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1. Introduction

Artificial neural network is a favorable technique to solve
optimization problems because it can simulate the operations of
the brain and uses parallel processing to save computational time
[1]. Fuzzy logic approach is another intelligent computing tool
which is competent for applying to wide variety of problems.
Primary aim of Lotfi Zadeh who introduced the notion of a ‘‘fuzzy
set’’ in 1965 was to set up a formal framework for the
representation and management of vague and uncertain knowl-
edge. Neural Networks are demonstrated to have powerful
capability of expressing relationship between input–output
variables. In fact it is always possible to develop a structure that
approximates a function with a given precision. However, there is
still distrust about the neural networks identification capability in
some applications [2]. Fuzzy set theory plays an important role in
dealing with uncertainty in plant modeling applications.

Recently, there has been a growing interest in combining both
these approaches, and as a result, neuro-fuzzy computing
techniques have been evolved. Neuro-fuzzy systems are fuzzy
systems, which use neural networks theory in order to determine
their properties (fuzzy sets and fuzzy rules) by processing data
samples [3]. Neuro-fuzzy integrates to synthesize the merits of
both neural networks and fuzzy systems in a complementary way
to overcome their disadvantage. The fusion of neural network and

fuzzy logic in neuro-fuzzy models possess both low-level learning
and computational power of neural networks and advantages of
high-level human like thinking of fuzzy systems. ANFIS (adaptive
network-based fuzzy inference system) model combined the
neural network adaptive capabilities and the fuzzy logic qualita-
tive approach.

ANFIS presented by Jang [4]. It has attained its popularity due to
a broad range of useful applications in such diverse areas in recent
years as optimization of fishing predictions [5], vehicular naviga-
tion [6], identify the turbine speed dynamics [7], radio frequency
power amplifier linearization [8], microwave application [9],
image denoising [10,11], prediction in cleaning with high pressure
water [12], sensor calibration [13], fetal electrocardiogram
extraction from ECG signal captured from mother [14], identifica-
tion of normal and glaucomatous eyes [15]. All these works show
that ANFIS is a good universal approximator, predictor, inter-
polator and estimator and demonstrate that ANFIS has the
approximation capabilities of neural networks and any nonlinear
function of several inputs and outputs can be easily constructed
with ANFIS. The summarized advantages of the ANFIS technique is
listed below.

� Real-time processing of instantaneous system input and output
data’s. This property helps using of this technique for many
operational researches problems.
� Offline adaptation instead of online system-error minimization,

thus easier to manage and no iterative algorithms are involved.
� System performance is not limited by the order of the function

since it is not represented in polynomial format.
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� Fast learning time.
� System performance tuning is flexible as the number of

membership functions and training epochs can be altered easily.
� The simple if–then rules declaration and the ANFIS structure are

easy to understand and implement.

In the other side, numerous problems in science and engineer-
ing can be converted to a set of differential equations. Basic
numerical methods can be achieved to solve differential equations
such as the finite difference method, finite-element method, finite
volume method and the boundary element method. Beside these
basic methods, some researchers have utilized the approximation
properties of neural networks to solve differential equations
because solving ordinary and partial differential equations can be
achieved to a good degree of precision by an artificial neural
network. However there is no work on using ANFIS to solve
differential equations and the dynamic behavior and approxima-
tion capability of ANFIS motivated us in this study to use it in
solving differential equations. The main objectives of this paper is
to show that by reformulation of differential equations, a novel
unsupervised ANFIS can be used to solve differential equations
numerically.

Since our method is close to neural network methods, the
neural network-based approaches for solving differential equa-
tions are investigated in the following section.

