
EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

European Journal of Operational Research 109 (1998) 142- I59 ELSEVIER

Theory and Methodology

An adaptive TS approach to JIT sequencing with variable
processing times and sequence-dependent setups

F. Kolahan, M. Liang *

llepartment of Mechanical Engineering, Fuculty of En~meering. Uniuersity of Ottnwa, P.O. Box 450, Ottuwa, Ontario. Canada KIN 6N5

Received 4 April 1996; accepted 13 January I997

A hstract

This paper addresses a single machine sequencing problem with variable processing times and sequence-dependent
setups. The objective is to find the best trade-off between the JIT goal and the processing time compression and extension
costs by simultaneously determining the job sequence and processing times for concerned jobs. Due to the combinatorial
nature of the problem, it cannot be optimally solved in polynomial time. A tabu search approach is used to provide good and
quick snlutions. To improve the computational efficiency, an adaptive neighbourhood generation method is proposed and
used in the tabu search algorithm. A total of 100 problems of different sizes have been solved to test the proposed approach.
Our computational experience shows that the adaptive approach outperforms several other neighbourhood generation
methods in terms of both convergence rate and solution quality. The effects of the search parameters are also discussed.
0 1998 Elsevier Science B.V.

Keywords: Tabu search; Adaptive neighbourhood generation; Just-in-time production; Job sequencing; Variable processing time

1. Introduction

Simultaneous consideration of both earliness and tardiness in scheduling decisions has been motivated by the
Just-Jn-Time (JIT) production philosophy over the past decades. Excellent survey and research work has been
carried out by several researchers (e.g., [13,2,20,8,17]).

Numerical control technology has been widely used to improve process productivity and controllability.
However, the good controllability of machining centers in adjusting processing times has not been fully utilized
to assist in achieving the JIT goal. This is often reflected in the conventional machine sequencing practice. With
conventional sequencing methods, the processing time of each job is considered to be pre-determined and the
machine-level decisions have little influence on the job-level decisions such as processing time specifications.
Although several researchers (e.g., [21,6,16,3]) have initiated the studies on the sequencing problem with
controllable processing times during the past few years, most of the them consider only time compression and
do not address JIT sequencing goal, i.e., minimization of both tardiness and earliness costs. Moreover, the effect
of sequence-dependent setup times has often been ignored and a common due date is usually assumed for all
jobs.

* Corresponding author. Fax: + I-613-5625177.

0377-2217/98/$19.00 Q 1998 Elsevier Science B.V. All rights reserved.
PII SO377-22 17(97)00098-2

F. Kdahan, M. Liang/European Journal ef Operational Research 109 (1998) 132-159 143

In summary, most of the previous studies either consider JIT objective while overlooking the time
controllability or address time controllability (mostly only compression) without the JIT objective. The
sequence-dependent setup time is usually not considered. However, the reality in many shop floors equipped
with machining centers often features: (a) both earliness and tardiness are undesirable; (b) the procesging time of
a job can be both compressed and extended by adjusting feed rate, depth of cut and spindle speed ad extra cnst;
and (c) the setup time is usually sequence-dependent and each job may have its own distinct due date. There is
thus a great need to further explore the sequencing problems in the modern shop floor.

The JIT sequencing problem with variable processing times and sequence-dependent setups will he
investigated in this paper. Due to the combinatorial nature of the problem, an adaptive tahu search algorithm is
proposed to provide quick solutions. We introduce a new neighbourhood generation mechanism lo reduce the
computational time. In the propose method, only the mnst promising neighhours are generated for iach mnve.
The details of the problem and solution procedure are presented in the following sectinns.

2. Prnhlem statement

Consider .I jobs to he processed on a machining center. Each job has its own due date. Any aarliness or
tardiness will lead to penalty cost and thus is undesirable. The setup time for each job is sequence-dependent as
the setup time involved in changing tnols and part holders depends, to some extent, on the similarity !in tool and
fixture requirements between the current job and the immediate previous one. The processing time of peach job is
controllable within a feasible range by adjusting feed rate, spindle speed and/or depth of cut. Hnwpver, these
adjustments will involve certain costs. The cost components to be considered in this paper are described below.

2.1. Tardine.u and earliness penalties

In the JIT environment, if a job is completed before its due date, an earliness penalty will be considered
because of the increased inventory, cash commitment, and possible shop floor congestion. The tardinqss penalty
usually occurs due to the loss of goodwill if the job is to be delivered to the customer or due to the whiting time
if the job is to be processed by the next manufacturing stage. The amount of earliness or tardine& of a job
depends on the processing and setup times of the concerned job and those of all the other ,jobs processled prior to
it.

2.2. Compression and extension costs

IJsually, in a machining process the processing cost for a job consists of operating cost, ton] cost and
defective cost. The operating cost includes labnur cost and machine overhead, and increases with ~ time. The
defective cost is mainly caused by severe tool wear and in-process tool breakages. When the process is sped up.
the tool and defective costs increase due to the increased tool wear and in-process tool failure. There is a best
combination of machining parameters (feed rate, spindle speed and depth of cut) which minimizes the total
processing cost of a job. In this paper, we define the processing time associated with such a best combination nf
machining parameters as the normal processing time. Any deviation from the normal processing time iwill cause
extra cost. The additional cost due to process speedup is defined as the compression cost and that caused by
process slowdown is called extension cost.

Although the normal processing time is preferred for a single job, it may not necessarily be beneficial at the
machine-level when all jobs’ due dates are taken into account. It may be desirable to choose prncesFing times
other than the normal processing times for some jobs so that the sum of the earliness and tardiness pelnalty. and
compression and extension costs is minimized at machine-level. The processing time selection also has impact
on the optimal job sequence. The optimal job sequence obtained based on a particular set of prncesking times

144 F. Kolahan. M. L.iang/European Journal of Operational Research 109 (1998) 142-159

may no longer be optimal when a different set of processing times is used. Therefore, our objective is to jointly
solve the job sequencing and processing time selection problems so that the total earliness and tardiness
penalties, as well as compression and extension costs can be minimized.

