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ABSTRACT 
In this paper, after a beginning on the concept of ant 
algorithms, a brief survey of the ant-based methods 
proposed for optimization of problems with 
continuous design spaces is presented. As a common 
approach in continuous domains, discretizing the 
search space is the model presented to be appended 
to the original ant colony system (ACS) algorithm. 
Evaluating this method and comparing it to the 
standard simulated annealing shows that it is robust 
enough not to fall in local minima. However, when 
higher resolution is required, the algorithm fails to 
capture the global optimums and the computational 
costs rapidly increase. Therefore, it can be safely 
proposed for the problems in which a trade-off 
between time, solution accuracy and algorithm 
intricacy is needed. 

KEYWORDS 
Ant colony optimization, continuous optimization, 
discretization, simulated annealing, test functions. 

NOMENCLATURE 
F:  objective function (general concept) 

f(x):  objective function in test functions 

i:  city at which the ant has just arrived 

j:  candidate city the ant will visit 

Lgb:  length of the globally best tour 

m:  number of ants 

n:  number of cities or variables 

p:  destination city in a city pair 

q:  randomly generated number in domain [0,1] 

q0:  control parameter 

r:  departure city in a city pair 

S:  decision result based on state transition rule 

s:  proportional probability 

α:  pheromone decay parameter 

β: intensification factor of heuristic function 

∆τ:  added amount of pheromone 

η: heuristic function 

ρ:  pheromone evaporation factor 

τ:  pheromone function 

τ0:  initial amount of pheromone 

1. INTRODUCTION 
Heuristic algorithms are methods which have been 
developed to find good but not necessarily optimal 
solutions in a reasonable amount of time. On the 
other side, combinatorial optimization problem such 
as scheduling, sequencing and time tabling are 
naturally NP-hard problems; i.e. it is not possible to 
find polynomial time algorithms to solve them 
optimally. Therefore during the last two decades, 
heuristic algorithms could improve the solutions 
obtained by exact mathematically-based methods. 
Regarding the continuous domains, the application of 
heuristic methods has been always a challenging 
concept. The two available techniques are either 
partitioning the domain into a finite set of 
components or working with continuous variables. 
Enhanced versions of heuristics have been proposed 
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to optimize continuous problems. Examples include 
the Continuous Genetic Algorithm (CGA) 
(Chelouah, R., and Siarry, P., 2000), Enhanced 
Simulated Annealing (ESA) (Siarry, P., et al., 1997) 
or Enhanced Continuous Tabu Search (ECTS) 
(Chelouah, R., and Siarry, P., 1999). Four main 
versions are also suggested based on the Ant Colony 
Optimization (ACO) which will be comprehensively 
introduced in section 4. Against the discrete nature of 
their original versions, these algorithms employ 
continuous operators. 

Generally, it is believed that the approach of 
discretization of continuous search spaces is only 
reliable when the initial range is not wide and the 
required resolution is not high. Here it is tried to 
examine this concept for the ACO algorithm. Also 
the qualitative impressions of being “wide” or “high” 
are evaluated by applying the proposed algorithm on 
some standard test functions. A standard SA code is 
also used for the same problems to provide the 
comparison of robustness and convergence quality. 
In addition, the obtained results are judged against 
the enhanced ACO methods to illustrate the 
advantages and drawbacks of discretization. 

2. INTRODUCTION 
Ant colony optimization is a nature-inspired method 
that was introduced in the early 1990’s by Marco 
Dorigo for the solution of combinatorial optimization 
problems. This algorithm is based on the foraging 
behavior of real ants. Real ants are biologically blind; 
however, they are capable of finding the shortest path 
from a food source to their nest without using any 
visual cues. This amazing capability is founded on a 
simple fact. Ants secrete pheromone, a chemical 
substance, with a constant rate on the paths they 
march on and also are able to sense the intensity of 
pre-deposited pheromone in the environment. Based 
on their instinct, they prefer to follow the paths with 
higher amount of pheromone but this tendency is not 
deterministic. Therefore in general, if more ants 
march on a certain path, more pheromone will be 
accumulated and the path will be even more 
desirable. This behavior is shown in Figure 1. 