1.1. Related works

The basic ideas of solving differential equations by neural
networks were presented by Lagaris et al. [16]. Let the differential
equations to be solved be given by (1)

Gðx;cðxÞ;rcðxÞ;r2cðxÞ; . . .Þ ¼ 0 x2 D̄�Rn; (1)

where c(x) denotes the solution, G is the function that defining the
structure of the differential equation, 5 is some differential
operator, and D̄ is the problem domain. The basic idea, called
collocation method, is to discretize the domain D̄ over a finite set of
points D. Thus (1) becomes a system of equations. An approxima-
tion of the solution c(x) is given by the trial solution ct(x). As a
measure for the degree of fulfillment of the original differential
equation (1) an error function similar to the mean squared error is
defined:

E ¼ 1

jDj
X
xt 2D

½Gðxi;ct;rct;r2ct; . . .Þ�2 (2)

Therefore, finding an approximation of the solution of (1) is
equal to finding a function which minimizes the error E. Since
multilayer feed forward neural networks are universal approx-
imators the trial solution ct(x) can be represented by such an
artificial neural network as (3) [17].

ctðxÞ ¼ AðxÞ þ Fðx;Nðx; pÞÞ (3)

where A(x) contains no adjustable parameter and satisfies the
boundary conditions and F(x,N(x,p)) is a single output feed forward
neural network with the input vector x and parameters p. In case of
a given network architecture the problem is reduced to finding a
configuration of weights that minimizes (2). As E is differentiable
with respect to the weights for most differential equations,
efficient, gradient-based learning algorithms for artificial neural
networks can be employed for minimizing (2). The history of
solving differential equation using neural networks is reviewed in
the rest of this section.

In [18] Hüsken, and Goerick have been focused on the choice of
a set of initial weights using an evolutionary solving of a
differential equation with variable boundary conditions. Smaoui

and Al-Enezi analyzed dynamics of two nonlinear partial
differential equations known as the Kuramoto–Sivashinsky (K–
S) equation and the two-dimensional Navier–Stokes (N–S)
equations using Karhunen–Loeve (K–L) decomposition and arti-
ficial neural networks [19]. In [20], Brause used differential
equations for modeling of biochemical pathways and these
equations were solved using neural networks. In [21], Hea et al.
used feed forward neural network with the extended back
propagation algorithm to solve a class of first-order partial
differential equations for input-to-state linearizable or approx-
imate linearizable systems.

Also Manevitz et al. presented basic learning algorithms and the
neural network model to the problem of mesh adaptation for the
finite-element method to solve time-dependent partial differential
equations. Time series prediction via the neural network meth-
odology was used to predict the areas of ‘‘interest’’ in order to
obtain an effective mesh refinement at the appropriate times [22].
Leephakpreeda presented fuzzy linguistic model in neural network
to solve differential equations and applied it as universal
approximators for any nonlinear continuous functions [23].

In [24], Malek and Beidokhti presented a hybrid method based
on optimization techniques and neural networks methods for
solving high order ordinary differential equations. They proposed a
new solution method for the approximated solution of high order
ordinary differential equations using innovative mathematical
tools and neural-like systems of computation. Hybrid method
could result in improved numerical methods for solving initial/
boundary value problems without using pre-assigned discretiza-
tion points.

In another work, Mai-Duy and Tran-Cong presented mesh-free
procedures for solving linear differential equations, ordinary
differential equations and elliptic partial differential equations
based on multi quadric radial basis function networks [25]. Also
Jianyu et al. in [26] described a neural network for solving partial
differential equations which activation functions of the hidden
nodes were the radial basis functions (RBF) whose parameters
were learnt by a two-stage gradient descent strategy. Also solving
differential equation using neural network was applied to real
problems such as a non-steady fixed bed non-catalytic solid/gas
reactor [27].

In the aforementioned works, some notes are observed as
follows:

� Solving differential equation includes ordinary or partial or high
order form using neural networks.
� Some researchers performed logistic function using neural

networks for solving differential equations.
� Application of neural network-based differential equation in

solving real world problems.

Hence we were encouraged to present a new unsupervised
neuro-fuzzy inference system to solve differential equation.

The paper is organized as follows. The architecture of adaptive
neuro-fuzzy inference system is explained in Section 2. Section 3 is
devoted to solve of differential equation using unsupervised ANFIS
algorithm. Experimental results are discussed in Section 4 and in
final section conclusions are presented.