The sequencing problems with sequence-dependent setup times and fixed processing times are well known
NP-hard problems 1181. The earliness-tardiness sequencing problems with fixed processing times are also
NP-hard [10,4,19]. The problem under consideration is a more general one which involves both sequence-depen-
dent setups and earliness-tardiness issues and is further complicated by the variable processing times. Hence,
such a problem cannot be optimally solved in polynomial time.

3. Problem formulation

3.1. Notation

The following notations are used for problem formulation while those used in the tabu search algorithm will
be explained therein.

Lj job index, i,j= l,..., J,
U position index, 1= 1,. . . , J,
J total number of jobs,
s part sequence index, denoting a specific permutation of J jobs,
I.L(s,/) the job in Ith position of sequence S,

setup time required by job j-if it is processed immediately after job i,
setup time of job j if it is the first job being processed in the sequence,
due date of job j,
tardiness of job j,
earliness of job j,
penalty cost per unit time tardiness for job j,
penalty cost per unit time earliness for job j,
current processing time of job j,
normal processing time of job j,
minimum possible processing time of job j,
maximum allowed processing time of job j,
amount of compressed processing time of job j; 0 I X, I PjN - PjL,
amount of extended processing time of job j; 0 5 5 I Pju - Pi”,
cost of reducing processing time of job j by one unit (compression cost),
cost of increasing processing time of job j by one unit (extension cost),
cost saving achieved by increasing processing time of job j by one unit in iteration n,
maximum allowed time increase for job j in iteration n; 0 I V,” I Pj” - PjL,
total cost associated with sequence s,
a O-l integer variable, W, = 1, if sequence s is selected; 0, otherwise,
set of job sequences in the neighbourhood of s,
set of job sequences in the adaptively generated neighbourhood of s.

3.2. The model

The JIT sequencing problem with variable processing times and sequence-dependent setup times can be
formulated as the following nonlinear mixed integer programming model:

F. Kolahan, M. L&g/ European Joumal of Operational Research IO9 (1998) 142-159 145

Model 1

(1)
s-l I-1

subject to:

P /.L(s.I) + X/L(d) 2 P&FL,,), vs71, (2)

P Ids.0 - y,(d) s P;.v.r,~ Vs,l, (3)

P&&J, 5 P&J) 5 Pp$,,,, Vs,l, (4)

c (ks.k- I)./L(.s.k) + Pp(s,k)) - &s.,, 5 TP(.L,,~ Vs,l, (5)
k= 1

T&J) 2 0, Vs,l, (8)
J!

c w,= 1, (9)
s= 1

where rPcS k_ ,) p(s,k) = tok when k = 1.
The objective function contains four terms. The first two terms are respectively associated with tardiness and

earliness while the last two are related to compression and extension costs. The objective function, in
conjunction with constraint (91, states that only the sequence which minimizes the four cost components should
be selected. Constraints (2) and (3) specify the relationship between the actual processing time and (the normal
processing time. The range of the actual processing time is given by constraint (4). Constraints (5) and (6)
define the relationship between a job’s completion time, due date, tardiness and earliness. The com#etion time
includes cumulative setup and processing times. It should be pointed out that the setup time of job is not
included in the processing time since it is sequence-dependent. It is also noted that the tardiness

a .
and earlmess of

a job cannot co-exist. This is ensured by jointly considering constraints (5) to (8). This model
solved even for small size problems because of the non-linearity of the objective function and the 1
of O-l variables, W,. To provide an efficient solution procedure for this problem, we propose an
search approach. The details of the proposed technique are presented in the following section.

4. Solution procedure

4.1. Tabu search algorithm

Tabu search, proposed in its present form by Glover [111, is a useful search technique for solving large
combinatorial optimization problems. With this method, the search starts with a feasible solution and moves
stepwise to a neighbouring solution in an attempt to obtain an optimal or near-optimal solution. The distinct
characteristic of tabu search lies in its ability to escape from local optima by accepting non-improving solutions
during the search process. Another important feature of tabu search is the use of tabu list for short term memory.
A tabu list contains a number of immediate previous moves which are not allowed at the current iteration. The

146 F. Kolahun, M. Liang/Europeun Journal of Operarionul Research 109 (1998) 142-159

use of tabu list alleviates the cycling problem since the search is prohibited from returning to any of the
previous moves specified in the tabu list. Following each move, the tabu list is updated by adding the new move
and removing the oldest move from the list. To enhance the search performance, some path diversification
strategies can also be applied. The details of tabu search and its refined versions are well documented in the
literature (e.g. [12,14,15,23]).

4.2. Neighbourhood generation and moue selection

Conventionally, a neighbourhood, N(S), is defined as a set of solutions that can be obtained by performing
one transition in the current solution. In the scheduling literature, pairwise interchange is probably the most
widely used technique to make such a transition. In this method, a solution is generated by switching the jobs in
positions i and j. The complete pairwise interchanges of a J-job problem leads to IN(s)] = J(J - 1)/2
neighbours. Extraction and reinsertion is another technique for transition. With this method, the neighbourhood
of S, N,(s), contains all solutions obtained by extracting the job in position i and inserting it right after (or
before) the job in position j. The neighbourhood size for the extraction and reinsertion approach is) N,(s)] = J(J
- 1)2 which is almost doubled as compared to pairwise interchange and thus this mechanism appears to be
more computationally demanding. Furthermore, as indicated by Adenso-Diaz [l], none of these two techniques
seems to outperform the other in terms of solution quality for a given run time. Therefore, in this paper only the
pairwise interchange approach is used as the basic neighbourhood generation mechanism.

