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In this paper, a new fuzzy fading memory (FFM) is developed in order to aid a modified input estimation 
(MIE) technique and to enhance its performance in tracking high maneuvering targets. The MIE has been 
introduced recently and performs well in tracking low and medium maneuvering targets. However, this 
method does not represent desirable accuracy in tracking high maneuvering or jerking targets. In fact, 
this trouble is originated in mismodeling the target acceleration dynamics. An effective approach to 
cope with different modeling uncertainties is fading memory. However, conventional fading memory 
method suffers from some deficiencies leading to surplus fading information in non-maneuvering mode 
or incomplete compensation in high maneuvering situations. To overcome these difficulties, an 
intelligent fading memory is presented in this paper. Simulation results prove the efficiency of proposed 
method in tracking high maneuvering targets.  
 
Key words: High maneuver target tracking, Modified Input Estimation (MIE), fuzzy logic, fading memory, 
modeling uncertainties. 

 
 
INTRODUCTION 
 
Many Kalman filter-based (KF) methods have been 
applied to the target tracking problem during last decades 
(Lee et al., 2004; Bahari et al., 2008; Lee and Tahk, 1999; 
Hsieh and Chen, 2000). A major number of these 
methods include input estimation (IE) approaches (Chan 
et al., 1979; Bahari and Pariz, 2009; Whang, 1994). 
These methods use different techniques to estimate the 
target acceleration. One of the most successful IE 
techniques has been recently proposed by Khaloozadeh 
and Karsaz (2009). This modified input estimation (MIE) 
technique provides fast initial convergence rate as well as 
satisfactory tracking performance in low and medium 
maneuvering target cases. In this approach, the accelera-  
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tion is treated as an additive input term in the corres- 
ponding state equation. This kind of modeling has 
provided a special augmentation in the state space model, 
which considers both the states vector and unknown 
acceleration vector as two new augmented states 
(Khaloozadeh and Karsaz, 2009). Although the MIE is 
theoretically optimal, it fails to track a high maneuvering 
target accurately due to modeling errors related to the 
target acceleration dynamics.  

Several techniques have been introduced during last 
years to overcome different modeling errors (Simon, 
2006). Among those, using fading memory and fictitious 
process noise are more popular due to some practical 
concerns including easy implementation and effective- 
ness. In this research, we focus on fading memory. In fact, 
using the fading memory is a way of putting more 
emphasis on the recent measurements and discounting 
the information from distant past. Therefore, applying this 
method can help to cope with mismodeling of target 
acceleration and consequently reach more  accuracy  in 



 
 
 
 
tracking accelerating (maneuvering) targets. Obviously, 
using fading memory provides a suboptimal filter. However, a 
suboptimal filter which yields higher tracking accuracy and 
restores stability is preferred to an optimal filter which 
isunable to provide required results and may diverge.  

Although the conventional fading memory is attractive 
from several aspects, it still suffers from some defi- 
ciencies. To be more precise, conventional fading 
memory scheme employs a very important factor. Any 
changes in this factor, significantly, influence the tracking 
performance. However, this factor is determined off-line 
and remains constant during the operation. This problem 
leads to undesired fading information in non-maneuvering 
mode or imperfect compensation in high maneuvering 
situations.  

On the other hand, different capabilities of intelligent 
systems such as intelligent information fusion and intelli- 
gent adaptation make them popular in various applica- 
tions including target tracking (Duh and Lin, 2004; Chan et 
al., 1997; Chin, 1994; Bahari et al., 2009). Therefore, to 
overcome the aforementioned deficiency of conventional 
fading memory, we employed fuzzy logic. To clarify, in this 
research, we introduce a new method to determine the 
values of fading memory factor adaptively and intelligently 
in each iteration.  
 
 
Statement of the problem 
 
It is assumed that the target moves in a two-dimensional 
plane. The state equation for the non-maneuvering model 
is given by equation 1. 
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Where 
 

(.)X : State vector 

)(nu : is the target acceleration which is modeled as an 
unknown variable. 