2. Adaptive neuro-fuzzy inference system (ANFIS) architecture

Neuro-fuzzy systems are fuzzy systems, which use NNs to
determine their properties (fuzzy sets and fuzzy rules) by
processing data samples. Neuro-fuzzy integrates to synthesize
the merits of both NN and fuzzy systems in a complementary way
to overcome their disadvantage. The fusion of a NN and fuzzy logic
in neuro-fuzzy models possess both low-level learning and
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computational power of NNs and advantages of high-level human
like thinking of fuzzy systems. For identification, hybrid neuro-
fuzzy system called ANFIS combines a NN and a fuzzy system
together. ANFIS has been proved to have significant results in
modeling nonlinear functions. In ANFIS, the membership functions
(MFs) are extracted from a data set that describes the system
behavior. The ANFIS learns features in the data set and adjusts the
system parameters according to given error criterion. In a fused
architecture, NN learning algorithms are used to determine the
parameters of fuzzy inference system.

A typical architecture of ANFIS is shown in Fig. 1, in which a
circle indicates a fixed node, and a square indicates an adaptive
node. For simplicity, we consider two inputs x, y and one output z in
the fuzzy inference system (FIS). The ANFIS used in this paper
implements a first-order Sugeno fuzzy model. Among many fuzzy
inference systems, the Sugeno fuzzy model is the most widely used
for its high interpretability and computational efficiency, and
built-in optimal and adaptive techniques. For example for a first-
order Sugeno fuzzy model, a common rule set with two fuzzy if-
then rules can be expressed as (4).

Rule 1 : If x is A1 and y is B1; then
z1 ¼ p1xþ q1yþ r1

Rule 2 : If x is A2 and y is B2; then
z2 ¼ p2xþ q2yþ r2

(4)

where Ai, Bi (i = 1, 2) are fuzzy sets in the antecedent, and pi, qi, ri

(i = 1, 2) are the design parameters that are determined during the
training process. As in Fig. 1, the ANFIS consists of five layers.

Layer 1, every node i in this layer is an adaptive node with a
node function:

O1
i ¼ mAi

ðxÞ; i ¼ 1;2

O1
i ¼ mBi

ðyÞ; i ¼ 3;4
(5)

where x, y are the input of node i, and mAi
ðxÞ and mBi

ðyÞ can adopt
any fuzzy membership function (MF). In this paper, Gaussian MFs
are used:

Gaussianðx; c;sÞ ¼ e�ð1=2Þððx�cÞ=sÞ2 (6)

where c is center of Gaussian membership function and s is
standard deviation of this cluster.

Layer 2, every node in the second layer represents the ring
strength of a rule by multiplying the incoming signals and

forwarding the product as:

O2
i ¼ vi ¼ mAl

ðxÞ �mBl
ðyÞ; i ¼ 1;2 (7)

Layer 3, the ith node in this layer calculates the ratio of the ith
rule’s ring strength to the sum of all rules’ ring strengths:

O3
i ¼ $i ¼

vi

v1 þv2
; i ¼ 1;2 (8)

where $i is referred to as the normalized ring strengths.
Layer 4, the node function in this layer is represented by

O4
i ¼ $izi ¼ $iðpixþ qiyþ riÞ; i ¼ 1;2 (9)

where $i is the output of layer 3, and {pi, qi, ri} are the parameter
set. Parameters in this layer are referred to as the consequent
parameters.

Layer 5, the single node in this layer computes the overall
output as the summation of all incoming signals:

O5
1 ¼

X2

i�1

$izi ¼
v1z1 þv2z2

v1 þv2
(10)

It is seen from the ANFIS architecture that when the values of
the premise parameters are fixed, the overall output can be
expressed as a linear combination of the consequent parameters:

z ¼ ð$1xÞ p1 þ ð$1yÞq1 þ ð$1Þr1 þ ð$2xÞ p2 þ ð$2yÞq2

þ ð$2Þr2 (11)

The hybrid learning algorithm [4,28] combining the least
square method and the back propagation (BP) algorithm can be
used to solve this problem. This algorithm converges much faster
since it reduces the dimension of the search space of the BP
algorithm. During the learning process, the premise parameters in
layer 1 and the consequent parameters in layer 4 are tuned until
the desired response of the FIS is achieved. The hybrid learning
algorithm has a two-step process. First, while holding the premise
parameters fixed, the functional signals are propagated forward to
layer 4, where the consequent parameters are identified by the
least square method. Second, the consequent parameters are held
fixed while the error signals, the derivative of the error measure
with respect to each node output, are propagated from the output
end to the input end, and the premise parameters are updated by
the standard BP algorithm.