The next step in tabu search is to specify a move strategy. The classic approach is to evaluate the entire
neighbourhood and choose the best allowable move. However, the required computational time could be
unacceptably long when the problem size is large. To overcome this problem, partial search schemes have been
proposed recently. For instance, Crauwel et al. [5] used the first non-tabu move that results in a superior
solution, and William [22] and Della Croce [7] selected the best non-tabu move from a fixed number of
randomly or sequentially generated solutions.

A more efficient and sophisticated strategy is probably to evaluate part of neighbours that most likely contain
the best solution [14]. Along this line, Andeso-Diaz [l] proposes the use of a restricted neighbourhood (RN) to
improve the computational performance in solving a weighted tardiness problem. This approach is based on the
observation that the convergence process generally presents an exponential behaviour. It is further observed that,
in the first few iterations, the largest cost reduction (objective improvement) is often obtained by exchanging the
jobs located far apart in the current sequence. Thus, larger transposition ranges tend to be used in the first few
iterations. As the search progresses, the transposition ranges become smaller. In view of this, Andeso-Diaz [l]
proposes that the entire neighbourhood should be evaluated only in the first few iterations whereas the
transposition ranges in the later iterations should be consecutively reduced to a pre-specified number of
neighbouring jobs.

However, most of the above search processes are not guided by the objective value. For instance, in one of
the best approaches [l], all the parameters used in determining the range of transpositions are pre-specified and
are maintained throughout the entire search process. This approach cannot fully utilize the information readily
available in the search process such as the objective value and its improvement rate right after each iteration. To
this end, an adaptive approach is proposed in the next section to determine the range of transpositions in
response to the search dynamics.

4.3. Proposed adaptive neighbourhood generation (ANG)

The main idea of the proposed ANG method is to maintain a large transposition range when a large objective
improvement is observed and reduce the transposition range if the a small objective improvement or no
improvement is observed. In contrast to the other tabu search methods, the ANG features the following two
strategies: (a) objective-guided adaptive adjustment of transposition ranges; and (b) double-ended transposition

F. Kolahan, M. Liang/Europeun Journal of Operutional Reseurch 109 (1998) 142-159 147

range reduction. To begin with, the total number of iterations, Mmax, is specified and divided into equal
intervals each with R iterations. For an interval, say r, the above strategies are implemented using the following
two equations:

i

1 if ZI 1,
RA(r)= z if 1 <Z<J- 1, (10)

J-l if Z2J-1,

i

1 if 7.I 1,
ra(r) = z if 1 <z<RA(r), (11)

RA(r) if zlRA(r),

where

z= [Iq_ 1) - y~*Jl-(A,-,/Aoe-“)],

z=

[
ra(r_ 1) - ~aJ~-(A,-l/w’) , I

A, is the maximum improvement obtained between the two successive iterations in interval r (%I); A,, the
aspired improvement for the first interval (%); $,q are damping factors of the aspired improvement; YKA a 0- 1
integer variable, YRA = 1, if A,_, < A,e-Pr; 0, otherwise; V,, a O-l integer variable, Y,, = 1, if A,_, < Aoe-@r;
0, otherwise.

RA(r) and ra(r) respectively define the upper and lower boundaries of the transposition range for interval r
and they are adjusted adaptively based on an objective improvement indicator, i.e., the ratio A,, ,/A,. The
purpose of dividing the entire search process into intervals is to avoid the sudden drop of transposition range
due to the possible non-improving moves. As the objective value in the later iterations usually does rtot improve
as fast as it does in the first few iterations, the aspiration level should be reduced accordingly since otherwise
the range will be reduced very quickly. For this purpose, the damping factors $ and 9 are used to irestrain the
reduction process of the transposition range. Using the above expressions, the neighbourhood size can be
calculated as]N,(s)] = J[J - ra(r)] - 1/2[J - ra(r)][ra(r) + RA(r)] which is in the range of [J 7 1, 1 N(s)l]
(Note: I NC s)l = J(J - 1 j/2) and thus generally IN,(s)] I IN(s)]).

The proposed ANG method may be better illustrated using Fig. 1. For comparison, the typical pauerns of the
objective values (Fig. l(a)) and the transposition ranges (Fig. l(b)) obtained using both the ANG and RN
methods are plotted. In Fig. l(b), the area between the two solid curves is the transposition range cobesponding
to the ANG search process with RA as the upper boundary (end) and ra the lower boundary (end). The entire
area under the dash-dot curve represents the transposition range obtained using the RN method. As shown in the
figure, the ANG range is significantly narrower than the RN range. It can also be seen that the ANG
transposition range in Fig. l(b) is adaptively adjusted in response to the objective improvement rate (Fig. l(a)>
while the RN transposition range has no correspondence to its objective value.

4.4. Tabu search for JIT sequencing

In the JIT sequencing problem, a solution is essentially a permutation of J jobs. There is a ‘total of J!
possible sequences or permutations in the entire solution domain. For the adaptively generated neigbbourhood,
each neighbour in N,(s) has its associated objective function value, G(s), and the one with the loqest G(s) is
defined as the best neighbour, denoted as s * . A move is then made from s * * , the best job sequence of the
immediate previous neighbourhood, to s* , provided that s * is not in the current tabu list, T_lijt. The best
solution found so far, Cbest, and its corresponding sequence, S-best, are then updated if necessary and kept in
memory. The sequence s * ’ is then stacked into the list T-list of size T-size and the oldest sequence is
removed from the list. In addition, for each interval, the maximum cost reduction rate, A_besr, is: retained to

148 F. Kolahan, M. Liang/European Journal of Operarional Research 109 (1998) 142-159

50 100 150 200 250 300 350 4M) 450
Time (~89

(b)

- * ra@N)
- RA(ANG)

- m(ANCl

Time (ret)

Fig. 1. Transposition range and objective value.

determine the transposition range for the next interval. This procedure is repeated until a specified termination
criterion is reached. For the example problem in this paper, the maximum number of iterations, Mmax, is used
as the termination criterion.

