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Abstract: A semi-active controller-based neural network for nonlinear benchmark structure equipped with a 
magnetorheological (MR)  damper is presented and evaluated. An inverse neural network model (NIMR) is constructed 
to replicate the inverse dynamics of the MR damper. Linear quadratic Gaussian (LQG) controller is also designed to 
produce the optimal control force. The LQG controller and the NIMR models are linked to control the structure. The 
effectiveness of the NIMR is illustrated and verified using simulated response of a full-scale, nonlinear, seismically 
excited, 3-story benchmark building excited by several historical earthquake records. The semi-active system using the 
NIMR model is compared to the performance of an active and a clipped optimal control (COC) system, which are based 
on the same nominal controller as is used  in the NIMR damper control algorithm. The results demonstrate that by using 
the NIMR  model, the MR damper force can be  commanded  to follow closely the desirable optimal control force. The 
results also show that the control system is effective, and achieves better performance than  active and COC  system.  
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1      Introduction 
The magnetorheological (MR) damper is 
generating a great interest among researchers in 
semi-active control of civil structures [1-6]. The 
MR damper is smart semi-active control device 
that generates force to a given velocity and applied 
voltage. The MR damper filled with a special fluid 
that includes very small polarizable particles that 
can change its viscosity rapidly from liquid to 
semi-solid and vice versa by adjusting the 
magnitude of the magnetic field produced by a coil 
wrapped around the piston head of the damper. 
The magnetic field can be tuned by varying the 
electrical current sent into the coil. When no 
current is supplied, the MR damper behaves 
similar to ordinary viscous damper, whereas its 
fluid starts to change to semi-solid as the current is 
gradually sent through the coil. Consequently, 
semi-active control using MR dampers are 
powerful devices that enjoy the advantages of 
passive devices with the benefits of active control. 
Additionally, they are inherently stable, reliable, 

and relatively cost-effective; they require small 
activation power. 
    One challenge in the use of semi-active 
technology is in developing nonlinear control 
algorithms that are appropriate for implementation 
in full-scale structures. Numerous control 
algorithms have been adopted for semi-active 
systems. These algorithms are either conventional 
methods based on mathematical formulation [1-6] 
or intelligent methods based on neural networks or 
fuzzy logic [7–12]. 
     Interest in a new class of computational 
intelligence systems known as artificial neural 
networks (ANNs) has grown in the last few several 
years. This type of network has been found to be a 
powerful computational tool for organizing and 
correlating information in ways that have been 
proven to be useful for solving certain types of 
problems that are complex and poorly understood. 
The applications of ANNs to the area of structural 
control have grown rapidly through system 
identification, system inverse identification or 
controller replication [7-9]. 
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     In addition to using linear quadratic regulator 
(LQR) method, Chang and Zhou [13] manipulated 
recurrent neural networks to emulate the inverse 
dynamics of the MR damper to predict the 
required voltage for full-state feedback closed-
loop system. This model used to control a three-
storey building subjected to El Centro earthquake 
record. Similarly, Bani-Hani and Mashal [8] 
proposed neural network to simulate the inverse 
model of an MR damper in a 6-story base-isolated 
building subjected to earthquake forces. 
    In this paper, a NN model is used to   emulate 
the inverse dynamics of the MR damper. This NN 
model is trained based on the input–output data 
generated using the phenomenological model 
proposed by Dyke et al. [14]. The model calculates 
a voltage signal based on a few previous time steps 
of velocity, damper force, and the desirable control 
force. This NN model is used to calculate voltage 
signals to be input to the MR damper so that it can 
produce desirable optimal control forces that is 
estimated by LQG control algorithm. In principle, 
these control forces can come from any control 
algorithm that requires an explicit use of control 
forces to mitigate response. 
 
