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ABSTRACT : 

A semi-active control method for a seismically excited nonlinear benchmark building equipped with
a magnetorheological (MR) damper is presented and evaluated. A Linear Quadratic Gaussian (LQG) controller is
designed to produce the optimal control force. The required voltage for the MR damper to produce the control
force estimated by LQG controller is calculated by a neural network predictive control algorithm (NNPC). The
LQG controller and the NNPC are linked to control the structure. The coupled LQG and NNPC system are then 
used to train a semi-active neuro-controller designated as SANC, which produces the necessary control voltage that 
actuates the MR damper. The effectiveness of the NNPC and SANC is illustrated and verified using simulated
response of a 3-story full-scale, nonlinear, seismically excited, benchmark building excited by several historical
earthquake records. The semi-active system using the NNPC algorithm is compared to the performance of passive
as well as an active and a clipped optimal control (COC) system, which are based on the same nominal controller 
as is used in the NNPC algorithm. The results demonstrate that the SANC algorithm is quite effective in seismic 
response reduction for wide range of motions from moderate to severe seismic events, compared to the passive 
systems, and performs better than active and COC systems. 
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1. INTRODUCTION 
 
The magnetorheological (MR) damper is generating great interest among researchers in semi-active control of civil 
structures [1-6]. The MR damper is a smart semi-active control device that generates force in response to velocity
and applied voltage. Consequently, semi-active control using MR dampers are powerful devices that enjoy the 
advantages of passive devices with the benefits of active control. Additionally, they are inherently stable, reliable,
and relatively cost-effective; they require small activation power. 
 
One challenge in the use of semi-active technology is in developing nonlinear control algorithms that are
appropriate for implementation in full-scale structures. Numerous control algorithms have been adopted for
semi-active systems. These algorithms are either conventional methods based on mathematical formulations [1-6] 
or intelligent methods based on neural networks or fuzzy logic [7–12]. 
 
Model Predictive Control (MPC) belongs to a class of algorithms that compute a sequence of manipulated variable
adjustment in order to optimize the future behavior of a plant. A state model is used to predict the open-loop future 
behavior of the system over a finite time horizon from present states. The predicted behavior is then used to find a
finite sequence of control actions which minimize a particular performance index within pre-specified constraints. It 
displays its main strength in its computational expediency, real-time applications, intrinsic compensation for time 
delays, treatment of constraints, and potential for future extensions of the methodology. Recent applications of MPC 
to the control of civil engineering structures have been demonstrated in Mei et al. [13-14]. 
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Interest in a new class of computational intelligence systems known as artificial neural networks (ANNs) has grown
in the last few several years. This type of network has been found to be a powerful computational tool for organizing
and correlating information in ways that have been proven to be useful for solving certain types of problems that are
complex and poorly understood. The applications of ANNs to the area of structural control have grown rapidly
through system identification, system inverse identification or controller replication [7-9].Chang and Zhou [15] 
manipulated recurrent neural networks to emulate the inverse dynamics of the MR damper to predict the required 
voltage for full-state feedback closed-loop system. This model used to control a three-storey building subjected to El 
Centro earthquake record. Similarly, Bani-Hani and Mashal [8] proposed neural network to simulate the inverse 
model of an MR damper in a 6-story base-isolated building subjected to earthquake forces. Karamodin et al, [16] 
also used the inverse NN model of an MR damper to control a 3 story benchmark building subjected to different 
earthquake records, and compared the results to active and clipped optimal control (COC) [4] systems. 
 
In this paper, a neural network predictive control (NNPC) algorithm is used to command the MR damper. Neural
network predictive control is based on model predictive control (MPC) scheme.  The NNPC is used to calculate 
voltage signals to be input to the MR damper so that it can produces desirable optimal control forces that is
estimated by LQG control algorithm. The coupled LQG and NNPC system are then used to train a semi-active 
neuro-controller designated as SANC, which produces the necessary control voltage that actuates the MR damper.
The effectiveness of the NNPC and SANC is illustrated and verified using simulated response of a 3-story full-scale, 
nonlinear, benchmark building excited by several historical earthquake records. 
 