The tabu search algorithm for the JIT sequencing problem using the ANG method is presented below.

Algorithm 1
Step I. Initialization.
(a) Set T-list = (0}, S-best = {0), M_ctr (a counter) = 0, r = 1, h-best = - x, and Chest = c<:
(b) Read T-size, Mmax, R, A,, 9, Ilr, ra(l>, RA(l), and PjL, PjN, Pju, aj, pj, aj, b,, dj for j = 1, . . . , J
(c) Construct a starting sequence s * * and compute G(s * * >
Step 2. Search.
Step 2.1. Generate and evaluate neighbouring solutions.
WHILE M_ctr < Mmax DO
set G(s*)==;
DO jj= 1 to J-ra(r)
DO kk = ra(r) to RA(r)
generate a new neighbour s for s * * by interchanging the parts in positions jj and kk.
IF s E T-list, discard s, and continue;
ELSE compute G(s)
IF G(s)<G(s*), set G(s*)+G(s), and S* +s;
ELSE discard s, and continue;
ENDIF

F. Kolahan, hf. Liang/European Journal qf Operational Research 109 11998) 142-159 149

ENDIF
ENDDO
ENDDO
Step 2.2. Move.
IFh_best<(G(s”*)/G(s*))- 1, set A-best+-(G(s**)/G(s’))- 1;
ELSE continue;
ENDIF
SetG(s**)+G(s*), s**+s* andupdateT_list;
IF G(s * *) < Cbest, set Chest + G(s * * >, S-best + s * * , and M_ctr + M_ctr + 1;
ELSE set M_ctr + M_ctr + 1;
ENDIF
Step 2.3. Calculate range of transpositions.
IF r < (M_ctr/R), set r + r + 1, h,_ , + h-best, h-best = - x, calculate new ra(r) and RA(r);
ELSE continue;
ENDIF
ENDWHILE
stop
Step 3. Diversification.
Diversify the search using one or more of the following strategies:
(1) Divide the maximum number of moves, Mmax, into equal sized phases of Nmax moves and Iafter each
phase:
(a) restart from the best solution found so far, S-best; or
(b) restart from a randomly selected sequence.
(2) Change the search parameters: T-size, Nmax, A,, +!J, q, ra(l>, RA(l), R and repeat the search.

The purpose of step 3 in the above algorithm is to enhance the search performance and to find the best
combination of search parameters.

To evaluate the solutions in N,(s) at each iteration, it is necessary to calculate the minimum cost G(s) for
each sequence. This involves solving a set of linear programming models. The linear programming model and
its solution procedure are described in the following.

4.5. Single sequence cost minimization

When the problem involves a given neighbour sequence, say s, Model 1 reduces to the following linear
programming problem:

Model 2

subject to:

1.50 F. Kolahan, M. Liang/ European Jourd qf Operational Research 109 (199R) 142-159

k= 1

k-l
(17)

This model can be solved using commercial software such as LINDO. It takes about 2 set to solve Model 2
for a 30-job problem using LINDO. However, since Model 2 is nested in Algorithm 1 and each move involves
solving a large number of such problems, it is practically not acceptable to use commercial software to solve
Model 2. To reduce the computational burden, an efficient algorithm for Model 2 is developed in the next
section.

4.6. Solution procedure for Model 2

Here, an efficient heuristic algorithm is developed for solving Model 2. To simplify the computational
process, we start with a permutation in which all jobs are assumed to be processed with minimum allowed
processing times. As a result, the further compression of processing time of a job is impossible and only
extension of processing time can be made. The saving rate, i.e., the total potential saving in iteration n due to
one unit time increment for the job in position k of sequence s is given by:

where

l=k

A ti(.r.k) = Cak, (lIT;~O}
I=k

and

%s.k) if
H

“$.k) > ‘fi:.r,k) - ‘p;s,k)’

+(.s.k) =
- &(s,k) if “&k) s P&,k, - ‘;.r.k,.

(20)

(2’)

(22)

(23)

V,” = maximum allowed time increase for job j in iteration n; 0 -< V,” I Pju - P,“.
In Eq. (20), the first two terms respectively take care of the earliness and tardiness costs caused by one unit

time increment. BFC,v,kj is the sum of the reduced earliness penalty on all the early jobs and AlrCs,kj is the total
increased tardiness penalty due to one unit time increment. The sign of BP!S:kJ is positive since any time
increase for the early jobs will reduce the earliness penalty which means a positrve saving. In contrast, for the
tardy jobs, any time increment will increase the tardiness penalty and, therefore, the second term has a negative
sign. The last term in Eq. (20) reflects the effect of one unit time increment on the compression and extension
costs. As shown in Eq. (23) if the increasable processing time is greater than the difference of PLys.k, and
Ppys,kj, i.e., the current processing time of job p(s,k) is less than PFys kJ, one unit of time increase will release
the compression and thus the effect is a saving of CQ~,~). Otherwise, ‘if the amount of increasable time is less
than the difference of PFys,kj and PFys,k), namely, the current processing time of job ,u~(~,~, is greater than
Pz,y,kj, further slowing down the process by one time unit will reduce the saving by &s,k).

F. Kolahan, M. Liang/ European Journal of Operational Research 109 (1998) 142-159 151

The above saving rate can be used as a measure of the potential improvement achievable by changing the
processing time of each job in the permutation. The heuristic algorithm for solving Model 2 is based on the
saving rate measure and the algorithm is summarized below.