2      Three-Story Benchmark Building 
The benchmark buildings of 3-story used for this 
study were designed for the Los Angeles region as 
defined by Ohtori et al. [15], in the problem 
definition paper. The building is 36.58  by 54.87 m 
in width, and 11.89 m in height. Two far-field and 
two near-field historical ground motion records are 
selected for study: El Centro 1940, Hachinohe 
1968, Northridge 1994, and Kobe 1995 
earthquakes. Control actuators  are located on each 
floor of the structure to provide forces to adjacent 
floors. Because the actuator capacity is limited to a 
maximum force of 1,000 kN, three actuators are 
employed at the first floor and two actuators at 
both the second and the third floors to provide the 
required larger forces. Three sensors for 
acceleration measurements are used for feedback 
in the control system on the first, second, and third 
floors. 
 
3      Control Strategy 
Figure 1 illustrates the proposed control strategy. 
There is basically no restriction on the type of 
control algorithm that should be used as long as it 

calculates a desirable control force fd based on 
response and/or excitation. The desirable control 
force and the response of the building are passed 
in to the inverse NN model. This NN model 
emulates inverse dynamics of the MR damper. The 
output of this inverse NN model is the voltage 
required to produce the desirable control force 
under the current response condition. This voltage 
is input to the MR damper which then produces 
force f acting on the building. 
 

 
 

Figure 1: Control Strategy 
 

3.1      MR  Model 
Adequate   modeling  of  the   control   devices   is 
essential for the accurate prediction of the 
behavior of the controlled system. The simple 
mechanical model shown in Figure 2 was 
developed and shown to accurately predict the 
behavior of MR damper over a wide range of 
inputs [14,16,17]. This phenomenological model 
was developed based on a previous model used for 
an MR damper [18]. The equations governing the 
force f predicted by this model are as follows: 
 

zxcf α+= &0  (1)  
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where  z is the evolutionary variable that accounts 
for the history dependence of the response. The 
model parameters depend on the voltage v to the 
current driver as follows:  
 

uccxcu baba 000; +=+= ααα   (3a, b) 
 

where u is given as the output of the first-order 
filter  
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Eq. (4) is used to model the dynamics involved in 

reaching rheological equilibrium and in driving the 

 
 

Figure 2:   Mechanical model of  MR  damper  
  

electromagnet in the MR damper [14,16,17]. This 
MR damper model is used herein to model the 
behavior of the MR damper.  
    The parameters of the MR damper were selected 
so that the device has a capacity of 1,000 kN, as 
follows: =aα  1.0872e5 N/cm, =bα  4.9616e5 

N/(cm V), =ac0 4.40 N s/cm, =bc0 44.0. N s/(cm 
V), n=1, A=1.2, γ =3 cm-1, β =3 cm-1, and γ =50 
s-1.  
 
3.2      Neural network Inverse dynamics of      
           MR damper (NIMR) 
The MR damper model discussed earlier in this 
paper estimates damper forces based on the inputs 
of the reactive velocity and the issued voltage as 
described by Equations (1)–(4). The damper 
velocity is the same as the velocity of the floor the 
damper is connected to. Thus, the voltage signal is 
the only parameter that can be modified to control 
the damper force to produce the required control 
force. The control algorithm, LQG, estimates the 
required optimal control force but the MR damper 
force is controlled by voltage. In such case, it is 
essential to develop an inverse dynamic model that 
predicts the corresponding control voltage to be 
sent to the damper so that an appropriate damper 
force can be generated. Unfortunately, due to the 
inherent nonlinear nature of the MR damper, a 
model like that for its inverse dynamics is difficult 
to obtain mathematically. Because of this reason, a 
feed-forward back-propagation neural network is 
constructed to copy the inverse dynamics of the 

MR damper (Figure 3) . This model is denoted as 
NIMR. This neural network model is trained using 
input-output data generated analytically using   the 

 
 

Figure 3: NN of inverse dynamics of MR damper 
(NIMR) 

 
simulated MR model based on Equations (1)–(4). 
This NIMR calculates the voltage signal based on 
the current and few previous histories of measured 
velocity and desirable control force. Then the 
voltage signals are sent to the MR damper so that 
it can generate the desirable optimal control forces.  
Training the NIMR requires the compilation of 
input-output data. To completely identify the 
underlying MR system model, the data must 
contain information about the entire operating 
range of the system. Here, in this study, the 
velocity and voltage are generated randomly using 
band limited white Gaussian noise. The generated 
forces are results of the MR model described in 
Equations (1)–(4). The sampling rate of the 
training data was 200 Hz for 30 s period, which 
resulted in 6000 patterns for training, testing and 
validation ,  Figure 4.  Next   step  is  to  select  the  
    