The behavior is very simple and not even fully 
deterministic but effective enough as it is 
cooperative. All this behavior is simulated with a 
little difference in the ACO algorithms among which 
the Ant Colony System (ACS) is of our interest in 
this paper (Dorigo, M., and Gambardella, L.M., 
1997) (It is preferred to call it with the general name 

of ACO to the end of paper). The artificial ants 
employed in ACO are not fully blind, i.e. they have 
general information about the search space, have a 
memory of the length of the path they have explored 
and also live in an environment where time is 
discrete so the decisions are made in a step-by-step 
procedure. To understand the ACO algorithm, 
knowing the application of it on the TSP problem is 
essential as the algorithm have three distinct 
operators first defined and best described based on 
this problem. 

 
Figure 1 The behavior of ants when encountering an 

obstacle on their path 

TSP problem is in fact a group of problems being one 
of the most distinguished challenges in the history of 
applied mathematics, making it a reliable benchmark 
for optimization methods. In this problem, there are n 
cities where finding the shortest tour including all 
cities being visited for just one time and ending in the 
first city is desired. The ACO algorithm employs m 
ants which are spread randomly on the cities. The 
ants start building their tour individually and come to 
the end of iterations altogether. Three basic rules 
called “state transition rule”, “global updating rule”, 
and “local updating rule” build the foundation of this 
algorithm. 

2.1. State transition rule 
Unlike other heuristic methods such as tabu search, 
genetic algorithm and simulated annealing where the 
coded solution candidate is built altogether and then 
evaluated, the ants construct the solution in a step-
by-step procedure in the ACO. It means each ant 
should decide where to go for its next step by 
selecting among all unvisited candidate elements. 
The mechanism used in the ACO is a combination of 
directed greedy behavior and Rolette wheel known as 
state transition rule. The ant arrived at the city i 
chooses the next city among unvisited cities 
according to the following mechanism: 
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where ),( jiτ  is the amount of pheromone related to 
the path between cities i and j, and ),( jiη  is the 
heuristic function defined here as the inverse of 
distance between these two cities. The heuristic 
function is an operator in ACO which is defined 
according to the nature of the involved problem as it 
can be distance like in TSP problem or any other 
concepts such as cost or time. It has the rule of 
guiding and accelerating the convergence but is not 
vital to the concept of ACO. As can be seen, the total 
decision term is a combination of both pheromone 
and heuristic functions with the latter having a power 
of β . 
The state transition rule consists of two sub-rules, 
while q and q0 determine which one to be used. The 
constant parameter q0 demonstrates the relative 
importance of sub-rules; however, q is a randomly 
generated number, uniformly distributed in domain 
[0,1]. 

If there comes 0qq ≤  which is the case of 
exploitation, the city with the largest combination of 
pheromone and heuristic is chosen. Otherwise, the 
algorithm does not decide deterministically but only 
gives chances to the elements in proportion to their 
values as it is in a Rolette wheel; which means the 
city with the largest calculated term is not necessarily 
chosen. Thus, exploration of candidates with smaller 
function values is made feasible. In general, the ants 
act in a parallel manner. Their first elements of 
solution are assigned randomly and then to the end of 
constructing the solution, state transition rule is 
repeated. 

2.2. Global updating rule 
In ACO, the globally best ant which is the ant that 
has constructed the best solution from the beginning 
of the trial is allowed to deposit pheromone on its 
trail, even though no better tour is found in several 
consequent iterations. This rule which acts as 
positive feedback makes the search for the real best 
solution more directed. The rule is given by: 

),(.),().1(),( prprpr τατατ ∆+−=                  (3) 

1)(1),( −==∆ gbL
F

prτ                                         (4) 

where α  is a coefficient that acts to decrease the 
amount of pheromone inspired by evaporation in 
nature. The added amount of pheromone is obtained 
by inversing the objective function F which is the 
globally best tour length Lgb obtained from the 
beginning of the optimization. 

2.3. Local updating rule 
To avoid premature convergence and just like the 
natural phenomenon happening in nature due to 
evaporation, a local pheromone trail updating is 
performed on the value of pheromone related to the 
pair of cities just chosen by state transition rule: 

),(.),().1(),( prprpr τρτρτ ∆+−=                  (5) 

0),( ττ =∆ pr                                                          (6) 

It should be noted that the decay parameter ρ is 
chosen from domain [0,1]. Also in general, 0τ  which 
is the initial amount of pheromone, is calculated as 
the inverse of a rough estimate of the objective 
function multiplied by n, the problem dimension. 

