂ ðbX ;cW f ; x̂f ; ĉf ÞÞ þ ðgðt;XÞ � ĝðbX ;cW g ; x̂g ; ĉgÞÞv þ d� ur � ucg
~e ¼ CeE: ð32Þ
Since only ~e in (32) is assumed to be measurable, we use the strictly positive real (SPR) Lyapunov design method to analyze
stability of the closed-loop system and derive adaptive laws.

The error dynamics (32) can be written as
~e ¼ HðsÞfðf ðt;XÞ � f̂ ðbX ;cW f ; x̂f ; ĉf ÞÞ þ ðgðt;XÞ � ĝðbX ;cW g ; x̂g ; ĉgÞÞv þ d� ur � ucg; ð33Þ
where HðsÞ ¼ CðsI � Aþ KoCÞ�1B is the transfer function of (32). If we select KT
o ¼ ½C

1
na;C

2
na2; . . . ; Cn

nan� with
Ci

n ¼ n!=ððn� iÞ!i!Þ, we can see that
HðsÞ ¼ 1
ðsþ aÞn

; ð34Þ
where a is a positive constant. Now, the following lemmas are considered:

Lemma 1. [25] A strictly proper rational transfer function HðsÞ ¼ CðsI � AÞ�1B is SPR, if and only if there exist positive-definite
symmetric matrices P and Q
AT P þ PA ¼ �Q ;

BT P ¼ C: ð35Þ
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Lemma 2. [25] Suppose B and C are full rank. Then there exists a matrix P ¼ PT > 0 that satisfies (35) if and only if
CB ¼ BT CT > 0: ð36Þ
Considering Lemmas 1 and 2 it can be deduced that HðsÞ is not an SPR transfer function. In order to use SPR-Lyapunov
design, (33) is rewritten as
~e ¼ HðsÞLðsÞ L�1ðsÞðf ðt;XÞ � f̂ ðbX ;cW f ; x̂f ; ĉf ÞÞ þ L�1ðsÞððgðt;XÞ � ĝðbX ;cW g ; x̂g ; ĉgÞÞvÞ þ L�1ðsÞd� L�1ðsÞur � L�1ðsÞuc

n o
;

ð37Þ
where LðsÞ is chosen so that L�1ðsÞ is a proper stable transfer function and HðsÞLðsÞ is a proper SPR transfer function. Using
(24), (25) and (37) we have
~e ¼ HðsÞLðsÞ n̂T
f � x̂T

f K
T
f � ĉT

f X
T
f

� �fW f þ cW T
f Kf ~xf þ cW T

f Xf ~cf þ n̂T
g � x̂T

gK
T
g � ĉT

gX
T
g

� �
vfW g þ cW T

gKgv ~xg

n
þcW T

gXgv~cg þ dþ d� ur � uc

o
; ð38Þ
where
d ¼ L�1ðsÞ n̂T
f � x̂T

f K
T
f � ĉT

f X
T
f

� �fW f þ cW T
f Kf ~xf þ cW T

f Xf ~cf

n o
þ L�1ðsÞf n̂T

g � x̂T
gK

T
g � ĉT

gX
T
g

� �
vfW g þ cW T

gKgv ~xg

þ cW T
gXgv~cgg � n̂T

f � x̂T
f K

T
f � ĉT

f X
T
f

� �fW f �cW T
f Kf ~xf � cW T

f Xf ~cf � n̂T
g � x̂T

gK
T
g � ĉT

gX
T
g

� �
vfW g � cW T

gKgv ~xg

� cW T
gXgv~cg � dþ ur þ uc þ L�1ðsÞd� L�1ðsÞur � L�1ðsÞuc þ L�1ðsÞef þ L�1ðsÞðegvÞ: ð39Þ
Suppose LðsÞ ¼ b0sm þ b1sm�1 þ b2sm�2 þ � � � þ bm; where m ¼ n� 1. Then the state space realization of (38) can be written as
_eE ¼ Ac
eE þ Bc n̂T

f � x̂T
f K

T
f � ĉT

f X
T
f

� �fW f þ cW T
f Kf ~xf þ cW T

f Xf ~cf

n o
þ Bc n̂T

g � x̂T
gK

T
g � ĉT

gX
T
g

� �
vfW g þ cW T

gKgv ~xg þ cW T
gXgv~cg þ dþ d� ur � uc

n o
~e ¼ Cc

eE; ð40Þ
where
Ac ¼ A� KoC; ;BT
c ¼ ½b0; b1; . . . ; bm�; Cc ¼ C: ð41Þ
Thus based on Lemma 1 and since HðsÞLðsÞ is SPR there exist positive-definite matrices P2 and Q2 such that
AT
c P2 þ P2Ac ¼ �Q2; ð42Þ