Algorithm 2
Step 1. Set IZ + 1 and compute the tardiness or earliness of each job assuming all jobs are processed with the

minimum possible time.
Srep 2. Compute the saving rate, Fzs,,), for all jobs with VP:,!,,, > 0. If FpT,,,) I 0 or VpTI,,) = 0 for all jobs,

further cost reduction cannot be achieved and the computation is terminated. Otherwise, go to next step.
Step 3. Find FG,,,y, = max{FFy,f.,, I V1). Increase processing time of &s,q) by

A Pz.s.y, = min(8,) S,}, (24)

where

6, = min{ E,“C,s.,, > 0 I 12 q} (25)

and

(26)

Step 4. Set n + n + 1. Update VpyS,y), EICs,,), Tp!S,,), for 12 q, and go to step 2.

Step 3 in the above algorithm is based on the logic that the time increase for the job with the highest saving
rate is likely to be most profitable. Thus the time increase should be made until such high profitability has been
exhausted. The range of such high profitable time is defined in step 3 and proven below.

Theorem 1. (Selection of Time Increment) For u job t.~(s,l) with increasable processing time in iteration n,
i.e., VP;,7 k) > 0,

(a) if FI:(r.k) is positive, it will remain constant in the range of [PfiT,Y,k,, PpT,r,k, + APpT,r,k,] and the saving will
be a monotonic linear increasing function with slope F:C,s,k, in that range;

(b) if processing time is further increased above the range of [PzCv,k,, P,&, + A Pfiy,s,kJ, FWy v,k) wil! decrease
though it may remain positive.

Proof. See Appendix A.

As shown in Theorem 1, the saving rate level of the current job will become lower beyond ce!ain range.
Thereafter, even if the saving rate is still positive, we will not further increase the processing time in the current
iteration. The reason is that some other jobs may yield a higher saving rate than that of the current job.
Therefore, a new iteration using a newly selected highest saving rate will be carried out.

The termination criterion is based on the following theorem:

Theorem 2. (Termination Criterion) In Algorithm 2, further improvement cannot be achieved in the current
and future iterations if the maximum saving rate, FWTS 4) = max(Fi’,,,, 1 1 = 1,. . . ,J} 5 0.

Proof. See Appendix A.

Algorithm 2 has been coded in C + + and tested using 1000 randomly generated problems of different sizes
on a 486 PC with a 33 MHz processor and 4 MB of RAM. The results obtained using the algbrithm are

152 F. Kolahan. hf. Liang/ European Journal qf Operational Research 109 (1998) 142-159

Table 1
Problem size No. of problems
(no. of jobs) solved

10 200
20 200
30 200
40 200
50 200

Accuracy of
solutions

100%
100%
100%
100%
100%

Average computational time (set)

LINDO Algorithm 2

0.62 0.012
1.10 0.018
1.83 0.03 1
2.55 0.049
3.46 0.062

compared with the optimal solutions obtained using LINDO package (Table 1). As summarized in Table 1,
Algorithm 2 provided exact solutions for all the 1000 problems while the computational times are considerably
reduced. This leads us to conjecture that the heuristic could be in fact an optimal solution method for a problem
with such a structure though a sound proof is yet to be investigated.

Now, Algorithm 2 is nested in Algorithm 1 for solving Model 2. The combined search algorithm has been
codedinC+ +.

5. Computational results and discussion

In this section, a 30-job problem is first solved to illustrate the application of the proposed adaptive approach.
Then the ANG approach is compared with several other typical neighbourhood generation methods using 100
randomly generated problems of different sizes. Finally, the performance of the proposed method and effects of
some search parameters are discussed. All the computations are run on the same 486 PC mentioned earlier.

5. I. Example

To illustrate, the proposed algorithm is applied to sequence 30 jobs on a machining center. Each job has its
own due date. The deviation from the due date will result in earliness or tardiness penalty. The processing time
of each job is controllable. The information about the processing times, due dates, compression and extension
costs, as well as earliness and tardiness penalty costs is listed in Table 2. The sequence-dependent setup times
are asymmetric and range between 0.5 to 8 min.

The solution to the example problem is listed in Table 3. The sequencing and processing time decisions can
be made simultaneously based on the information in Table 3.

The computational results clearly indicate that the total cost associated with time compression, extension, and
the penalty to the deviation from the due dates has been substantially reduced. For instance, if jobs in the
example problem are processed within normal processing times and in the order shown in Table 2, the total
processing cost would be $5327. After the search, the total cost is reduced to $504 (Table 3), representing a
90.5% improvement. Table 3 also shows that JIT sequencing has been achieved for 10 jobs, i.e., jobs 28, 16, 13,
3, 6, 26, 25, 20, 7, and 19. It is further shown that 24 out of the 30 jobs have a less than or equal to 10 min
deviation from their due dates. However, if JIT sequencing is the predominant goal, the number of JIT-se-
quenced jobs can be increased by using the following model:

F. Kolahan, M. Liang/ European Journal of Operational Research IO9 (1998) 142-159

Model 3
J!

Min G(4 = Min c K i ISSSJ! (~Fd,lCs.~) + ~p~s.~~~~~~,d
s=l &,o= 1

subject to constraints (2) to (9).

153

(27)

Model 3 can be solved using the same tabu search scheme as presented above with minor modification.

5.2. Discussion

To gain further insight into the problem and the proposed ANG approach, the discussion regarding the
performance of the ANG method, cost reduction, and the effects of some search parameters is lmade with
reference to additional computational results.