3. ACO FOR DISCRETE PROBLEMS 
The TSP problem, on which the ACO was described, 
belongs to a group of problems in which the final 
solution is a string that includes all the elements of 
search space and therefore the design variables are 
not defined or even exist in the familiar way as is 
known in classical optimization. In other words, the 
algorithm is employed to put the search space 
elements in the proper arrangement. 

In another class of problems, it is requested to select 
a proper value for design variable(s) from a finite set 
of available choices. In this type of problems, the 
solution construction mechanism faces no major 
difference in comparison to the described algorithm 
except for the definition of path and pheromone 
function. In analogy to the TSP problem, the 
allowable numerical values of discrete variables can 
be modeled as the zones of cities which no 
movement between the zones are permitted and only 
an ant can go from a zone to another zone in another 
city.  
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The graph appearing from the number of design 
variables and their corresponding allowable values 
builds the search space where the path and its 
subsequent pheromone function may be associated 
either with the set of its edges or the vertices of the 
graph. 

4. ACO FOR CONTINUOUS DOMAIN 
As briefly mentioned in the introduction, there are 
four important ant-related algorithms proposed in the 
literature. They include Continuous ACO (CACO) 
suggested in 1995 (Bilchev, G., and Parmee, I.C.), 
API (after Pachycondyla APIcalis) presented in 2000 
(Monmarche, N., et al.), Continuous Interacting Ant 
Colony (CIAC) proposed in 2004 (Dreo, J., and 
Siarry, P.) and finally ACOR introduced by Socha, 
K., and Dorigo, M. (2006). 

One of the first attempts to apply an ant-related 
algorithm to the continuous optimization problems 
was CACO by Bilchev and Parmee. In CACO, the 
ants start from a point, called a nest, situated 
somewhere in the search space. The good solutions 
found are stored as a set of vectors, which originate 
in the nest. The ants at each iteration of the algorithm 
choose probabilistically one of the vectors. They then 
continue the search from the end-point of the chosen 
vector by making some random moves from there. 
The vectors are updated with the best results found. 

There are important differences to the original ACO. 
They introduce the notion of nest, which does not 
exist in the ACO metaheuristic. Also, CACO does 
not perform an incremental construction of solutions, 
which is one of the main characteristics of the ACO 
metaheuristic. 

Another ant-related approach to continuous 
optimization is the API algorithm by Monmarche et 
al. API does not claim to be based on the ACO 
metaheuristic. The ants perform their search 
independently, but starting from the same nest (the 
nest is moved periodically). The ants use only 
tandem running that is a type of recruitment strategy. 
This algorithm allows tackling both discrete and 
continuous optimization problems. 

The third ant-based approach to continuous 
optimization is CIAC by Dreo and Siarry. CIAC uses 
two types of communication between ants: 
stigmergic information (spots of pheromone 
deposited in the search space) and direct 
communication between ants. The ants move through 
the search space being attracted by pheromone laid in 

spots, and guided by some direct communication 
between individuals. Although also CIAC claims to 
draw its original inspiration from ACO, the 
differences are many as there is direct 
communication between ants and no incremental 
construction of solutions. 

The final and best known of ACO-based methods is 
ACOR. In this algorithm, the discrete probability 
distribution in replaced by a continuous one that is a 
probability distribution function. 

The Gaussian functions as the most popular 
distribution is the one employed in this method. 
Since a single Gaussian function is not able to 
describe a situation where two disjoint areas of the 
search space are promising (as it only has one 
maximum), Gaussian kernel is the method proposed 
(Figure 2). 

 
Figure 2 Example of five Gaussian functions and their 

superposition (Socha, K., & Dorigo, M., 2006) 

As it can be concluded, all the proposed ant-based 
algorithms for tackling continuous problems have 
some enhanced operators which normally deal with 
continuous variables. Even the ACOR that is the most 
straightforward way of extending ACO to continuous 
domains is basically intricate due to its additional 
actions and consequently is harder to implement. 

Based on these explanations, it was tried to examine 
the idea of discretizing the search space. Thus, no 
modification to the concept of ACO described in 
section 3 is needed and consequently the algorithm is 
expected to easier to employ. The numerical results 
and discussions followed by the implementation of 
this algorithm, hereafter called ACOD, are studied in 
the next section. 