BT
c P2 ¼ Cc: ð43Þ
The following lemma gives the adaptation laws:

Lemma 3. Suppose the following adaptive laws
_cW f ¼

c1ðn̂T
f � x̂T

f K
T
f � ĉT

f X
T
f Þ

T~e kcW f k < mWf
or ðkcW f k ¼ mWf

and ðn̂T
f � x̂T

f K
T
f � ĉT

f X
T
f ÞcW f ~e 6 0Þ

Prðc1ðn̂T
f � x̂T

f K
T
f � ĉT

f X
T
f Þ

T~eÞ kcW f k ¼ mWf
and ðn̂T

f � x̂T
f K

T
f � ĉT

f X
T
f ÞcW f ~e > 0;

8>>><>>>: ð44Þ

_̂xf ¼

c2ðcW T
f Kf ÞT~e kx̂f k < mxf

or ðkx̂f k ¼ mxf

and cW T
f Kf x̂f ~e 6 0Þ

Prðc2ðcW T
f Kf ÞT~eÞ kx̂f k ¼ mxf

and cW T
f Kf x̂f ~e > 0;

8>>>><>>>>: ð45Þ

_̂cf ¼
c3ðcW T

f Xf ÞT~e kĉf k < mcf
or ðkĉf k ¼ mcf

and cW T
f Xf ĉf ~e 6 0Þ

Prðc3ðcW T
f Xf ÞT~eÞ kĉf k ¼ mcf

and cW T
f Xf ĉf ~e > 0;

8<: ð46Þ



R. Shahnazi et al. / Commun Nonlinear Sci Numer Simulat 15 (2010) 2206–2221 2213
_̂xg ¼

c4ðcW T
gKgÞTv~e kx̂gk < mxg or ðkx̂gk ¼ mxg

and cW T
gKgx̂gv~e 6 0Þ

Prðc4ðcW T
gKgÞTv~eÞ kx̂gk ¼ mxg and cW T

gKgx̂gv~e > 0;

8>>><>>>: ð47Þ

_̂cg ¼

c5ðcW T
gXgÞTv~e kĉgk < mcg or ðkĉgk ¼ mcg

and cW T
gXg ĉgv~e 6 0Þ

Prðc5ðcW T
gXgÞTv~eÞ kĉgk ¼ mcg and cW T

gXg ĉgv~e > 0;

8>>><>>>: ð48Þ
for avoiding singularity (uncontrollability) if an element cW ig of cW g equals e (arbitrarily small positive number) then
_cW ig ¼
c6ðn̂T

g � x̂T
gK

T
g � ĉT

gX
T
gÞiv~e ðn̂T

g � x̂T
gK

T
g � ĉT

gX
T
g Þiv~e > 0

0 ðn̂T
g � x̂T

gK
T
g � ĉT

gX
T
g Þiv~e 6 0;

(
ð49Þ
where ðn̂T
g � x̂T

gK
T
g � ĉT

gX
T
g Þi is the i-th component of n̂T

g � x̂T
gK

T
g � ĉT

gX
T
g . Otherwise,
_cW g ¼

c6ðn̂T
g � x̂T

gK
T
g � ĉT

gX
T
g Þ

Tv~e kcW gk < mWg or ðkcW gk ¼ mWg

and ðn̂T
g � x̂T

gK
T
g � ĉT

gX
T
g ÞcW gv~e 6 0Þ

Prðc6ðn̂T
g � x̂T

gK
T
g � ĉT

gX
T
g Þ

Tv~eÞ kcW gk ¼ mWg and ðn̂T
g � x̂T

gK
T
g � ĉT

gX
T
gÞcW gv~e > 0;

8>>><>>>: ð50Þ

_̂q ¼
c7j~ej jq̂j < mq or ðjq̂j ¼ mq and q̂ 6 0Þ
Prðc7j~ejÞ jq̂j ¼ mq and q̂ > 0;