Fig. 1. ANFIS architecture (P, N, S are defined in (7), (8) and (10), respectively).
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3. Unsupervised ANFIS for solving differential equations

A linear differential equation (DE) with constant coefficients
can be expressed to following form,

an
dnyðtÞ

dtn þ an�1
dn�1yðtÞ

dtn�1
þ � � � þ a0yðtÞ ¼ voðtÞ; t 2 ½a; b� (12)

where an,. . .,a0 are constant coefficients and [a, b] is the problem
domain. n � 1 necessary initial conditions or boundary conditions
for solving above DE are

yð0Þ ¼ y0
0; y

ð1Þð0Þ ¼ yð1Þ0 ; . . . ; yðn�1Þð0Þ ¼ yðn�1Þ
0

or
yðt0Þ ¼ yt0

; yðt1Þ ¼ yt1
; . . . ; yðtnÞ ¼ ytn

(13)

As has been pointed in [24]; a trial solution for the above
differential equation is like (14).

y pðtÞ ¼ f iðt; y
ð0Þ
0 ; yð1Þ0 ; . . . ; yðn�1Þ

0 Þ þ gðhi;uÞ
¼ f iðt;CÞ þ gðhi;uÞ

(14)

where fi(t, C) is a function for satisfaction of initial/boundary
conditions, C is same initial condition and g(hi, u) is a function
which is zero in initial points and is u in other points. u is an
unsupervised adaptive neuro-fuzzy inference system and plays a
highly important role, principally u is the main answer without
contemplate of initial points. An interesting point is that u is
expressed in the form of fuzzy system and is tuned using hybrid
learning algorithm including the least square method and the back
propagation algorithm. hi is used to suppress the g(hi, u) term in
initial/boundary points. Hence an easy and suitable form of g(hi, u)
is hiu. fi(t, C) and hi take different forms depending on the initial/
boundary conditions and the order of differential equations and
there is no clear procedure to choose the most appropriate ones.
The selection of fi(t, C) and hi for several types of DEs is explained in
[16], however we repeat some ordinary equations here to make it
easy for the readers to follow the procedure of solving DE using
ANFIS.

Consider the first-order DE in (15).

dyðtÞ
dt
¼ voðy; tÞ; t 2 ½0;1�; yð0Þ ¼ A (15)

hence

f iðt;CÞ ¼ A;hi ¼ t) y pðtÞ ¼ Aþ tu (16)

Now consider the following second-order DE.

dyðtÞ
dt
¼ vo

dy

dt
; y; t

� �
; t2 ½0;1� (17)

The trial solution of this DE is written in two cases. In the first
case these initial conditions are considered: y(0) = A and (d{y(0)}/
dt) = A0. So

f iðt;CÞ ¼ Aþ A0t;hi ¼ t2) y pðtÞ ¼ Aþ A0t þ t2u (18)

In the second case these boundary conditions are considered:
y(0) = A and y(0) = B. Therefore

f iðt;CÞ ¼ Að1� tÞ þ Bt;hi ¼ tð1� tÞ) y pðtÞ

¼ Að1� tÞ þ Bt þ tð1� tÞu (19)

The same procedure is performed to find the trial solution of
higher order ordinary differential equations.

Pursuing the procedure of solving DE, (14) is substituted in (12)
and we can write

an

dny pðtÞ
dtn þ an�1

dn�1y pðtÞ
dtn�1

þ � � � þ a0y pðtÞ ¼ voðtÞ (20)

Then putting yp(t) = fi(t, C) + hiu (20) becomes

f̂iðt;CÞ þ bn

dnu pðy p;W ;BÞ
dtn þ bn�1

dn�1u pðy p;W ;BÞ
dtn�1

þ � � �

þ b0u pðy p;W ;BÞ ¼ voðtÞ (21)

where f̂iðt;CÞ ¼ anðdn f iðt;CÞ=dtnÞ þ an�1ðdn�1 f iðt;CÞ=dtn�1Þ þ � � �
þa0 f iðt;CÞ, bi are coefficients which are generally functions of t and
are related to the effect of hi. Also W is between layers weights in
ANFIS as shown in Fig. 1 and B includes parameter of {pi, qi, ri} and
input membership parameters. Finally, we can obtain desired
output of up(yp, W, B) from (21) for learning of ANFIS as follows:

u pðy p;W ;BÞ ¼ � 1

b0

 
voðtÞ �

 
f̂iðt;CÞ þ bn

dnu pðy p;W ;BÞ
dtn

þ bn�1

dn�1u pðy p;W ;BÞ
dtn�1

þ . . .