 
2. THREE-STORY BENCHMARK BUILDING 
 
The 3-story benchmark buildings used for this study were designed for the Los Angeles region as defined by Ohtori
et al. [17]. The building is 36.58 by 54.87 m in plan, and 11.89 m in height. Two far-field and two near-field 
historical ground motion records are selected for study: El Centro 1940, Hachinohe 1968, and Northridge 1994, 
Kobe 1995 earthquakes respectively. Control actuators are located on each floor of the structure to provide forces to 
adjacent floors. Because the actuator capacity is limited to a maximum force of 1,000 kN, three actuators are 
employed at the first floor and two actuators at each of the second and the third floors to provide the required larger
forces. Three sensors for acceleration measurements are used for feedback in the control system on the first, second,
and third floors. 
 
3. MDEL PREDICTIVE CONTROL(MPC) SCHEME 
 
The MPC scheme is based on an explicit use of a prediction model of the system response to obtain control actions 
by minimizing an objective function. The optimization objectives include minimization of the difference between
the predicted and desired response and the control effort subject to prescribed constraints such as limits on the 
magnitude of the control force. In the MPC scheme, first a reference response trajectory yr(k) is specified. The
reference trajectory is the desired target trajectory of the structural response. This is followed by an appropriate  

 
Figure 1. MPC scheme 
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prediction model which is then used to estimate the future building response y(k). The prediction is made over a
pre-established extended time horizon using the current time as the prediction origin. For a discrete time model, this
means predicting )(ˆ),..,2(ˆ),1(ˆ ikykyky +++ for i sample times in the future. This prediction is based on the past
control inputs u(k), u(k-1),...,u(k-j) and on the sequence of future control efforts determined using the prediction
model that are needed to satisfy a prescribed optimization objective. The control signals that were determined using
the prediction model are then applied to the plant, and the actual plant system output y(k) is found. Finally, the actual
measurement y(k) is compared to the  model prediction )(ˆ ky  and the prediction error [e (k)=y(k)- )(ˆ ky ] is 
utilized to update future predictions. Figure 1 describes schematically the basic MPC scheme. 

 
4. PROPOSED CONTROL STRATEGY 
 
 
4.1. Neural Network Predictive Control (NNPC)  
 
Figure 2 illustrates the proposed control strategy. A Linear Quadratic Gaussian (LQG) controller is designed to 
produce the optimal control force. There is basically no restriction on the type of control algorithm that calculates a
desirable control force fd based on response and/or excitation. The required voltage for the MR damper to produce
the control force estimated by LQG controller is calculated by a   neural network predictive control algorithm
(NNPC) which is based on MPC scheme. NNPC consists of a neural network model of MR damper and an 
optimization algorithm (Figure 2). The neural network model is used to predict the open-loop future behavior of the 
MR damper over a finite time horizon from present states. The input to the neural network model is the velocity 
across the MR damper and voltage signal. The velocity which depends on the structural response is assumed to be
constant over the horizon. The output of the neural network is the predicted damper forces which is then sent to the
optimization algorithm, to find a finite sequence of control actions which minimize an objective function within
pre-specified constraints. The objective function is the difference between the predicted and desired response and
the control effort as shown below: 
 

∑ ∑
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mr jtujtujtytyJ ρ                           (4.1)

 
where N2 and Nu, define the horizons over which the tracking error and the control increments are evaluated
respectively. The desired control force is also assumed to be constant over the horizon. The output voltage of NNPC 
is input to the MR damper which then produces the force f, acting on the building. 