(
ð51Þ
where ci; i ¼ 1; . . . ; 7 are positive constants and projection operator ðPrð:ÞÞ is defined as
_K ¼ PrðCH-Þ ¼ CH-� C
KKT

KTCK
CH-: ð52Þ
Then kcW f k 6 mWf
; kx̂f k 6 mxf

; kĉf k 6 mcf
; kx̂gk 6 mxg ; kĉgk 6 mcg ; 0 < e 6 kcW gk 6 mWg and jq̂j 6 mq. Also

kfW f k 6 2mWf
; k ~xf k 6 2mxf

; k~cf k 6 2mcf
; kfW gk 6 2mWg ; k ~xgk 6 2mxg ; k~cgk 6 2mcg , and j~qj 6 2mq, such that ~q ¼ q� � q̂.

Proof 1. See Appendix A. h

Lemma 4. d in (39) is bounded by a constant, i.e.,
jdj 6 �d; ð53Þ
where �d is an unknown positive constant.

Proof 2. See Appendix B. h
4. Stability analysis

Now, based on above discussions we are ready to analyze the asymptotic stability of the closed-loop system. For stability
analysis the following theorem is stated:

Theorem 2. Consider system (1) that satisfies Assumptions 1–3. Let cW f ; x̂f ; ĉf ;
cW g ; x̂g ; ĉg and q̂ are adjusted by adaptive

laws (44)–(51), respectively. If the control signal and the state estimator are chosen by (29) and (26), respectively, then
limt!1EðtÞ ¼ 0.
Proof 3. See Appendix C. h

Remark 1. In order to eliminate/alleviate chattering completely the discontinuous function sgnð~eÞ in (27) can be replaced by
the following smooth functions: satð~e=rÞ; tanhð~e=rÞ; tan�1ð~e=rÞ; ~e=ðj~ej þ rÞ and ~e=ðj~ej þ re�qtÞ, where r and q are two positive
constants. The first four smooth functions eliminate chattering completely in the expense of steady state error, which is pro-
portional to r. However, since the last smooth function has a decaying-width boundary layer re�pt , its ability to alleviate chat-
tering while maintaining asymptotic convergence has been proved [26].

Remark 2. According to the previous analysis and to summarize the above results, the design algorithm and the block dia-
gram of the proposed controller are described as follows:
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Design Algorithm

Step 1. Specify the feedback and observer gain Kc and Ko such that the characteristic matrices ðA� BKcÞ and ðA� KoCÞ are
strictly Hurwitz.

Step 2. Specify positive definite n� n matrices Q1 and Q 2 and solve Riccati Eqs. (30) and (42) to obtain positive definite
n� n matrices P1 and P2, respectively.

Step 3. Noting CeE ¼ ~e ¼ y� xd, solve the error Eq. (31) to obtain state estimate bX ¼ bE þ Xd.
Step 4. Specify the design parameters mWf

; mxf
; mcf

; mWg ; mxg ; mcg and mq and positive scalars ci; i ¼ 1; . . . ; 7, then com-
pute the adaptive laws (44)–(51) to adjust the parameter vectors cW f ; x̂f ; ĉf ; cW g ; x̂g ; ĉg and q̂.

Step 5. Calculate the robust structure ur with adaptive gain in (27) and the compensation controller uc in (28).
Step 6. Obtain the control law (29) and apply it to the plant. In order to cope with chattering the procedure in Remark 1 can

be used.

The block diagram of the proposed controller can be seen in Fig. 3.
5. Simulation example

Actuator hysteresis usually brings many problems in control systems such as tracking errors, limit cycles, undesirable
performance and even instability. For example due to ferromagnetic effect of motor drive the hysteresis exists in electrical
valve actuators and causes degradation of performance in control of physical and mechanical systems [27], piezoelectric
actuators due to its hysteresis cause inaccurate positioning in astronomical adaptive optics [28], the unavoidable hysteresis
in piezoceramic actuator brings inaccurate and unsatisfactory performance of helicopter vibration control [29] and many
others. In this section we apply our proposed controller to inverted pendulum system with backlash-like hysteresis actuator.