 
Figure 4:  Training of NIMR 
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network architecture. 
    To do so it is required to determine the numbers 
of inputs, outputs, hidden layers, and nodes in the 
hidden layers, and is usually done by trial and 
error. The most suitable input data for our case 
was found to be the current and the four previous 
histories for the velocity and the force. Also two 
hidden layers, each layer with ten nodes, were 
adopted as one of the best suitable topologies for 
the NIMR as can be seen in Fig. 3. The log-
sigmoid ( ranging from 0 to 1) activation function 
is used for the hidden layers and the linear 
function for the output layer which represents the 
voltage. 3000 patterns of the provided data was 
choosen for training which required 1000 training 
epochs to achieve a mean-square-error (MSE) of 
1e−03.  
    The training is carried out upon the generated 
data using the Levenberg–Marquardt algorithm 
[19], which is encoded in Neural Networks 
Toolbox in MATLAB [20] under ‘trainlm’ routine. 
Finally, testing and validation of the trained 
network is investigated using few sets of new data 
for a 30 s period. Fig. 5 shows the training testing 
and validation velocity, forces and voltage records 
used in constructing the NIMR model. 
Additionally, Fig. 5 compares the forces computed 
by MR damper model, based on the generated 
random voltage, to the forces computed by MR 
damper model based on the predicted voltages by 
NIMR. Moreover, the predicted voltage record 
from the NIMR is compared to the randomly 
generated targets and presented in Figure 5. It is 
clear that in general, the predicted voltages are 
reasonably close to the target voltages. The near 
perfect match in the training region indicates that 
the NIMR model is well trained. Henceforth, the 
NIMR model will be used to compute the required 
voltage for a specific force and velocity. This will 
alleviate problems resulting when using control 
algorithm that computes only the optimal control 
forces. 
 
3.3   Control Performance 
The performance of the NIMR neural network  is 
checked according to comparison of the force 
generated by MR damper to the ideal force 
estimated by LQG controller. Figure 6 shows the 
force generated by the MR damper at first floor of 

the building for Elcentro earthquake commanded 
by NIMR as compared to ideal force estimated by 
LQG controller. It can be seen that the damper 
forces follow the target optimal control force quite 
closely. 
    The performance of the controller is also 
investigated based on the evaluation criteria 
specified (J1– J17) for the 3-story nonlinear 
benchmark buildings [15]. These criteria which are 

 

 

 
Figure 5: Training ,testing and validation data 
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briefly presented in table 1, are calculated as a 
ratio of the controlled and the uncontrolled 
responses in most cases. Ten earthquake records 
are used in the simulation, using the original four 
earthquake records with different intensities. These 
records are the El Centro and Hachniohe 
earthquake records with 0.5, 1.0, and 1.5 intensity, 
and Northridge and Kobe earthquake records with 
0.5 and 1.0 intensity.. to make a comparison, an 
active control system and semi-active clipped-
optimal control (COC) system [4], are also 
designed. Table 2 presents the evaluation criteria 
as the ratio of the controlled response to the 
uncontrolled response for each earthquake record 
individually for active, COC and the proposed 
control algorithms. Figure 7 also shows the 
relative performance of the three algorithms for 
criteria J1, J2 and J3.The results show that NIMR 
controller performs better than CQC and active 
control to reduce the peak drift ratio (J1) for eight 
of the earthquake records. For the peak level 
acceleration (J2), the NIMR controller has been 
able to perform better or equal to CQC for seven 
of the ten earthquake records., The peak base shear 
force criterion (J3) for NIMR is smaller than CQC 
for seven of the earthquake records and smaller 
than active  for five of them. In terms of norm drift 
ratio (J4), the performance of NIMR is better for 
seven earthquake records and for two of them the 
response is equal or worse. The NIMR is more 
effective in reduction of norm level acceleration 
(J5)  and the norm base shear force (J6) for eight  
 

