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EM Based Semi-Blind Beamforming Algorithm in MIMO-OFDM Systems 
Abstract — A new EM based semi-blind beamforming algorithm is proposed in this paper for multiple input multiple output (MIMO) systems in which orthogonal frequency division multiplexing (OFDM) technique is used. Employing singular value decomposition (SVD) technique, the semi-blind beam- forming algorithm eliminates space interference in an iterative manner by shaping antenna patterns in transmitter and receiver sides in frequency domain. A 16-QAM MIMO-OFDM system is considered for computer simulations in order to evaluate the performance of the new algorithm under different scenarios. The results show that the proposed algorithm outperforms subspace based semi-blind beamforming method.
Index Terms — Beamforming, Expectation Maximization Algorithm , MIMO , OFDM , Semi-blind , SVD
I. INTRODUCTION
M
ULTIPLE input multiple output (MIMO) communication system using orthogonal frequency division multiplexing (OFDM) technique can employ both space diversity and frequency diversity to mitigate the multipath  and fading effects.

Interference from other users/antennas is the true challenge in the MIMO system. The beamforming technique has already been introduced to resolve this problem. The purpose of beamforming is to steer the array beams in such a way that just the desired signal is received with maximum gain while other signals  are mitigated as much as possible.

Various methods for beamforming have been proposed in recent years. These methods can be classified into training and blind groups based on the amount of information that is available at the receiver. While the first group achieves fast convergence and better performance, the second one preserves bandwidth.  By coupling the training and blind techniques, another method called semi-blind is derived that benefits from the advantages of both methods. The semi-blind method can be designed to preserve the bandwidth while its performance is very close to that of the training technique.
 Signal subspace partitioning is a popular approach that can be used for blind and semi blind beamforming [1]-[3]; however this method needs a large amount of data to reach to near the optimum point. A semi-blind beamforming method employing the Constrained Expectation Maximization (CEM) algorithm is proposed in this paper via channel singular value decomposition (SVD) technique. Computer simulations show that our proposed beamforming algorithm outperforms the signal subspace based semi-blind approach without using any coding.   
The SVD of channel matrix can be obtained directly from the channel matrix estimation, however, because of the nonlinear operation of taking SVD, if the estimation of the channel matrix is not precise enough, it may create more errors. One good solution to this problem is to estimate the SVD matrices directly from the received signal [4],[5]. 

The organization of this paper is as follows. After introduction, the CEM estimator is introduced in section II. In Section  III,  a MIMO-OFDM system is modeled based on the SVD method [4] and then the CEM based semi-blind beamforming algorithm is presented. Computer simulations are given in section IV and section V concludes the paper. 
II. The Constrained  EM  Estimator

Let consider 
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[image: image4.wmf]θ

 is given as
      
[image: image5.wmf]{

}

{

}

ˆ

argmax(|)argmax()

MLI

pL

=º

θθ

θxθθ

              (1)
where 
[image: image6.wmf](

)

()log(|)

I

Lp

=

θxθ

. Due to 
[image: image7.wmf]x

 is incomplete 
information , the maximization of 
[image: image8.wmf]()

I

L

θ

 is not tractable. Denoting 
[image: image9.wmf]y

as a desired vector from 
[image: image10.wmf]D

 (the additional information data space needed to complete 
[image: image11.wmf]I

space), we have 
       
[image: image12.wmf](|)(,|)/(|,)

ppp

=

x

θxyθyxθ

                       (2)
By using logarithmic form, one can write
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where    
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 to be monotonically increasing [7]. Thus the EM algorithm can be expressed in two steps
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M-step:

            
[image: image32.wmf][1][]

argmax{(,)}

ll

Q

+

=

θ

θθθ

))

                             (6)
The E-step and M-step are performed successively until at the 
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The EM algorithm can be constrained to satisfy the required limitations on estimated parameters as the following: 
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In this case we define
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Superscript 
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 denotes constraint. Therefore (8) can be rewritten as 
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The E-step and M-step of the constrained EM (CEM) algorithm are similar to those of the EM algorithm, just using 
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III. Constrained EM Based Semi-blind Beamforming

A MIMO-OFDM system, which has N transmitting antennas, M receiving antennas and L subcarriers, is considered. Defining  
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 is a symbol vector that is transmitted from the mth subcarrier. Note that 
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where 
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 identity matrix. The SVD of the mth subcarrier channel matrix, 
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 is a diagonal matrix containing the singular values of the mth subcarrier channel matrix. 