!!
(22)

Already, we have acquired an equation that can be used to
calculate the desired outputs to random inputs. These input–

Fig. 2. Flowchart of the proposed algorithm.

H.S. Yazdi, R. Pourreza / Applied Soft Computing 10 (2010) 267–275270
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output pairs are finally used to train the unsupervised ANFIS. This
process is explained in details below.

Given a differential equation, fi(t, C) and hi should be
determined as explained above as well as up(yp, W, B) using
(22). Then we must acquire some learning samples to train ANFIS,
therefore an input vector (t) is generated so that it covers the
problem domain uniformly with time step (dt). Since the
implemented ANFIS is unsupervised, the output vector (u) to
the random input must be calculated automatically. We have
utilized an iterative algorithm to calculate the referred outputs. To
do so, u0 is initialized randomly and is updated using (23).

ukþ1 ¼ �
1

b0
voðtÞ � f̂iðt;CÞ þ bn

dnuk

dtn þ bn�1
dn�1uk

dtn�1
þ . . .

 ! !
:

(23)

The derivatives of u in (23) are calculated numerically; the first
derivative is the first-order difference of u divided by dt, the
second derivative is the second-order difference of u divided by
dt2 and so on.

The iteration is stopped when the stopping criteria are met.
The criteria include a small difference between uk+1 and uk or a
large number of iteration. Hereby some input–output pairs
are generated and in the next step, ANFIS is generated and
trained according to the available learning samples. The final
result is achieved, combining ANFIS (u), fi(t, C) and hi according
to (14).

The algorithm flowchart for solving differential equation using
unsupervised ANFIS is depicted in Fig. 2.

In Fig. 2, M is the maximum number of iterations and e is the
maximum acceptable error. As have mentioned before, a hybrid

Fig. 3. Responses collation about first-order differential equation with constant

excitation in Example 1.

Fig. 4. ANFIS output after convergence for Example 1.

Fig. 5. Training procedure in Example 1.

H.S. Yazdi, R. Pourreza / Applied Soft Computing 10 (2010) 267–275 271
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algorithm combining the least square method and the back
propagation (BP) algorithm is used to train the ANFIS. Besides,
according to Fig. 2, training the ANFIS is started after calculation of
uk or in other words by finishing the iteration. However, during the
assessment of our method we trained the ANFIS and created yp by
each iteration. Our aim was to compare the result of algorithm to
the analytic answer by each iteration and observing the
convergence of the algorithm.

4. Experimental results

We evaluated the accuracy of proposed approach by applying it
to solve several differential equations. In this section some
examples are presented and the solutions of our algorithm are
compared with the real ones.

Example 1. First-order differential equation with constant excita-
tion.

d

dt
yðtÞ þ 2yðtÞ ¼ 1; yð0Þ ¼ 1 (24)

The related trial function will be in the form of (25).

y pðtÞ ¼ 1þ ðt � 0Þu pðy p;W ;BÞ (25)

This solution satisfies the initial condition. After substitution of
(25) in (24), desired response of unsupervised ANFIS (up) is found.

u pðy p;W ;BÞ ¼
�1� tðd=dtÞu pðy p;W ;BÞ

1þ 2t
(26)

The solution of analytical and the proposed methods are
compared in Fig. 3. Fig. 4 shows u, the response of ANFIS model

Fig. 7. Response of proposed algorithm in different iterations in Example 2.

Fig. 6. Comparison of analytical and the proposed methods in Example 2. Fig. 8. Analytical and the proposed methods’ responses collation in Example 3.