 
Figure 6: comparison of the force generated by MR 

damper to the ideal force (LQG) 

of earthquake records. In terms of building damage 
criteria (J7– J10), the NIMR controller has the 
ability to  reduce  the ductility ratio (J7) more  for  
 

 

 

 
Figure 7: Comparison of performance criteria J1-J3 of 

NIMR to active and COC method 
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Table 1:  Performance criteria for seismically excited nonlinear building

 
eight of  the earthquake records.  For the dissipated 
energy (J8), and the plastic connection ratio (J9) 
NIMR is more effective for all cases except for 
one (Kobe 1). For the norm ductility ratio (J10), 
the performance is similar to the ductility ratio. In 
terms of control devices and control requirement 
criteria, the performance of the NIMR controller 
appears to be reasonable. 
 
4    Conclusion 
In this study, neural networks are used to model 
the inverse dynamics of MR damper. The inputs to 
the NN models are a few time steps of structural 
velocities and damper forces. The output is the 
command voltage to the MR damper. These NN 
models estimate the voltage that is required to  
 
 
 

produce a   target  control  force  calculated   from   
some optimal control algorithms. The main 
objective of this development is to explore 
whether the semi-active MR damper can be used 
to produce optimal control forces. 
    A 3-story nonlinear benchmark building has 
been  used for study. The results illustrate that it is 
possible to incorporate the NN models into the 
control strategy and hence operate the damper in 
an active mode. In general, the forces generated by 
the MR damper can follow those calculated from 
the optimal control algorithms. The performance 
of the controller has been checked based on the 
evaluation criteria specified (J1– J17) for the 
benchmark building. The results show that the 
NIMR controller in most cases perform better than 
CQC  and active controller. 
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Table 2: Performance criteria for active, clipped optimal control(CQC) and NIMR algorithms 
    Elcentro 

0.5 
Elcentro  

1 
Elcentro 

1.5 
Hachino 

0.5 
Hachino 

1 
Hachino 

1.5 
Nortdrige .

5 
Nortdrige 

1 
Kobe    
0.5 

Kobe      
1 

NIMR 0.40553 0.57479 0.80675 0.59193 0.68943 0.73614 0.58348 0.87394 0.87558 0.60275 
COC 0.45736 0.70362 0.88271 0.54134 0.6969 0.70556 0.7138 0.94951 0.88084 0.75219 J1 

ACTIVE 0.54424 0.75285 0.87259 0.6365 0.7676 0.79386 0.82554 1.0353 0.81943 0.85444 
NIMR 0.54759 0.7122 0.94337 0.77719 0.90286 1.1082 0.87511 1.0601 0.93323 0.7911 
COC 0.82026 0.82887 0.93809 0.81202 0.90876 0.95677 0.86246 0.88956 0.87056 1.0016 J2 

ACTIVE 0.59765 0.78135 0.93931 0.65844 0.79755 0.8442 0.85077 0.86931 0.82948 0.83332 
NIMR 0.22588 0.40835 0.51832  0.25902 0.36656 0.47714 0.48877 0.52848 0.4791 0.47237 
COC 0.2914 0.52142 0.53091 0.2868 0.39837 0.46139 0.45505 0.47133 0.49679 0.50292 J3 

ACTIVE 0.25331 0.44034 0.45696 0.2765 0.38941 0.46256 0.41536 0.40973 0.42569 0.48287 
NIMR 0.65207 0.65486 0.65419 0.45959 0.44222 0.73624 0.1734 0.66228 1.5245 1.0497 
COC 0.65597 0.77567 0.69309 0.35236 0.47129 0.95616 0.70967 1.1988 1.1487 1.5761 J4 

ACTIVE 0.79921 0.85123 0.70811 0.58972 0.65482 1.1991 1.0876 1.2366 0.82856 1.2015 
NIMR 0.75359 0.83806 0.88108 0.52317 0.54288 0.62637 0.82816 0.90583 0.74291 0.87799 
COC 0.78085 0.94497 0.93176 0.57 0.56511 0.70436 0.861 0.88682 0.79421 0.91513 J5 