Table 2
Processing time, due date, and cost data for the example problem

j PI p: p;
(min) (min) (min)

4 aJ p,
($/min) (%/min) t%/min)

I 3 4 3 72 5.0 5.0 4.0 1 .o
2 4 5 3 360 4.0 3.0 5.5 1.6
3 8 14 8 300 4.0 3.0 4.5 1.2
4 8 20 8 30 1.5 1.5 1.8 1.4
5 10 10 10 270 6.5 1.5 4.0 1.0
6 10 15 8 330 4.0 4.0 2.6 0.3
I 10 18 10 432 6.0 3.0 1.5 2.5
8 10 15 8 390 4.5 2.0 2.0 2.0
9 10 12 5 180 5.0 3.0 2.7 1.5

10 II 15 9 210 4.5 1.5 1.7 1.4
I1 12 12 9 228 1.5 1 .o 3.5 2.5
12 12 12 10 420 2.0 0.5 0.9 0.3
13 14 20 10 210 4.0 3.0 0.5 0.5
14 14 14 5 465 3.5 0.5 3.6 2.3
15 15 15 15 115 1.0 1.0 1 .o 1.3
16 15 20 12 150 8.5 0.5 1.5 0.5
17 15 19 I 210 2.5 1 .o 0.6 0.3
18 15 25 11 282 3.0 0.5 3.0 0.2
19 15 25 8 480 8.0 1.0 1 .o 0.5
20 18 20 14 405 4.0 1.5 0.6 0.3
21 20 25 15 30 5.5 2.0 2.3 1.3
22 20 28 14 120 6.0 2.0 1.0 0.6
23 20 30 12 240 5.5 2.0 3.5 1.5
24 20 30 11 480 4.5 1.0 1.8 1.0
25 24 25 12 360 7.0 4.0 1.8 0.4
26 25 40 14 345 5.0 2.0 2.2 0.5
21 28 35 15 60 5.0 1.0 2.0 0.5
28 30 50 20 90 5.5 1.5 1.6 0.2
29 30 37 18 240 3.5 2.5 1.5 2.0
30 35 40 22 144 5.0 1.5 0.8 0.5

Note: The total processing cost = $5327 if jobs are sequenced in the order shown above

154 F. Kolahan, M. Liang/ European Journal qf Operational Research 109 (1998) 142-159

5.2.1. Comparison of neighbourhood generation methods
In this section, the proposed ANG method is compared with four other commonly used methods. Here, only

the results obtained using the best combinations of the search parameters (tabu-list size, diversification
strategies, etc.) are compared. A total of 100 problems were randomly generated with 25 problems for each of
the four problem sizes: J = 30, 40, 50, and 60 jobs. All problems were tested using the following neighbour
generation and move selection methods:

fait-wise Interchange (PI) Method: This is the most basic approach. The transposition range in this case
includes the entire permutation, i.e. from 1 to J - 1. A move is made to the best non-tabu neighbour in each
iteration.

Adjacent Pairw’se Interchange (API) Method [7]: With this method, only the adjacent jobs are switched.
The size of a neighbourhood is J - 1. The move is selected in the same manner as in the PI method.

First Improving Neighbour (FIN) Method [5]: In this case, the neighbourhood is generated using the PI
method. However, the first non-tabu move which improves the current value of the objective function is
accepted and the neighbourhood generation process is truncated once such a move is found.

Restricted Neighbourhood (RN) Method: This method was proposed in [I]. For an iteration, r, only those

Table 3
Solution to the example problem obtained using the best diversification strategy and starting sequence

Sequence a

21

dP (min)

0

TE (min) P * (tin) C * (min)

6 20 24

4

27
I

28
22

30

16
15

9
17

10

13
29
23
11

5

1X
3

12

6
26

25

2
8

20
14

7
24

19

0

0

-8
2

-13
-3

0
0

-8
-2
-4

-12
-8

0
0
0
6
0
3

-II
- 10

0
5
2
0
0
8
0

-4 8 34
-2 28 62

5 4 67

0 22 90

6 22 114

8 22 136

0 12 150

-52 15 167

2 10 178

22 7 18X
10 9 200

0 10 210
10 IX 230

-3 12 243

-2x 12 256

I 10 269

-4 I5 286
0 14 300

106 12 314

0 10 330

0 14 345
0 14 360

-6 4 366
7 15 383
0 20 405

45 14 420
0 10 432

17 28 463
0 15 4x0

Note: d P: Deviation from normal processing time; TE: Tardiness or earliness of a job; P * : Final processing time; C * : Final completion
time.

a Total cost = $504 using this sequence.

F. Kolahan. M. Liang / Europeun Journal qf Operational Reseurch 109 (1998) 142-159 155

Table 4

Comparison of different neighbourhood generation methods

Problem Number of Average cost reduction (%I ’
set a jobs J PI API

I 30 90.6 ’ 77.8

2 40 69.5 59.0

3 SO 5 1.4 41.2

4 60 25.3 16.3

a Each set contains 25 randomly generated problems.

’ Average of 25 randomly generated problems.

’ Cost reduction = (initial cost -final cost)/initial cost

FIN RN ANG

64.5 91.4 93.1

42.3 84.7 92.0

29 6 62.3 83.2

19.2 30.2 62.9

neighbours with a transposition range lower than ra(r> are evaluated and a move is then made to the best
non-tabu neighbour in the neighbourhood. The function ra(r) is given by:

(28)

where minra is the minimum range of transpositions, ret the number of initial iterations in which the entire
neighbourhood is evaluated, and estab the iteration number from which any transpositions greater thag minra are
not allowed. The following values are found to be best for our computations: minra = 4; rat = 1; &tab = 15.

Aduptiue Neighbourhood (ANG) Method: This is the proposed method in this study and the dbtails have
been elaborated in Section 4.3. The following ranges of the settings are used for the test: A, = 1 O%, $ = 0.01 to
0.02, W= 0.004 to 0.008, R = 2 to 4, RA(l) = J - 1, and ra(l) = (l/2)3 to (2/3)5.

For the comparison purpose, we have run the search using each of the methods for 10 min for the ~30-job and
4O-job problems and 15 min for the problems with 50 and 60 jobs. For each test problem, the tabu-list size is set
to IO moves and the same starting point was used for all the methods. When diversification was alpplied, the
phase size was set at 20 moves. The average cost reductions are summarized in Table 4.