Example 1. Consider the inverted pendulum with backlash-like hysteresis actuator depicted in Fig. 4. Denoting x1 ¼ h and
x2 ¼ _h a 2nd order model of inverted pendulum can be stated as follows [30],
_x1 ¼ x2

_x2 ¼ f ðx1; x2Þ þ gðx1; x2Þ/ðvÞ þ dðtÞ
y ¼ x1;

8><>: ð54Þ
where
f ðx1; x2Þ ¼
9:8 sin x1 � mlx2

2 cos x1 sin x1
mcþm

l 4
3�

m cos2 x1
mcþm

� � ; gðx1; x2Þ ¼
cos x1
mcþm

l 4
3�

m cos2 x1
mcþm

� � ð55Þ
mc is the mass of the cart, m is the mass of the pole, 2l is the pole’s length, dðtÞ is the external disturbance, /ðvÞ is the output
of the backlash-like hysteresis actuator and vðtÞ is the applied force (control). In the simulations that follows
Fig. 3. Block diagram representation of the proposed method.



Fig. 4. Inverted pendulum system with backlash-like hysteresis actuator.
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mc ¼ 1 kg; m ¼ 0:1 kg and l ¼ 0:5 m will be chosen. It is assumed that only output state x1 can be measured. The nonlinear
functions f ðx1; x2Þ and gðx1; x2Þ are assumed to be unknown. The initial condition of the plant is chosen as Xð0Þ ¼ � p

60 ;0
� �T .

For state estimation the observer defined in (26) with Kc ¼ ½144; 24� and Ko ¼ ½60; 900�T is used. Kc and Ko are chosen
such that the matrices A� BKc and A� KoC are Hurwitz. Without loss of generality the initial condition of the observer is
chosen as bXð0Þ ¼ � p

30 ;�1
� �T which is different from the initial condition of the plant. The parameters of proposed method

are chosen as c1 ¼ 100; c2 ¼ c3 ¼ c4 ¼ c5 ¼ 1; c6 ¼ 10 and c7 ¼ 4000. It should be noted that all the adaptive gains are
chosen by trial and error to achieve the best transient control performance considering the requirement of stability and
possible operating conditions. We note, that for any of positive gains, as it is proved in Theorem 2, asymptotic stability is
guaranteed but they are selected to achieve best performance Mf ¼ Mg ¼ 5 are selected. The matrices P1 and P2 are chosen
according to Riccati Eqs. (30) and (42) as follows:
P1 ¼
1:4402 0:0035
0:0035 0:0101

� 	
; P2 ¼

1:5303 �0:1015
�0:1015 0:0085

� 	
The initial conditions of fuzzy parameters are chosen randomly in the interval [1, 2]. Without loss of generality the param-
eters of the backlash-like hysteresis model are chosen as a ¼ 1 and c ¼ 3:1635. To show the effectiveness of the proposed
method the backlash-like hysteresis nonlinearities with different width are used. Therefore in simulations
B1 ¼ 2:345; 1:345; 0:345 are used, i.e., for bigger B1 we have smaller width. Two cases are considered:
5.1. Case 1. (Sinusoidal Desired Trajectory)

For better comparison it is assumed that the unknown disturbance dðtÞ ¼ 3þ 2 cosð3tÞ is applied at unknown time
t ¼ 10 s. The desired trajectory is selected as xd ¼ p

5 sinðtÞ. Figs. 5–7 show the tracking performance, input and output of
the backlash-like hysteresis with different hysteresis nonlinearities.

5.2. Case 2. (Periodic Step Desired Trajectory)

The unknown step disturbance dðtÞ ¼ 5 is applied at unknown time t ¼ 15 s. A second order transfer function is chosen as
the reference model for a periodic step command;
xd

ucommand
¼ 9

s2 þ 6sþ 9
where, ucommand is a periodic square wave with amplitude p
8 and period 12 s. The results are depicted in Figs. 8–10.

Clearly, in both cases the satisfactory tracking in the presence of unknown backlash-like hysteresis, unknown external
disturbances and even unknown states are achieved. From the simulation results it can be seen that the observer based adap-
tive systematic fuzzy controller as proposed in Section 3 has a satisfactory performance to control the system preceded by
hysteresis, amid uncertainties and external disturbances. It should be noted that only the input of the backlash-like hyster-
esis vðtÞ; which is the control signal, can be designed by the designer and its output, /ðvÞ is not available, because the hys-
teresis parameters are unknown.