 
Figure 2: Control Strategy 

 
4.2. MR Model 
 
Adequate modeling of the   control   devices   is essential for the accurate prediction of the behavior of the 
controlled system. The simple mechanical model shown bellow was developed and shown to accurately predict the 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 

4 
 

behavior of MR damper over a wide range of inputs [18-19]. This phenomenological model was developed based on 
a previous model used for an MR damper [21]. The equations governing the force f predicted by this model are as
follows: 
 

zxcf α+= &0                                                (4.2) 
 

xAzxzzxz nn
&&&& +−−=

− βγ 1                                     (4.3)
 
where z is the evolutionary variable that accounts for the history dependence of the response. The model parameters
depend on the voltage v to the current driver as follows:  
 

ucccu baba 000; +=+= ααα                           (4.4a, b)
 

where u is given as the output of the first-order filter  
 

)u(u νη −−=&                                           (4.5)
Eq. (4.5) is used to model the dynamics involved in reaching rheological equilibrium and in driving the
electromagnet in the MR damper [20-21]. This MR damper model is used herein to model the behavior of the MR 
damper. The parameters of the MR damper were selected so that the device has a capacity of 1,000 kN, as follows: 

=aα  1.0872e5 N/cm, =bα  4.9616e5 N/(cm V), =ac0 4.40 N s/cm, =bc0 44.0. N s/(cm V), n=1, A=1.2, γ =3
cm-1, β =3 cm-1, and η =50 s-1.  
 
 
4.3.  Neural network Model of MR damper(NNMR)  
 
As discussed above, neural network predictive control (NNPC) proposed in this paper requires a neural network
model of MR damper. The MR damper model discussed earlier in this paper estimates damper forces  based on the 
inputs of the reactive velocity and the issued voltage as described by Equations (4.1)–(4.4). The damper velocity is 
the same as the relative velocity of the floors the damper is connected to. This neural network model is denoted as
NNMR and is trained using input-output data generated analytically using the simulated MR model based on 
equations (4.1)–(4.4). NNMR calculates the damper forces based on the current and few previous histories of
measured velocity, voltage signals and damper forces. Training the NNMR requires the compilation of input-
output data. To completely identify the underlying MR system model, the data must contain information about  the 
entire operating range of the system. Here, in this study, the velocity and voltage are generated randomly using
band limited white Gaussian noise. The generated forces are results of the MR model described in equations 
(4.2)–(4.5). The sampling rate of the training data was 200 Hz for 30s period, which resulted in 6000 patterns for 
training, testing and validation (Figure 3).  Next step is to select the network architecture. To do so, it is required 
to determine the numbers of inputs, outputs, hidden layers, and nodes in the hidden layers, and is usually done by
trial and error. The most suitable input data for our case was found to be the current and the four previous histories
for the velocity and voltage signal as well as five previous histories for the damper force. Also one hidden layer,
with twenty nodes, was adopted as one of the best suitable topologies for the NNMR. The sigmoidal bipolar (tan-
sigmoid; ranging from −1 to 1) activation function is used for the hidden layer and the linear function for the
output layer which represents the voltage. 3000 patterns of the provided data were chosen for training which 
required 2000 training epochs to achieve a mean-square-error (MSE) of 1e−06.The training is carried out upon the 
generated data using the Levenberg–Marquardt algorithm [22], which is encoded in Neural Networks Toolbox in 
MATLAB [23] under ‘trainlm’ routine. Finally, testing and validation of the trained network is investigated using
few sets of new data for a 30s period. Figure 4 shows the training testing and validation velocity, voltage and
forces records used in constructing the NNMR model. It is clear that in general, the predicted forces are
reasonably close to the target forces. The near perfect match in the training region indicates that the NNMR model
is well trained.  
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Figure 3: Training, testing and validation data for NNMR 