As shown in Table 4, the PI, RN, and ANG methods provide very good results for medium size4 problems
while the other two lag behind considerably. For example, for the 40-job problems, the PI, RN,~ and ANG
methods can achieve cost reductions of 69.5%, 84.7%, and 93.1% respectively, but the cost reductiobs are only
59% and 42.3% respectively for the API and FIN approaches. As the problem size grows, the superibrity of the
ANG mechanism becomes more evident. For instance, after 15 min of search for the 60-job problemsi it reduces
the processing cost by an average of 63% while the second best, i.e., the RN method, leads to only ~about 30%
cost reduction on the average. The low search efficiency of the PI, API, FIN, and RN methods 4s probably
caused by either the neighbourhood generation or the move selection strategy. With the PI niethod, the
neighbourhood size and hence the time required to make a move increases rapidly with the increasqd problem
size. Though the neighbourhood size can be limited for the API, FIN, and RN methods, a large inumber of
moves may be required to reposition jobs in the permutation.

The convergence curves of a typical 40-job problem corresponding to different neighbourhood ~ generation
and move selection mechanisms are plotted in Fig. 2. These curves show that the ANG method hbs the best
improvement rate and it can achieve most of the cost reduction in the first 5 min. We have exitended the
computations to 24 h for the ANG method and no further improvement is observed.

Nevertheless, it should be mentioned that the RN and ANG approaches can be best applied to thosp problems
which show a recognizable pattern in the disruption level (cost difference) with respect to the positibns of jobs
in the sequence. If such a tendency cannot be found, it may be advantageous to evaluate ~ the entire
neighbourhood or to perform other partial searches.

156 F. Kolahan, hi. Liang / European Journal of Operational Research 109 (1998) 142-1.59

,

0 / (?I.) I,!):) .l(il) fI!)I) !-:I:;() f.lLJU

Search time (sec.)

Fig. 2. Convergence curves for a 40 job problem using different neighbourhoud generation methods. (Note: Some data points have been
omitted for presentation purposes.)

5.2.2. Effects of search diuersijication and tabu-list size
The average costs for the test problems obtained using the ANG method and different diversification

strategies are summarized in Table 5. It is shown that search path diversification has some impact on the
performance of the algorithm. The first diversification strategy, i.e., restarting from the best solution, S-best,
marginally outperformed the third strategy, i.e. no diversification at all. A possible reason is that the search
barriers are reduced due to the cleared tabu list after each search phase and thus the search can proceed more
easily towards a better solution. The second diversification strategy, i.e., resuming the search from a randomly
selected sequence after each phase, appears to be the worst of the three. The reason could be that part of the
previous search effort is frequently discarded and thus the chance of resuming from a good solution is lower.

Computations have also been performed using tabu-lists of different sizes. It was observed that tabu lists of 5
moves are satisfactory for majority of the test problems but shorter tabu lists often lead to cycling. It was also
found that the tabu lists containing 10 moves were sufficient to prevent cycling for all the tests problems. Our
computational experience did not seem to favour longer tabu lists. Actually, tabu lists with more than 10 moves
did not improve the results in our computational scope.

Table 5
Average costs for the final solutions with different diversification strategies (tabu-list size = IO, phase size = 20)

Problem set Number Diversification strategy
otjobs a Restart form Restart form No

best sequence random sequence diversification

1 30 617b 759 624
2 40 874 2203 891
3 50 2045 3820 2052
4 60’ 7885 7885 7885

a Each set contains 25 randomly generated problems.
b Average of 25 randomly generated problems.
’ Search did not complete first phase within the time limit.

F. Kolahan. M. Liang / European Journal of Operational Research 109 (I 998) 142-159 157

6. Conclusion

In this paper, the problem of JIT sequencing of a machining center with variable processing times and
sequence-dependent setups has been formulated as a non-linear mixed integer programming model. A tabu
search algorithm based on an adaptive neighbourhood generation (ANG) method has been developed to
efficiently solve the problem. Both job sequencing and processing time selection decisions can be made
simultaneously based on the solution to the problem. Our computational results have shown that, a$ compared
with four other neighbourhood generation methods, higher improvement rate can be achieved using the ANG
method. This effect is more evident for larger problems.

The effects of search diversification strategies and tabu-list sizes are also investigated. It is ~ found that
restarting from the best found solution marginally improves the search performance. It is also observed that tabu
lists longer than 10 moves have no significant effect on solution quality.

Acknowledgements

The authors wish to thank the two anonymous referees for their valuable suggestions and comments on this
paper. Research funding from the Natural Sciences and Engineering Research Council of Canada ib gratefully
acknowledged.

Appendix A

A.1. Proof of Theorem I

(a) Referring to Eqs. (20)-(26), . increasing processing time in the range of [Pzc,r,kj, Ppy,y,t, + A Ppy,i,kJ will not
change the values of Apcs,Lj, $cs,kj, and Gp(s,k). Therefore, the saving will be a monotonic linear increasing
function in the range with slope Fz,s,pj.

(b) Referring to step 3 of Algorithm 2, the magnitude of FAs,kj is determined by one of the follolwing cases:

Case A.l. If APGSk, = S,, i.e. AP,,,,,, = Eic,Y.k9, = min(E;c,S,,,
increment of processing time of job p(s,k) greater than El](,,,,,

> 0 (12 k) (see Eqs. (24) and ~ (25)) any
will make the job in position ki’ tardy and

therefore reduce Fzc,v,k, by at least a,(, k,) + b,(,,,,,. This is because the original possible saving bpc,,,V, has been
lost and a new penalty cost, u~(,~,~,) is imposed due to this job’s status change from early to tardy. In addition,
the status change of the job in position k’ may also cause status changes of other succeeding jobs in the
sequence and thus additional reduction in Fpc,s,,, is possible.