Remark 3. To cope with the lumped uncertainties ðdðtÞ þ dðtÞÞ usually a discontinuous robust control uc ¼ qsgnð~eÞ is used,
where q is a positive constant that should be larger than the bound of lumped uncertainties. But the bound of lumped
uncertainties is difficult to be measured in practical applications. If q is chosen too large the control effort results in
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Fig. 5. Simulation results: sinusoidal desired trajectories, B1 ¼ 2:345 and dðtÞ ¼ 3þ 2 cosð3tÞ: (a) desired state x1d (--), estimated state x1 (-), (b) desired
state x2d (--), estimated state x2 (-), (c) control signal vðtÞ acting as the input of the hysteresis and (d) control signal /ðvÞ acting as the output of the
hysteresis.
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Fig. 6. Simulation results: sinusoidal desired trajectories, B1 ¼ 1:345 and dðtÞ ¼ 3þ 2 cosð3tÞ: (a) desired state x1d (--), estimated state x1 (-), (b) desired
state x2d (--), estimated state x2 (-), (c) control signal vðtÞ acting as the input of the hysteresis and (d) Control signal /ðvÞ acting as the output of the
hysteresis.
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chattering. If q is chosen too small the performance degrades or even the closed-loop system may become unstable. Mostly
in literature q is chosen large enough to avoid instability. To relax the requirement of knowing the bound of lumped
uncertainties and to avoid using a conservative one in this paper we proposed of using adaptive gain, i.e., using q̂ instead of q
mentioned in robust structure in (27). The adaptive law for q̂ is derived from Lyapunov approach, therefore, the stability is
also guaranteed.
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Fig. 7. Simulation results: sinusoidal desired trajectories, B1 ¼ 0:345 and dðtÞ ¼ 3þ 2 cosð3tÞ: (a) desired state x1d (--), estimated state x1 (-), (b) desired
state x2d (--), estimated state x2 (-), (c) control signal vðtÞ acting as the input of the hysteresis and (d) control signal /ðvÞ acting as the output of the
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Fig. 8. Simulation results: periodic step desired trajectories, B1 ¼ 2:345 and dðtÞ ¼ 5: (a) desired state x1d (--), estimated state x1 (-), (b) desired state x2d (--),
estimated state x2 (-), (c) control signal vðtÞ acting as the input of the hysteresis and (d) control signal /ðvÞ acting as the output of the hysteresis.
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6. Conclusions

The adaptive control technique has been combined with fuzzy logic systems, as universal approximators, to achieve a ro-
bust output feedback control for nonlinear uncertain systems preceded by unknown backlash-like hysteresis and with large
uncertainty in plant structure, unknown variations in plant parameters and unknown but bounded sudden external distur-
bances. Usually only parameters of the consequent parts of fuzzy rules are tuned via adaptive techniques, however, in the
proposed controller both consequent and premise parts of fuzzy rules have been adjusted via adaptive laws, making the
designing of controller more systematic. In many practical applications the states of the systems are not available. The pro-
posed approach does not need the availability of the states and uses an observer to estimate the states. To cope with lumped
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Fig. 9. Simulation results: periodic step desired trajectories, B1 ¼ 1:345 and dðtÞ ¼ 5: (a) desired state x1d (--), estimated state x1 (-), (b) desired state x2d (--),
estimated state x2 (-), (c) control signal vðtÞ acting as the input of the hysteresis and (d) control signal /ðvÞ acting as the output of the hysteresis.
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Fig. 10. Simulation results: periodic step desired trajectories, B1 ¼ 0:345 and dðtÞ ¼ 5, (a) desired state x1d (--), estimated state x1 (-), (b) desired state x2d (--),
estimated state x2 (-), (c) control signal vðtÞ acting as the input of the hysteresis and (d) control signal /ðvÞ acting as the output of the hysteresis.
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uncertainties generated by state estimation error, fuzzy approximation error and external disturbances a robust structure
with adaptive gain is used which the adaptive gain mechanism not only relaxes the assumption of knowing the bound of
lumped uncertainties, but also causes to chattering attenuation. All the adaptive laws are derived via Lyapunov synthesis
method and therefore asymptotic stability of overall system is ensured. In future work, we aim to extend this methodology
to more general forms of nonlinear systems.
Appendix A. Proof of Lemma 3

Using (44)–(52) the proof of kcW f k 6 mWf
; kx̂f k 6 mxf

; kĉf k 6 mcf
; kx̂gk 6 mxg ; kĉgk 6 mcg ; kcW gk 6 mWg and jq̂j 6 mq

can be easily obtained by the results of [13]. By using triangular inequality we have kfW f k 6
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2mWf
; k ~xf k 6 2mxf