ACTIVE 0.7639 0.93121 0.92534 0.56115 0.68506 0.81406 0.87825 0.91388 0.82083 0.92598 
NIMR 0.36682 0.41342 0.43452 0.26724 0.27845 0.32312 0.46945 0.48184 0.36809 0.45932 
COC 0.37679 0.46562 0.45621 0.22983 0.28911 0.36129 0.48128 0.47431 0.39601 0.46842 J6 

ACTIVE 0.37041 0.45527 0.44624 0.2786 0.34098 0.40652 0.47643 0.4683 0.39017 0.45502 
NIMR 0.37786 0.47835 0.70369 0.53109 0.50499 0.64341 0.38215 0.75047 0.90107 0.72183 
COC 0.42239 0.62548 0.76103 0.4947 0.5224 0.72603 0.66578 0.84398 0.8728 0.83382 J7 

ACTIVE 0.51178 0.68052 0.79809 0.59302 0.58167 0.76975 0.80358 0.89743 0.80839 0.85556 
NIMR 1.50E-08 3.01E-10 0.17243 0 1.86E-11 0.018669 0.10496 0.63037 0.34414 0.87795 
COC 9.16E-06 0.02394 0.35026 0 6.54E-07 0.054856 0.5641 0.74859 0.53341 0.90693 J8 

ACTIVE 3.37E-05 0.1362 0.39675 0 0.000230 0.049153 0.91967 0.93195 0.48192 0.77793 
NIMR 0 0 1 0 0 0.83333 0.25 0.84848 0.91667 0.875 
COC 0 0.36364 1 0 0 0.91667 0.58333 0.84848 0.91667 0.9375 J9 

ACTIVE 0 0.54545 1 0 0.090909 0.91667 1 0.93939 0.91667 0.875 
NIMR 0.44032 0.28809 0.38866 0.32493 0.2667 0.55459 0.078523 0.57843 1.2321 0.80763 
COC 0.43696 0.36044 0.43023 0.25171 0.28596 0.83656 0.57177 1.0125 1.0132 1.3432 

 
 J 
10 ACTIVE 0.54222 0.43081 0.5387 0.42046 0.39788 0.85147 0.83826 1.0246 0.71108 0.86511 

NIMR 0.019819 0.033001 0.035661 0.018251 0.027726 0.033545 0.03572 0.036279 0.035383 0.036187 
COC 0.020579 0.029049 0.033333 0.018398 0.02796 0.032568 0.034488 0.035894 0.029902 0.035369 

J 
11 
  ACTIVE 0.011308 0.022655 0.026862 0.0093158 0.019031 0.02547 0.028587 0.034567 0.025089 0.029868 

NIMR 1.0933 1.6098 2.2671 1.243 1.8995 2.1983 2.1345 2.4451 2.2143 2.3436 
COC 1.34 1.8301 2.267 1.6703 1.5617 1.7076 2.0771 2.1993 1.6315 2.0523 

J 
12 
  ACTIVE 0.21643 0.29754 0.34443 0.24427 0.30079 0.34751 0.36128 0.38213 0.33538 0.40294 

NIMR 0.3707 0.87578 0.9207 0.40785 0.67359 0.974 0.86818 0.85595 0.77949 0.64927 
COC 1.2417 1.4262 1.2981 1.383 1.4329 1.7577 1.533 1.1599 1.2495 0.89283 

J 
13 
  ACTIVE 0.010545 0.033184 0.033727 0.0088538 0.02167 0.034063 0.042317 0.051224 0.03942 0.042638 

NIMR 0.0095514 0.031347 0.048565 0.013386 0.032363 0.064078 0.018005 0.031561 0.013155 0.019664 
COC 0.036857 0.059435 0.063976 0.054362 0.063053 0.093657 0.029852 0.03903 0.020539 0.023319 

 
 J 
14 ACTIVE 0.0003363 0.0010777 0.001554 0.0004745 0.001138 0.0023126 0.0005768 0.0011768 0.0004883 0.0008078 
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