Case A.2. If AP” = 6, (see Eqs. (24) and (26)) there exist the following two possibilities
(i) VzS,kj > Pti(S’d)- PzS kj. ds.k) If so, any increase of processing time of job p(s,k) more than S, will cause a

transition from saving due to the released compression to penalty caused by extension and thus reduce Fpcs,kj by
at least CYI,(~ k) + &s.k). Since % is less than a,, increasing the processing time of job /..L~(,~,~) by & will not
affect the earliness or tardiness of other jobs. However, if further increasing the processing time of job p(s,k),
some succeeding jobs in the sequence may become tardy and thus additional reduction in Fpcs,k, may occur as
indicated in case 1.

(ii) VpTs kj I: PpyS kj - PpyS,kj. In this case, because A Ppyl kj + PpcS kj = 6, + PSt,y kj = Ppys kj (see Eq. (24)), i.e.,
the maximum allowed processing time has been reached, it is therefore impossible to increase processing time
of job p(s,k) by more than APic,S,k).

Theorem 1 is thus proved. 0

158 F. Kolahan. M. Liang/European Journal of Operational Research 109 (1998) 142-159

A.2. Proof of Theorem 2

For a job &,k), if its increasable processing time VwTs,Lj > 0 and its processing time is increased by

AK&k) = min{6,,6,}, then for any other job p(s,1), we have the following

It follows that if the processing time of job /_ds,q) with maximum saving rate F$s,yj in iteration n is
increased by A P;cs,y,,
F;.Ly) 2 F;;,:l,

and job /.ds,q’) results in maximum saving rate F~~~~,, in iteration II + 1, then
always holds. This leads to

Now, suppose the solution obtained using Algorithm 2 can be further improved in at least one future
iteration, say, iteration m (m > n). Then there must exist an FpTs,qtj = max{FMy,,,, 1 I= 1,. . . ,J} > 0, which
means F,“;, qcj > FM:, 4j. , This, however, contradicts (A.l) and thus completes the proof of Theorem 2. 0

References

[I] B. Adenso-Diaz, Restricted neighbourhood in the tabu search for the flowshop problem, European Journal of Operational Research 62
(1992) 27-37.

[2] K.R. Baker, G.D. Scudder, Sequencing with earliness and tardiness penalties: A review, Operations Research 38 (1) (1990) 22-36.
[3] T.C.E. Cheng, Z.L. Chen, L. Chung, Parallel-machine scheduling with controllable processing times, BE Transactions 28 (1996)

177-180.
[4] T.C.E. Cheng, M.C. Gupta, Survey of scheduling research involving due date determination decisions, European Journal of Operational

Research 38 (1989) 156-166.
[5] H.A.J. Crauwels, C.N. Potts, L.N. Wassenhove, Local search heuristics for single-machine scheduling with batching to minimize the

number of late jobs, European Journal of Operational Research 90 (1996) 200-213.
[6] R.L. Daniel, R.K. Sarin, Single machine scheduling with controllable processing times and number of jobs tardy, Operations Research

37 (6) (1989) 98 l-984.
[7] F. Della Croce, Generalized pairwise interchanges and machine scheduling, European Journal of Operational Research 83 (1995)

310-319.
[8] E.A. Elsayed, M.-K. Lee, S. Kim, E. Scherer, Sequencing and batching procedures for minimizing earliness and tardiness penalty of

order retrievals, International Journal of Production Research 31 (3) (1993) 727-738.
[9] J.R., Evans, D.R. Anderson, D.J. Sweeney, T.A., Williams, Applied Production and Operations Management, West Publishing

Company, New York, 1990.
[lo] M.R. Gamy, R.E. Tarjan, G.T. Wilfong, One-processor scheduling with symmetric earliness and tardiness penalties, Mathematics of

Operations Research 13 (2) (1988) 330-348.
[I 11 F. Glover, Future paths for integer programming and links to artificial intelligence, Computers and Operations Research 13 (1986)

533-549.
[12] F. Glover, Tabu search: A tutorial, Interfaces 20 (4) (1990) 74-94.
1131 SK. Gupta, J. Kyparisis, Single machine scheduling research, Omega 15 (3) (1987) 207-227.
[14] R. Hubscher, F. Glover, Applying tabu search with influential diversification to multiprocessor scheduling, Computers and Operations

Research 21 (8) (1994) 877-884.
1151 J. Knox, Tabu search performance on the symmetric travelling salesman problem, Computers and Operations Research 21 (8) (1994)

867-814.
]16] 1. Lee, Single machine scheduling with controllable processing times: A parametric study, International Journal of Production

Economics 22 (2) (1991) 105-110.
[17] C.Y. Lee, S.J. Kim, Parallel genetic algorithms for the earliness-tardiness job scheduling problem with general penalty weights,

Computers and Industrial Engineering 28 (2) (1995) 231-243.

F. Kolahan, M. Liang/European Journal of Operational Research 109 (1998) 142-159 159

[18] J.K. Lens&a, A.H.G. Rinnoy, P. Brucker, Complexity of machine scheduling problems, Annals of Discrete Mathematics 1 (1977)
343-362.

1191 C. Oguz, C. Dincer, Single machine earliness-tardiness scheduling problems using the equal-slack rule, Journal of ~ Operational
Research Society 45 (5) (1994) 589-594.

[20] SC. Sarin, E. Erel, G. Steiner, Sequencing jobs on a single machine with common due date and stochastic processing times, European
Journal of Operational Research 51 (2) (1991) 188-198.

[21] R.G. Vickson, Two single machine sequencing problems involving controllable job processing times, ABE Transactions 112 (3) (1980)
258-262.

[221 H.K.B. William, Experimental investigation of intelligent search methods for job scheduling, Ph.D. Dissertation, Faculty of Operations
Management, Georgia Institute of Technology, 1994.

[23] D.L. Woodruff, Simulated annealing and tabu search: Lessons from a line search, Computers and Operations Research 41 (8) (1994)
829-83 1,