; k~cf k 6 2mcf
; k ~xgk 6 2mxg ; k~cgk 6 2mcg ; kfW gk 6 2mWg and j~qj 6 2mq since from Assumption 3 we

have kW�
f k 6 mWf

; kx�f k 6 mxf
; kc�f k 6 mcf

; kx�gk 6 mxg ; kc�gk 6 mcg ; kW
�
gk 6 mWg and jq�j 6 mq. Now, consider the Lyapu-

nov function candidate Vg ¼ 1
2
cW T

g
cW g , its time derivative is _Vg ¼ cW T

g
_cW g . Assuming that condition (49) holds, then _Vg P 0

which implies 0 < e 6 kcW gk. This completes the proof.

Appendix B. Proof of Lemma 4

(a) From (19) and Lemma 3 we have
khT
f þ eETCT

f k ¼ k~nT
f � ~xT

f K
T
f � ~cT

f X
T
f k 6 k~nT

f k þ k ~xT
f kkK

T
f k þ k~cT

f kkX
T
f k 6 ‘f 1 þ ‘f 2k ~xf k þ ‘f 3k~cf k

6 ‘f 1 þ 2‘f 2mxf
þ 2‘f 3mcf

¼ c1; ðB:1Þ
where ‘f 1; ‘f 2 and ‘f 3 are positive constants due to the fact that FBFN and its derivatives are always bounded by constants
(because of the boundedness of states and Gaussian membership functions) [19]. Using (B.1), (23), Lemma 3 and Assumption
3 we have:
jef j ¼ jðx�
T

f KT
f þ c�

T

f XT
f ÞfW f þ ðeETCT

f þ hT
f ÞW

�
f þ Df j 6 kx�f kkKf kkfW f k þ kc�f kkXf kkfW f k þ kW�

f kc1 þ jDf j
6 2‘f 2mxf

mWf
þ 2‘f 3mcf

mWf
þ c1mWf

þ bDf
¼ c2; ðB:2Þ
where bDf
is a positive constant based on Theorem 1 and boundedness of f ðt;XÞ.

(b) Based on (B.1) and Lemma 3
kn̂T
f � x̂T

f K
T
f � ĉT

f X
T
f k 6 kn̂T

f k þ kx̂T
f kkK

T
f k þ kĉT

f kkX
T
f k 6 ‘f 1 þ ‘f 2mxf

þ ‘f 3mcf
¼ c3; ðB:3Þ

kcW T
f Kf k 6 kcW T

f kkKf k 6 ‘f 2mWf
¼ c4; ðB:4Þ

kcW T
f Xf k 6 kcW T

f kkXf k 6 ‘f 3mWf
¼ c5: ðB:5Þ
Thus based on Lemma 3 and B.3, B.4 and B.5
n̂T
f � x̂T

f K
T
f � ĉT

f X
T
f

� �fW f

��� ��� 6 c61 ;
cW T

f Kf ~xf

��� ��� 6 c62 ;
cW T

f Xf ~cf

��� ��� 6 c63 ; ðB:6Þ

n̂T
f � x̂T

f K
T
f � ĉT

f X
T
f

� �fW f þ cW T
f Kf ~xf þ cW T

f Xf ~cf

��� ��� 6 c61 þ c62 þ c63 ¼ c6: ðB:7Þ
(c) Based on (27), Lemma 3 and boundedness of d
j � dþ ur j 6 jdj þ jurj ¼ Dþ jq̂j 6 Dþmq ¼ c7: ðB:8Þ
(d) Since bX 2 Ux̂ and based on Assumption 2, there exists a compact set Uê so that bE 2 Uê, thus
jucj ¼ jKT
oP1
bEj 6 c8: ðB:9Þ
(e) Using Assumption 2, Lemma 3, boundedness of FBFNs and (B.9) it can be deduced that all the terms in the proposed
control signal (29) are bounded. Thus there exists a positive constant �v such that jv j 6 �v . Similarly using (25) and