 
4.4. Neural Network Controller  
 
As stated earlier the NNPC controller should minimize a performance index at each time step to find the required
voltage for the MR damper to produce the desired force. This minimization is very time consuming and is not 
suitable for real time control. 
Furthermore, The LQG and NNPC setup is used to train a single neural network that works as a stand-alone 
controller. This neural network is designated as SANC that estimates the control voltage for the semi-active device 
from the feedback sensors directly. Training the SANC controller is performed offline by generating the required
training patterns when the structure is excited by 30 s of the El Centro earthquake record and controlled by the
LQG and NNPC controller. A SIMULINK model was used to prepare the training data. The sampling rate is 200
Hz and the training patterns numbered 6000. The network architecture was designed to have 12 input neurons 
representing, the current and two previous histories of the accelerations of each story, in addition to one previous
history of the dampers velocities which can be measured directly. One   hidden layer having 20  hidden neurons 
was selected  by trial and error. Finally, the output layer has three neurons, representing the control voltage for the 
semi-active devices. The sigmiodal bipolar (tan-sigmoid) activation function was used for the hidden layer and
linear was used for the output layer (voltage). The provided 6000 patterns for training required 1000 training 
epochs to achieve a MSE of 1e−02.  

 
 

5. CONTROL PERFORMANCE 
 
The performance of the NNPC neural network is checked according to comparison of the force generated by MR
damper to the ideal force estimated by LQG controller. Figure 4 shows the force generated by the MR damper at 
first floor of the building for Elcentro earthquake commanded by NNPC as compared to ideal force estimated by
LQG controller. It can be seen that the damper forces follow the target optimal control forces closely. For 
evaluation of the proposed SANC controller the seismic effectiveness of MR dampers to reduce the response of
the structure is considered.  Both the drift ratio in the top story and acceleration time history at the top floor are
compared in figure 5 with those of the uncontrolled structure under the different earthquakes. Although, the
neuro-controller was trained by using El Centro earthquake, the roof acceleration and the relative displacement
were considerably reduced after control action. Not only the peak responses, but also the overall amplitudes, were 
reduced in the responses. 

 
 

Also the performance of the controllers are investigated based on the evaluation criteria specified (J1– J6) for the 
3-story nonlinear benchmark building [17]. These criteria which are briefly presented in table1, are calculated as a 
ratio of the controlled and the uncontrolled responses. Ten earthquake records are used in the simulation, using the
original four earthquake records with different intensities. These records are the Elcentro and Hachniohe earthquake 
records with 0.5, 1.0, and 1.5 intensity, and Northridge and Kobe earthquake records with 0.5 and 1.0 intensity. To 
make a comparison, an active control system and semi-active clipped optimal control (COC) system [4], together 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 

6 
 

with two passive systems, passive off (POFF-zero voltage) and passive on(PON-highest voltage), are simulated. 
Furthermore for evaluation the effectiveness of semictive control, two linear viscous passive control are also
considered, These two passive control named as PV10 and PV15 are related to ten and fifteen percent critical 
damping in the first three modes of the structure respectively. 
 
Table 2 presents the evaluation criteria as the ratio of the controlled response to the uncontrolled response for each 
earthquake record individually for active, COC, passive off, passive on, linear viscous damping and the proposed
control systems. The average value of J1 and J4 for SANC, COC and active controller are 0.688, 0.728, 0.790 and 
0.529, 0.854, 0.916 respectively. It can be concluded that SANC controller performs better than COC and active
control to reduce the peak and norm drift. Also the average value of J2 and J5 for SANC, COC and active controller 
are 0.878, 0.889, 0.800 and 0.563, 0.795, 0.822 respectively which indicates that SANC has relatively equal 
performance to reduce the peak and norm of acceleration. The performance of NNPC is approximately equal to
performance of active and COC in all criteria. Table 2 also shows that SANC is more effective in reduction of all 
criteria than passive off system. It can also be seen that the passive on system is the most effective in reduction of the
peak and norm drift but, increases the acceleration of the structure. It can also be concluded that the performance of 
SANC in reducing the peak and norm of drift and acceleration is approximately equal to PV15, but performs better 
in reducing the peak and norm of base shear. 