(.)w

 

: White system driving uncertainty 

)0(X : Initial condition which may be uncertain 

(.)z : Observation vector 

(.)v  : White observation uncertainty. 
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Where (.)R , (.)Q  and ψ  denote the measurement, 
process and initial state covariance matrices, respectively. 
The expressions for )(nG , )(nF , )(nC  and )(nH as 
functions of the update time T (T is the time interval 
between two consecutive measurements) are: 
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The MIE  
 
Modified input estimation (MIE) technique was proposed 
by Khaloozadeh and Karsaz recently (2009). In this 
method the acceleration is treated as an additive state 
term in the corresponding state equation. The formulation 
of this method is as follows. 
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Therefore, the augmented state equations can be derived 
as: 
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Where, )(nX Aug , AugF , AugG , AugW , AugH , )(V nAug  

are as follows:  
 
 

[ ]  )1()()(V  and ,

0
,

0
,

)(
)(

)(

++===

�
�

�
�
�

	
=�

�

�
�
�

	
=�

�

�
�
�

	
=

nvnHGwnHCHFHwW

G
G

I

CF
F

nu

nX
nX

AugAugAug

AugAugAug
   (4)                        

 
The optimal target maneuver estimator for the augmented 
system is: 
 

 )]|(ˆ)()()()[()|(ˆ)()|(ˆ nnXnF1nH1nZ1nKnnXnF1n1nX AugAugAugAugAugAugAugAug +−+++=++  (5)       
 
In this method Kalman gain is: 



550          Int. J. Phys. Sci. 
 
 
 

)()()()()|()()|1(

)|1()1()]1()|1()1()1([

)1()|1()|1()1|1(

)1()]()()1()|1([)1(

1

1

nGnQnGnFnnPnFnnP

nnPnHnHnnPnHnR

nHnnPnnPnnP

nRnTnGnHnnPnK

Aug
T

AugAugAug
T

AugAugAug

AugAug
T
AugAugAugAug

T
AugAugAugAug

AugAugAug
T
AugAugAug

+=+

+++++++

×++−+=++

++++=+

−

−

                    

                                                (6) 
 
The new covariance matrix of the augmented process 
noise )n(WAug , measurement noise )(nVAug  and 

cross-covariance between them )(nTAug  
are: 
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PROPOSED METHOD 
 
In this section the proposed intelligent approach is introduced. 
 
 
Conventional fading memory 
 
As mentioned, if the process model does not  match  the  reality, 
Kalman filter may diverge. Evidently, different target acceleration 
dynamics including fast changes in target speed and direction were 
not modeled correctly and completely in afore-mentioned relations. 
One method to overcome this problem is to use the fading memory 
(Simon, 2006). In this method, equation 8 is used to calculate 

)|1( nnPAug +  instead of 6.  

 

)()()()()|()()|1( 2 nGnQnGnFnnPnFnnP Aug
T

AugAugAug
T

AugAugAug +=+ α
                                                         (8)                                                                         
 

Where α  is the factor of fading memory. 1≥α  is chosen 
based on how much designers want the filter to forget past 
measurements. The main drawback of the conventional method is 
that the factor of fading memory is determined off-line and remains 
constant. This leads to surplus fading information in 
non-maneuvering mode or incomplete compensation in high 
maneuvering situation. 
 
 
Fuzzy fading memory  
 
To overcome the drawbacks of the conventional fading memory the 
FFM is proposed in this paper. In this method α  is determined 
intelligently based on the values of target acceleration. 

Block diagram of the proposed intelligent method is given in figure  
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Figure 1. Block diagram of the proposed method. 

 
 
 
1. In this figure, block (1) is the MIE. Inputs of this block are the last 
state, the measurement and the determined factor of fading memory 

( )(2 nFuzzyα ) using fuzzy logic. Outputs of this block are the new  

state and )( nnPAug . )|1( nnPAug +  in the MIE of this block is 

determined using the following relation:  
 

)()()()()|()()()|1( 2 nGnQnGnFnnPnFnnnP Aug
T

AugAugAug
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AugAugFuzzyAug +=+ α         

                                                         (9)                                                                     
 

Calculating procedure of )(2 nFuzzyα  will be elaborated later in this 

paper. 
Block (2) computes the 2-norm of 

vector [ ]T
yx nununu )()()( = . The output of this block 

is 
22 )()()( nununU yx += . Block (3) computes the 

2-norm of )( nnPAug . In fact, 2-norm is used to have a criteria 

about the size of )( nnPAug . Any other norms can be applied 

too. 