above fact we have
jegv j 6 cg3 �v : ðB:10Þ

Similarly using (25) for FBFN (16) we have

n̂T
g � x̂T

gK
T
g � ĉT

gX
T
g

� �fW g

��� ��� 6 c91 ;
cW T

gKg ~xg

��� ��� 6 c92 ;
cW T

gXg~cg

��� ��� 6 c93 ; ðB:11Þ

n̂T
g � x̂T

gK
T
g � ĉT

gX
T
g

� �fW gv þ cW T
gKg ~xgv þ cW T

gXg~cgv
��� ��� 6 ðc91 þ c92 þ c93 Þ�v ¼ c9: ðB:12Þ
(f) Since L�1ðsÞ is a stable filter and if vðtÞ is a bounded signal, then clearly there exists a positive constant b such that
jL�1ðsÞvðtÞj 6 b. Thus based on (B.1)–(B.11) and (B.12) we have
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L�1ðsÞ n̂T
f � x̂T

f K
T
f � ĉT

f X
T
f

� �fW f þ cW T
f Kf ~xf þ cW T

f Xf ~cf

n o��� ��� 6 c10; ðB:13Þ

L�1ðsÞ n̂T
g � x̂T

gK
T
g � ĉT

gX
T
g

� �fW gv þ cW T
gKg ~xgv þ cW T

gXg~cgv
n o��� ��� 6 c11; ðB:14Þ

jL�1ðsÞðd� urÞj 6 c12; ðB:15Þ

jL�1ðsÞef j 6 c13; ðB:16Þ

jL�1ðsÞðegvÞj 6 c14; ðB:17Þ

jL�1ðsÞucj 6 c15: ðB:18Þ
Therefore, using the above inequalities we have
jdj 6 c6 þ c7 þ c8 þ c9 þ c10 þ c11 þ c12 þ c13 þ c14 þ c15 ¼ �d: ðB:19Þ
Appendix C. Proof of Theorem 2

Consider the following Lyapunov function candidate:
V ¼ 1
2
bET P1

bE þ 1
2
eET P2

eE þ fW T
f
fW f

2c1
þ

~xT
f

~xf

2c2
þ

~cT
f
~cf

2c3
þ

~xT
g

~xg

2c4
þ

~cT
g
~cg

2c5
þ
fW T

g
fW g

2c6
þ

~q2

2c7
: ðC:1Þ
The time derivative of (C.1) along (31) and (40), using (30) and (42)
_V ¼ �1
2
bET Q 1

bE � 1
2
eET Q 2

eE þ bET P1KoCeE � eET P2Bcuc

n o
þ fW T

f
eET P2Bcðn̂T

f � x̂T
f K

T
f � ĉT

f X
T
f Þ

T �
_cW f

c1

8<:
9=;

þ ~xT
f
eET P2BcðcW T

f Kf ÞT �
_̂xf

c2

( )
þ ~cT

f
eET P2BcðcW T

f Xf ÞT �
_̂cf

c3

( )
þ ~xT

g
eET P2BcðcW T

gKgÞTv �
_̂xg

c4

( )

þ ~cT
g
eET P2BcðcW T

gXgÞTv �
_̂cg

c5

( )
þ fW T

g
eET P2Bcðn̂T

g � x̂T
gK

T
g � ĉT

gX
T
gÞ

Tv �
_cW g

c6

8<:
9=;þ eET P2Bcðdþ d� urÞ �

~q _̂q
c7

( )
ðC:2Þ
From Lemma 4 and the boundedness of d we have jdþ dj 6 �dþ D. Nominating q�,�dþ D, considering (43), (27) and (28), (C.2)
can be written as
_V 6 �1
2
bET Q1

bE � 1
2
eET Q 2

eE þ fW T
f ~e n̂T

f � x̂T
f K

T
f � ĉT

f X
T
f

� �T
�

_cW f

c1

8<:
9=;þ ~xT

f ~e cW T
f Kf

� �T
�

_̂xf

c2

( )

þ ~cT
f ~e cW T

f Xf

� �T
�

_bcf

c3

( )
þ ~xT

g ~e cW T
gKg

� �T
v �

_̂xg

c4

( )
þ ~cT

g ~e cW T
gXg

� �T
v �

_̂cg

c5

( )