We begin with the EM based channel SVD estimation to derive the beamforming weights in transmitter and receiver as follows.
For the ease of derivation of formulas and without loss of generality,  we omit  the  index m in  (11). Thus,  we  can  write [4]
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For each subchannel, we can write 
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After receiving the 
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The channel SVD estimation can be computed in two steps as follows.
A. Iterative Estimation of 
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Now multiplying both sides of (22) in 
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Therefore, each column of 
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Now we have come to the problem of estimating the columns of 
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 that are orthogonal to each other. As can be seen 
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After some simple manipulations, we have
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Considering (15), after normalization, we get
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B. Iterative Estimation of 
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Similar to (23), one can show that 
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Each column of 
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in which 
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The process of semi-blind beamforming can be divided into two parts as training and blind. In the training part, we use the derived formulas in this section without the need for taking expectation due to the known transmitted signals. In the blind part, we start from the SVD estimation obtained in the training part as the initial transmit/receive beamforming matrices, then assuming a specific interval, we send the estimated transmit beamforming matrix 
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 to the transmitter side at the beginning of regular time intervals. Note that this interval should be large enough not to waste the channel bandwidth while it must be chosen in such a way that channel has a small variation in this duration. The received signal is then multiplied in the receive beamforming weight matrix
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It should be mentioned that for implementing (32) and (39), the expectation is just taken on points of the constellation with the most probability according to a soft decision approach and signal to noise ratio. This leads to a significant reduction in complexity of the proposed algorithm.
III. Simulations And Results
For simulations, a MIMO-OFDM system with 64 subcarriers has been considered. A sequence of independent, identically distributed 16-QAM signal vector 
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 is sent from transmitter array antennas. To evaluate the performance of the algorithm, the Normalized Mean Square Error (NMSE) criterion [4] along with BER is employed.  The channel   has an exponential delay spread profile with utmost 16 paths [4]. NT and ND are the number of packet symbols for training and blind parts of the algorithm, respectively. Each packet consists of N individual OFDM symbols that are the minimum number required for channel estimation Fig.1 and Fig.2 present the performance of the MIMO-OFDM system with N=M=2,4 in terms of SNR. The interval for updating
[image: image162.wmf]V

has been considered 5 OFDM packets with NT=1,2 and ND=30. Closer inspection reveals that the performance of the system enhances when NT increases from 1 to 2. Fig.3 and Fig.4 compare the signal subspace based semi-blind method [1] applied to our system model with our proposed algorithm. As can be seen, our scheme achieves a much better performance especially at high SNRs. Fig. 5 shows BER of the system in terms of number of iterations. As illustrated, the performance of the system improves significantly when iteration number increases from 1 to 2 and reaches to a rather steady state in iteration 3 and over.
V. ConclusionS
A novel semi-blind beamforming algorithm has been proposed   in   this  paper   for   MIMO-OFDM   systems.  The
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Fig. 1. NMSE versus SNR for ND =30, M=2,4, NT=1,2 , when the number of iterations is 5.
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Fig. 2. BER versus SNR for ND =30 , M=2,4, NT=1,2, when the number of iterations is 5.
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Fig. 3.
NMSE versus SNR, comparing the proposed EM based beamforming algorithm with signal subspace approach [1], NT=1, ND=30 , when the number of iterations is 5.
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Fig. 4.
BER versus SNR, comparing the proposed EM based beamforming algorithm with signal subspace approach [1], NT=1, ND=30 , when the number of iterations is 5.
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Fig. 5. BER versus iteration number for ND=30, SNR=30dB, NT=1, 2 and M=2, 4.
beamforming method has been derived based on the constrained EM algorithm in order to estimate channel SVD in a blind manner. Simulation results demonstrated that the proposed method achieves a good performance and outperforms the subspace based semi-blind algorithm.
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