Block (4) is where the )(2 nFuzzyα  is determined. As can be seen 

from figure 1, block (4) has two inputs and one output. Inputs are the 
target acceleration magnitude (output of Block (2)) and 2-norm of 

)( nnPAug  (output of Block (3)). Output of this fuzzy system is the 

value of )(2 nFuzzyα  determined intelligently based on the 

magnitude of maneuver (amount of model uncertainties) in each 
iteration. Obviously, the factor of fading memory should increase 
suddenly when the target starts to maneuver and tracker steps are 

not large enough (2-norm of )( nnPAug  is small) to track the tar- 



 
 
 
 
get. While the target does not maneuver or tracker steps are large 

enough (2-norm of )( nnPAug  is large enough) to track the target 

accurately, output of block (4) approaches to 1. The designed fuzzy 
system in block (4) supports the above-mentioned rules. To clarify, 
fuzzy logic is used in order to decide about the values of 

)(2 nFuzzyα  so that the overall tracker remains optimal in 

non-maneuvering situations (when the mismodeling of target 

acceleration is low) by choosing 1)(2 =nFuzzyα  and it increases 

its own steps in maneuvering situations (when the mismodeling of 
target acceleration is high) to provide more accurate tracking result 

by choosing 1)(2 >nFuzzyα . In other words, the proposed 

architecture detects the target accelerations and determines the 

values of )(2 nFuzzyα  based on the magnitude of target 

acceleration. Inputs and output fuzzy sets all have two Gaussian 
membership functions. It should be noted that we employed 
Gaussian membership functions because this type of membership 
functions can provide smooth output and represents the 
uncertainties adequately (Kreinovich et al., 1992). 
 
 
SIMULATION RESULTS 
 
This section provides two examples to visualize the 
effectiveness of proposed method in tracking low, medium 
and high maneuvering targets. The new scheme is 
compared with two conventional approaches, the simple 
MIE (Khaloozadeh and Karsaz, 2009) and MIE with 
conventional fading memory (MIECFM).  

In all simulations of this section, the elements of 
covariance matrices of system noise and measurement 

noise are selected as �
�
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0)100( respectively. Furthermore, 

the initial position and speed of targets are unknown for 
the trackers. 
 
 
Example 1 
 
In this case study, our purpose is to evaluate the 
proposed method in high maneuvering target situation. In 
this simulation the sampling time is )(10 sT = . The initial 
position of target is given by )](0),(200[)]0(),0([ mmyx =  

with an initial speed of )](0),(18[)]0(),0([ 11 −−= msmsvv yx . 

The target moves with constant acceleration of 
)](ms 9.0),0.9(ms[)]0(),0([ -2-2=yx uu  until )(130 st = . 

Then, it starts to maneuver with acceleration of 
)](ms2),(ms2[)]13(),13([ -2-2 −−=yx uu . This acceleration 

continues to )(260 st = . Then, the target starts another 
maneuver with acceleration of 

)](ms 10),(ms 10[)]26(),26([ -2-2=yx uu . The  target 
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Figure 2. Target trajectory in Cartesian coordinates and the tracking 
result of proposed method, MIE and MIECFM in Example 1. 
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Figure 3. Target velocity and the estimation result of proposed method, 
MIE and MIECFM in Example 1. 
 
 
 

moves with this acceleration up to end of this simulation at 
)(500 st = .  

Figure 2 shows the target trajectory estimation by all 
aforementioned methods in this case study. Figure (3) 
indicates the target velocity estimation. Figure (4) 
illustrates the high performance of proposed method for 
tracking the target course in comparison with two other 
methods. Figures (5) and (6) emphasize on the ability of 
fuzzy tracker in the target azimuth and range estimation. 
High accurate estimation and fast initial convergence rate 
of new scheme can be interpreted from these figures. 
 
 
Example 2 
 

In this example, our purpose is to evaluate the  proposed  



552          Int. J. Phys. Sci. 
 
 
 

0 50 100 150 200 250 300
-140

-120

-100

-80

-60

-40

-20

0

20

40

C
ou

rs
e,

 D
eg

re
e

Time, s

Target Course

 

 

Real
Proposed Method
MIECFM
MIE

 
 
Figure 4. Target course and the estimation result of proposed method, 
MIE and MIECFM in Example 1. 
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Figure 5. Target azimuth and the estimation result of proposed method, 
MIE and MIECFM in Example 1. 
 