þ fW T
g

~e n̂T
g � x̂T

gK
T
g � ĉT

gX
T
g

� �T
v �

_cW g

c6

8<:
9=;þ ~q j~ej �

_̂q
c7

 !( )
: ðC:3Þ
If kcW f k < mWf
or ðkcW f k ¼ mWf

and n̂T
f � x̂T

f K
T
f � ĉT

f X
T
f

� �cW f ~e 6 0ÞÞ, then from the first line of adaptation law (44) we have

_cW f ¼ c1 n̂T
f � x̂T

f K
T
f � ĉT

f X
T
f

� �T
~e, thus fW T

f f~e n̂T
f � x̂T

f K
T
f � ĉT

f X
T
f

� �T
�

_bW f

c1
g ¼ 0. Now, if kcW f k ¼ mWf

and

n̂T
f � x̂T

f K
T
f � ĉT

f X
T
f

� �cW f ~e > 0 then from the second line of adaptation law (44) and (52) we have

_cW f ¼ Pr c1ðn̂T
f � x̂T

f K
T
f � ĉT

f X
T
f Þ

T~e
� �

¼ c1 n̂T
f � x̂T

f K
T
f � ĉT

f X
T
f

� �T
~e� c1

bW f
bW T

f

kbW f k2
n̂T

f � x̂T
f K

T
f � ĉT

f X
T
f

� �T
~e, thus
fW T
f ~e n̂T

f � x̂T
f K

T
f � ĉT

f X
T
f

� �T
�

_cW f

c1

8<:
9=; ¼ fW T

f

cW f
cW T

f

kcW f k2
n̂T

f � x̂T
f K

T
f � ĉT

f X
T
f

� �T
~e ¼

fW T
f
cW f

kcW f k2
cW T

f n̂T
f � x̂T

f K
T
f � ĉT

f X
T
f

� �T
~e: ðC:4Þ
Since n̂T
f � x̂T

f K
T
f � ĉT

f X
T
f

� �cW f ~e > 0 and fW T
f
cW f 6 0 (because kW�

f k 6 mWf
and kcW f k ¼ mWf

) we have
fW T
f ~eðn̂f � x̂T

f K
T
f � ĉT

f X
T
f Þ

T �
_cW f

c1

8<:
9=; 6 0: ðC:5Þ
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Similarly, the same procedure can be done for other adaptive laws, after doing this we have:
_V 6 �1
2
bET Q 1

bE � 1
2
eET Q 2

eE: ðC:6Þ
Denoting Q ¼ diag½Q1;Q2� and ET
a ¼ ½bET ; eET �, (C.6) can be rewritten as
_V 6 �1
2

ET
aQEa 6 0: ðC:7Þ
Since Q 1 and Q 2 are positive definite matrices then matrix Q ¼ diag½Q1; Q 2� is also positive definite, therefore _V is negative
semi-definite, i.e., VðfW f ðtÞ; ~xf ðtÞ; ~cf ðtÞ; fW gðtÞ; ~xgðtÞ; ~cgðtÞ; ~qðtÞÞ 6 VðfW f ð0Þ; ~xf ð0Þ; ~cf ð0Þ; ~Wgð0Þ; ~xgð0Þ; ~cgð0Þ; ~qð0ÞÞ,
which shows V is non-increasing and bounded. Defining HðtÞ ¼ 1

2 ET
a QEa 6 � _V and integrating it with respect to time yields:
Z t

0
HðsÞds 6 VðfW f ð0Þ; ~xf ð0Þ; ~cf ð0Þ;fW gð0Þ; ~xgð0Þ; ~cgð0Þ; ~qð0ÞÞ � VðfW f ðtÞ; ~xf ðtÞ; ~cf ðtÞ;fW gðtÞ; ~xgðtÞ; ~cgðtÞ; ~qðtÞÞ: ðC:8Þ
Because VðfW f ð0Þ; ~xf ð0Þ; ~cf ð0Þ; fW gð0Þ; ~xgð0Þ; ~cgð0Þ; ~qð0ÞÞ is bounded and VðfW f ðtÞ; ~xf ðtÞ; ~cf ðtÞ; fW gðtÞ; ~xgðtÞ; ~cgðtÞ; ~qðtÞÞ is
non-increasing and bounded, the following result is obtained:
lim
t!1

Z t

0
HðsÞds <1: ðC:9Þ
Also, _HðtÞ is bounded, so by using the Barbalat’s lemma [30], (if the differentiable function hðtÞ has a finite limit as t ! 1,
and is such that €h exists and is bounded, then _hðtÞ ! 0 as t ! 1), it can be shown that limt!1HðtÞ ¼ 0. Therefore, we have
limt!1EaðtÞ ¼ 0. Thus limt!1bE ¼ 0 and limt!1eE ¼ 0. On the other hand, E ¼ bE þ eE, so limt!1E ¼ 0.
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