H.S. Yazdi, R. Pourreza / Applied Soft Computing 10 (2010) 267–275272
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after convergence. The output of the proposed algorithm for 6
sequential iterations (1–6) is depicted in Fig. 5. As can be seen in
this figure ANFIS output is random in the first iteration, because the
input and desired output are random. But after the fourth iteration,
ANFIS output approaches the real value.

Example 2. First-order differential equation with sinusoidal exci-
tation.

d

dt
yðtÞ þ 2yðtÞ ¼ sinðtÞ; yð0Þ ¼ 1 (27)

Desired response of unsupervised ANFIS (up) is found in (28).

u pðy p;W ;BÞ ¼
sinðtÞ � tðd=dtÞu pðy p;W ;BÞ � 2

1þ 2t
(28)

The responses of analytical and the proposed methods are
compared in Fig. 6. The convergence procedure of the proposed
approach is shown in Fig. 7.

Example 3. First-order differential equation with nonlinear sinu-
soidal excitation.

d

dt
yðtÞ þ 2yðtÞ ¼ t3 sin

1

2
t

� �
; yð0Þ ¼ 1 (29)

The responses of analytical and proposed methods are
compared in Fig. 8. In this case, our algorithm converges by
just one iteration of training which demonstrates its training
speed.

Fig. 9. Response of unsupervised ANFIS method in different iterations in Example 4.

Fig. 10. Comparison of analytical and proposed methods in Example 4. Fig. 11. Comparison of analytical and proposed methods in Example 5.

H.S. Yazdi, R. Pourreza / Applied Soft Computing 10 (2010) 267–275 273
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Example 4. Second-order differential equation with constant exci-
tation.

d2

dt2
yðtÞ þ yðtÞ ¼ 2; yð0Þ ¼ 1; yð1Þ ¼ 0 (30)

The related trial function would be in the following form if
y(t0) = y0, y(t1) = y1.

y pðtÞ ¼
t1y0 þ t0y1

t1 � t0
þ y1 � y0

t1 � t0
t þ ðt � t0Þðt � t1Þu pðy p;W ;BÞ (31)

This solution satisfies the boundary condition. After substitu-
tion of (31) in (30), desired response of unsupervised ANFIS (up) is
found.

u pðy p;W ;BÞ ¼

2� ð1� tÞ � 2ð2t � 1Þðd=dtÞu pðy p;W ;BÞ
� tðt � 1Þðd2

=dt2Þu pðy p;W ;BÞ
2þ tðt � 1Þ (32)

Fig. 9 shows the algorithm’s output in different iterations and
the acceptable response is achieved after second iteration. Also
analytical response is compared with our answer in Fig. 10.

Example 5. Second-order differential equation with time-varying
input signal. This example shows the case of variable-time input
signal.

d2

dt2
yðtÞ þ yðtÞ ¼ 2þ 2 sinð4tÞcosð3tÞ; yð0Þ ¼ 1; yð1Þ ¼ 0 (33)

Desired response of unsupervised ANFIS (up) is found in (34).

u pðy p;W ;BÞ ¼

2þ 2 sinð4tÞcosð3tÞ � ð1� tÞ � 2ð2t � 1Þ
ðd=dtÞu pðy p;W ;BÞ � tðt � 1Þðd2

=dt2Þu pðy p;W ;BÞ
2þ tðt � 1Þ

(34)

Analytical response is compared with our answer in Fig. 11. Also
the achieved up(yp, W, B) is shown in Fig. 12.

5. Conclusion

This paper presented a novel approach for solving differential
equations which utilizes an unsupervised ANFIS. The accuracy of
the proposed method was examined by solving first-order and
second-order differential equations with input excitation signal in
both constant and time-varying formats. The achieved results

demonstrate that the accuracy and fast convergence of the novel
approach, which takes advantages of unsupervised ANFIS in its
initial form, is comparable with the results of similar approaches
that use neural networks. This is due to the capability of ANFIS to
approximate stochastically unknown functions and relations; and
also the trial solution which is in a close and differentiable form
and satisfies the boundary/initial conditions.

In the future, we will develop our method to solve nonlinear
and partial differential equations. If the capability of solving partial
differential equation is added to this method, it would be easily
extended to solve high-dimensional problems. Moreover, solving
nonlinear differential equations enhances the generalization
property of this method.
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