5. BENCHMARKING THE ACOD 
As mentioned in the previous sections, the method 
that is subjected to examination here makes use of no 
enhanced operators. Therefore, it is decided to 

Proceedings of the 37th International Conference on Computers and Industrial Engineering, 
October 20-23, 2007, Alexandria, Egypt, edited by M. H. Elwany, A. B. Eltawil

1290



 

 

compare it with another standard metaheuristic 
algorithm. The simulated annealing as a qualified 
method can be a reliable counterpart to the ACOD. 

In continuous optimization, there has been a number 
of benchmarking functions for which the optimal 
solution is known a priory.  These functions are 
generally multiminima and consequently challenging 
for optimization. A comprehensive description of the 
employed test functions can be found in [9].  

In all fields of optimization, it is significantly 
important to select a proper criterion of comparison 
when two or more methods are engaged. In case of 
combinatorial optimization, usually each algorithm is 
given the same amount of CPU time and the results 
obtained within that time are compared. This makes 
the comparison of different algorithms complicated, 
as the CPU time depends on some issues such as the 
programming language, the compiler, the skills of the 
programmer, and finally on the machine used for 
running the experiments. Thus, in case of 
combinatorial optimization it is strongly 
recommended to re-implement all the algorithms 
used in the comparison in order to make it fair. This 
still does not guarantee an entirely fair comparison, 
as it is difficult to ensure that the same amount of 
effort is put into optimization of the code of all the 
implemented algorithms. 

In contrast, the great majority of the papers on 
continuous optimization algorithms use the number 
of function evaluations needed to achieve a certain 
solution quality or the obtained algorithm 
performance after a predefined number of function 
evaluations. Such an approach gives several key 
advantages. It solves the problem of the algorithms 
being implemented using different programming 
languages; it is insensitive to the code-optimization 
skills of the programmer (or to the compiler used); 
and it allows comparing the results obtained on 
different machines. The drawback of this approach is 
that it does not take into consideration the time-
complexity of the algorithms subjected to 
comparison. However, in view of the other numerous 
disadvantages of using the CPU time as a criterion, it 
is an acceptable methodology, and is adopted it in 
this paper. 

Tables 1 and 2 display the settings used for ACOD 
and SA during the optimization procedure, 
respectively. The results obtained are also presented 
in Table 3. It is notable that the results are averaged 
after 5000 function evaluations and 10 independent 
runs. 

Before bringing the results, it is noteworthy 
mentioning that defining the heuristic function 
usually brings a dimension of intricacy to the 
applying of ACO on most problems. That is because 
defining a measurable and meaningful concept 
during the solution, between any two elements of 
search space and meanwhile having a clear relevance 
to the objective function is generally very complex. 
Therefore, as done in this paper and also other 
reviewed methods, and without damaging the overall 
effectiveness of ACO, this function is neglected. 

Table 1 ACOD parameter settings 
q0 τ0 ρ α m 
0.5 1e-6 0.1 0.1 10 

Table 2 SA parameter settings 
Initial temperature Cooling factor 

1000 0.995 

Table 3 ACOD and SA results for three test functions  

Function Easom Goldstein-
Price 

Ackley’s 
path 10 

Search 
domain

[-100,100] [-2,2] [-32,32] 

Known 
optimum (x1) 

π 0 0 

Known 
optimum (x2) 

π -1 0 

Known 
optimum f(x) -1 3 0 

x1 by SA 3.2288 0.0188 0.3655 

x2 by SA 3.2917 -1.0244 0.1509 

f(x) by SA -0.9427 3.4201 2.4061 

x1 by ACOD 3.1511 0.0027 0.0070 

x2 by ACOD 3.1471 -1.0006 0.0348 

f(x) by ACOD -0.9999 3.0029 0.1604 

Error by SA 0.0573 0.4291 2.4061 

Error by 
ACOD 0.0001 0.0029 0.1604 

Results clearly show that ACOD is the winner 
against the SA for all the three test functions. Both 
algorithms have run away from local minimums; 
however, ACOD could converge much closer to the 
global optimums rather than the SA. 
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6. ACOD AGAINST OTHER ANT-BASED 
METHOD 

The specifically-enhanced ant-based algorithms for 
optimization of problems with continuous domain 
were described in section 5. They are definitely the 
first choices when an ant-based algorithm is to be 
selected for continuous problems though a question 
is still not answered: 

Should the method of discretization be totally 
disregarded? 