 
Figure 4: comparison of the force generated by MR damper to the ideal force (LQG) 

 
 
CONCLUSION 
 
In this study, neural network predictive control (NNPC) have been used to predict the command voltage for MR
damper to produce a   target  control  force  calculated   from some optimal control algorithm ( LQG). Next, the
LQG and NNPC coupled model operated in series manner to control the structure. The coupled model was then
replaced by a single neural network (SANC) which produces the necessary voltage that generates the optimal
control force in the MR damper. 
A 3-story nonlinear benchmark building has been used for study. The results illustrate that it is possible to
incorporate the NN models into the control strategy and hence operate the damper in an active mode. In general, the
forces generated by the MR damper can follow those calculated from the optimal control algorithms. The 
effectiveness of controller for reducing the story drift and absolute acceleration of the structure have been checked
and results show it performs very well for different earthquakes. The performance of the controller has also been 
compared to other control systems based on the evaluation criteria specified (J1– J6) for the benchmark building. 
The results show that SANC controller performs better than COC and active control to reduce the peak and norm
drift ratio and has relatively equal performance to reduce the peak and norm of acceleration and base shear. The
performance of NNPC is approximately equal to performance of active and COC in all criteria. Also SANC and
NNPC perform better than passive off , passive on and linear viscous passive for all criteria unless the peak and 
norm drift which, passive on performs better than others. 
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Figure 5. Comparison of the 3rd _floor story drift and acceleration of the structure for uncontrolled and SANC 
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Table 2: Performance criteria for passive,  active, COC, NNPC and SANC algorithms 
  Control

ler 
Elcentr
o 0.5 

Elcentr
o 1.0 

Elcentr
o 1.5 

Hachin
o 0.5 

Hachin
o 1.0 

Hachin
o 1.5 

Nortdri
ge0.5 

Nortdri
ge1.0 

Kobe 
0.5 

Kobe 
1.0 

Averag
e 

SANC 0.467 0.662 0.876 0.406 0.666 0.695 0.561 0.891 0.988 0.664 0.688 
NNPC 0.562 0.763 0.848 0.681 0.800 0.816 0.675 0.949 0.839 0.651 0.758 
Active 0.544 0.753 0.873 0.637 0.768 0.794 0.826 1.035 0.819 0.854 0.790 
COC 0.457 0.704 0.883 0.541 0.697 0.706 0.714 0.950 0.881 0.752 0.728 
POFF 0.938 0.964 0.963 0.782 0.977 0.984 0.995 0.988 1.016 0.988 0.959 
PON 0.271 0.476 0.717 0.155 0.212 0.358 0.392 0.761 0.724 0.715 0.478 
PV10 0.511 0.681 0.850 0.612 0.608 0.617 0.864 0.857 0.923 0.738 0.726 

J1 

PV15 0.471 0.628 0.757 0.505 0.501 0.505 0.784 0.899 0.737 0.713 0.650 
SANC 0.724 0.785 0.957 0.608 0.850 1.071 0.983 1.022 0.896 0.884 0.878 
NNPC 0.647 0.806 1.079 0.785 0.929 0.939 0.914 1.139 0.826 0.691 0.876 
Active 0.598 0.781 0.939 0.658 0.798 0.844 0.851 0.869 0.829 0.833 0.800 
COC 0.820 0.829 0.938 0.812 0.909 0.957 0.862 0.890 0.871 1.002 0.889 
POFF 0.966 0.998 1.000 0.886 0.999 0.963 1.012 1.003 0.918 0.997 0.974 
PON 0.649 0.881 1.142 0.721 0.439 0.738 0.795 1.019 1.102 0.800 0.829 
PV10 0.539 0.885 0.985 0.646 0.708 0.967 0.941 1.048 0.971 0.765 0.846 