 
 
method in countering a target with low, medium and high 
maneuvers. Therefore, three simulations were performed 
as follows. In these simulations, the sampling time 
is )(10 sT =  and the initial position, velocity and 
aceleration of the target are given by 
 
 )](0),(200[)]0(),0([ mmyx = , 

)](0),(18[)]0(),0([ 11 −−= msmsvv yx  and 

)](ms 0),0(ms[)]0(),0([ -2-2=yx uu , respectively. 

 
 
 
 

50 100 150 200 250

2000

4000

6000

8000

10000

12000

14000

16000

18000

Target Range

R
an

ge
, m

Time, s

 

 

Real
Proposed Method
MIECFM
MIE

 
 
Figure 6. Target range and the estimation result of proposed method, 
MIE and MIECFM in Example 1. 
 
 
 
Simulation of low maneuvering target case  
 
The target moves with its initial acceleration until 

)(150 st = . Then, it maneuvers with acceleration of 

)](ms 2.0),0.2(ms[)]151(),151([ -2-2=yx uu  up to the end 

of this simulation at )(300 st = .  
 
 
Simulation of medium maneuvering target case  
 
The target moves with its initial acceleration until 

)(150 st = . Then, it maneuvers with acceleration of 

)](ms 2),2(ms[)]151(),151([ -2-2=yx uu  up to the end 

of this simulation at )(300 st = . 
 
 
Simulation of high maneuvering target case 
 
The target moves with its initial acceleration until 

)(150 st = . Then, it maneuvers with acceleration of 

)](ms 20),20(ms[)]151(),151([ -2-2=yx uu  up to the 

end of this simulation at )(300 st = .  
Each of three simulations was repeated 100 times and 

root mean square errors (RMSE) of estimation were 
computed based on the Monte-Carlo method (Doucet et 
al., 2001; Chen and Liu, 2000). Table 1 provides the 
estimation result of three methods in estimating different 
target parameters. 
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Table  1. Estimation error in simulations of low, medium and high maneuvering target cases (RMSE). 
 

RMSE 

Simulation Parameter 
MIE MIECFM Proposed 

Method 

Improvement 
Percentage to 

MIE 
(%) 

Improvement 
Percentage to 

MIECFM 
(%) 

X-position (m) 1432 1412 1398 2.37 0.99 
Y-position (m) 1306 1286 1270 2.75 1.24 
X-velocity (m/s) 103 93 69 33 25.80 
Y-velocity (m/s) 94 83 66 29.78 20.48 
Acceleration  
(m/ s2) 

31 28.8 25 19.35 13.19 

Range 1816 1815 1840 - 1.32 - 1.37 

Low  
maneuvering  
target  
Case 

Azimuth 45 44 39 13.33 11.36 
X-position (m) 1447 1427 1417 2.07 0.7 
Y-position (m) 1595 1575 1565 1.88 0.63 
X-velocity (m/s) 105 95 75 28.57 21.05 
Y-velocity (m/s) 115 105 65 43.47 38.09 
Acceleration  
(m/ s2) 

33 31 26 21.21 16.13 

Range 2000 1990 2000 0 - 0.5 

Medium 
maneuvering 
target 
case 

Azimuth 40 39 35 12.5 10.25 
X-position (m) 1811 1780 1650 8.89 7.3 
Y-position (m) 1548 1500 1371 11.43 8.6 
X-velocity (m/s) 139 123 89 35.97 27.64 
Y-velocity (m/s) 120 101 71 40.83 29.70 
Acceleration  
(m/ s2) 

35 33 29 17.14 12.12 

Range 2177 2136 2040 6.29 4.49 

High  
maneuvering  
target  
Case 

Azimuth 42 41 38 9.52 7.3 
 
 
 
Conclusion 
 
In this paper, a fuzzy fading memory has been applied to 
the MIE in order to increase its effectiveness in tracking 
high maneuvering targets. Although the simple MIE 
represents a well performance in tracking 
non-maneuvering or low maneuvering targets, its 
accuracy fatally diminishes in high maneuvering target 
cases due to the mismodeling of target acceleration 
dynamics. To associate the MIE in coping with this 
deficiency, a new intelligent approach based on fading 
memory has been suggested in this paper. Simulation 
results in different case studies highlight on the 
effectiveness of new intelligent scheme in tracking high 
maneuvering targets.  
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