There is certainly no absolute conclusion. Reporting 
from the literature, Table 4 gives the averaged 
performance of these methods for some test functions 
after 100 independent runs. The numbers are the 
relative mean number of function evaluations to 
achieve the global optimum with the absolute and 
relative error of 10-4. The numbers in parentheses are 
the actual values. 

Table 4  Comparison of ACOD and other ant-based 
methods in finding the global optimum 

Test function Rosenbrock -R2 Goldstein-Price 

ACOR 1.0 (820) 1.0 (384) 

CACO 8.3 14 

API 12 N/A 

ACOD - 19 

 

For example for the R2 function, the worst 
performance belongs to CIAC that has been able to 
find the global optimum in all its tryouts after the 
average number of 11480 function evaluations (not 
mentioned in Table 3). The case for ACOD is that 
after 20000 function evaluations, it has reached the 
solution resolution of 4108 −×  and there is even no 
guarantee for achieving the global optimum. That is 
due to the fact the feedback embedded in the ACOD 
fails to improve the solution and it is just the 
unbiased randomness of ACO that may result in 
progression. 

The case for the Goldstein-Price function is different. 
The ACOD has been always able to capture the 
global optimum. Having a look on Table 4, its 
performance is comparable to CACO and much 
better than CIAC [8]. This can be interpreted due to 
the limited search domain. In addition, the variation 
in the amount of function is relatively small. 

Based on the results presented in sections 5 and 6, 
the following conclusions are presented on the topic 
of discretization in continuous problem: 

I. The size of the search domain is critically 
important. For a predefined resolution, by extending 
the search space, the computational costs drastically 
increase and the performance is no longer 
guaranteed. 

II. The required resolution directly affects the 
performance of ACOD. For relatively smaller 
resolutions, the performance is promising and 
skipping the local minimums is generally achieved. 
When higher resolution is requested, the ant 
algorithms need to be enhanced with additional 
operators working with continuous variables. 
Insisting on discretization necessitates larger memory 
for keeping and evaluating the newly defined points. 

III. Time is always a key point in evaluation of 
algorithms. When the continuous domain is 
discretized, the pheromone function should be 
defined for all the inserted points. Consequently, the 
next-step evaluation-selection procedure is inevitably 
repeated for all of them. In contrary, the ACOR 
method for instance is equipped with a limited 
number of continuous distribution functions which 
cover all the search space. These algebraic functions 
can be easily calculated for any point of the search 
space. Therefore, the search for a point is replaced by 
a search for a continuous region. This way the 
algorithm needs much less CPU time. 

IV. For real applications with continuous domains 
where the global optimum and smoothness of the 
objective function is not known, ACOD can be 
expected to converge to a relatively acceptable 
estimation of the global optimum. This estimation 
might be sufficient in some cases or at least direct 
other enhanced algorithms. However when achieving 
a solution with high resolution in a wide range is 
requested, employing other experienced methods is 
inevitable. 

7. CONCLUSION 
In the beginning, a standard version of Ant Colony 
Optimization (ACO) called Ant Colony System 
(ACS) has been described on the traveling 
salesperson problem. Afterward, the modifications 
needed to apply the same algorithm on the class of 
discrete problems with the selection (and not 
sequencing) have been introduced. Based on this 
foundation, the concept of applying ACO as a 
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basically discrete method on continuous domains has 
been explained. The enhanced ant-based algorithms 
for tackling continuous problems including CACO, 
API, CIAC and ACOR were briefly reviewed. The 
ACOD method which is based on discretization of 
search domain has been later proposed and examined 
with the help of some test functions. Comparing the 
results with those obtained by applying the SA 
method clearly proves that ACOD has achieved 
reasonable outcomes and also outperformed SA in all 
cases. To challenge the proposed ACOD, cases with 
higher resolution, wider range and more intense 
variation in function values were employed. The 
results confirmed that this method fails to compete 
with other enhanced methods and therefore stating 
that it should be carefully employed. 
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