J2 

PV15 0.504 0.828 0.956 0.559 0.613 0.858 0.862 1.001 0.971 0.872 0.803 
SANC 0.509 0.940 1.066 0.625 0.847 1.023 0.917 0.965 0.950 0.999 0.884 
NNPC 0.580 0.969 0.974 0.588 0.804 0.962 0.912 1.054 0.905 1.045 0.879 
Active 0.507 0.881 0.914 0.553 0.779 0.925 0.831 0.819 0.851 0.966 0.803 
COC 0.583 1.043 1.062 0.574 0.797 0.923 0.910 0.943 0.994 1.006 0.883 
POFF 0.976 0.991 1.010 0.807 1.001 0.983 0.999 0.989 0.955 1.009 0.972 
PON 0.614 0.868 1.083 0.522 0.609 0.834 0.716 1.014 1.098 1.091 0.845 
PV10 0.601 0.927 1.164 0.907 1.000 1.205 0.902 1.184 1.329 1.387 1.061 

J3 

PV15 0.588 0.908 1.147 0.805 0.888 1.087 0.755 1.198 1.348 1.715 1.044 
SANC 0.388 0.514 0.431 0.161 0.234 0.495 0.165 0.895 1.238 0.771 0.529 
NNPC 0.583 0.644 0.648 0.421 0.489 0.786 0.450 0.515 0.641 0.400 0.558 
Active 0.799 0.851 0.708 0.590 0.655 1.199 1.088 1.237 0.829 1.202 0.916 
COC 0.656 0.776 0.693 0.352 0.471 0.956 0.710 1.199 1.149 1.576 0.854 
POFF 0.892 1.062 0.817 0.807 0.930 0.922 1.025 1.051 1.122 0.961 0.959 
PON 0.183 0.245 0.267 0.118 0.107 0.134 0.077 0.792 0.436 0.193 0.255 
PV10 0.504 0.707 0.788 0.303 0.312 0.337 0.245 0.666 1.552 0.250 0.567 

J4 

PV15 0.376 0.528 0.464 0.224 0.230 0.225 0.186 0.985 1.009 0.424 0.465 
SANC 0.612 0.690 0.681 0.337 0.365 0.449 0.611 0.668 0.569 0.648 0.563 
NNPC 0.609 0.705 0.690 0.447 0.508 0.587 0.635 0.673 0.592 0.670 0.612 
Active 0.764 0.931 0.925 0.561 0.685 0.814 0.878 0.914 0.821 0.926 0.822 
COC 0.781 0.945 0.932 0.570 0.565 0.704 0.861 0.887 0.794 0.915 0.795 
POFF 0.902 0.906 0.912 0.816 0.949 0.961 0.930 0.927 0.896 0.944 0.914 
PON 2.875 1.687 1.233 2.210 1.255 1.022 2.357 1.623 1.912 1.518 1.769 
PV10 0.599 0.852 0.919 0.361 0.373 0.478 0.653 0.865 0.829 0.892 0.682 

J5 

PV15 0.474 0.674 0.776 0.283 0.293 0.380 0.574 0.798 0.734 0.860 0.585 
SANC 0.617 0.691 0.677 0.340 0.374 0.461 0.690 0.712 0.582 0.696 0.584 
NNPC 0.595 0.697 0.672 0.447 0.512 0.594 0.696 0.694 0.581 0.689 0.618 
Active 0.741 0.911 0.892 0.557 0.682 0.813 0.953 0.937 0.780 0.910 0.818 
COC 0.754 0.931 0.912 0.460 0.578 0.723 0.963 0.949 0.792 0.937 0.800 
POFF 0.901 0.901 0.908 0.818 0.954 0.966 0.944 0.926 0.891 0.938 0.915 
PON 0.913 0.790 0.748 0.641 0.515 0.509 0.897 0.799 0.751 0.847 0.741 
PV10 0.590 0.857 0.936 0.372 0.384 0.490 0.708 0.927 0.878 0.991 0.713 

J6 

PV15 0.473 0.688 0.804 0.303 0.313 0.404 0.657 0.913 0.803 1.010 0.637 
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