

EVALUATING THE DISCRETIZATION OF SEARCH SPACE IN CONTINUOUS
PROBLEMS FOR ANT COLONY OPTIMIZATION

Mahdi Abachizadeh
Department of Mechanical Engineering

Ferdowsi University of Mashhad
Iran

m_abachizadeh@yahoo.com

Farhad Kolahan
Department of Mechanical Engineering

Ferdowsi University of Mashhad
Iran

kolahan@um.ac.ir

ABSTRACT
In this paper, after a beginning on the concept of ant
algorithms, a brief survey of the ant-based methods
proposed for optimization of problems with
continuous design spaces is presented. As a common
approach in continuous domains, discretizing the
search space is the model presented to be appended
to the original ant colony system (ACS) algorithm.
Evaluating this method and comparing it to the
standard simulated annealing shows that it is robust
enough not to fall in local minima. However, when
higher resolution is required, the algorithm fails to
capture the global optimums and the computational
costs rapidly increase. Therefore, it can be safely
proposed for the problems in which a trade-off
between time, solution accuracy and algorithm
intricacy is needed.

KEYWORDS
Ant colony optimization, continuous optimization,
discretization, simulated annealing, test functions.

NOMENCLATURE
F: objective function (general concept)

f(x): objective function in test functions

i: city at which the ant has just arrived

j: candidate city the ant will visit

Lgb: length of the globally best tour

m: number of ants

n: number of cities or variables

p: destination city in a city pair

q: randomly generated number in domain [0,1]

q0: control parameter

r: departure city in a city pair

S: decision result based on state transition rule

s: proportional probability

α: pheromone decay parameter

β: intensification factor of heuristic function

∆τ: added amount of pheromone

η: heuristic function

ρ: pheromone evaporation factor

τ: pheromone function

τ0: initial amount of pheromone

1. INTRODUCTION
Heuristic algorithms are methods which have been
developed to find good but not necessarily optimal
solutions in a reasonable amount of time. On the
other side, combinatorial optimization problem such
as scheduling, sequencing and time tabling are
naturally NP-hard problems; i.e. it is not possible to
find polynomial time algorithms to solve them
optimally. Therefore during the last two decades,
heuristic algorithms could improve the solutions
obtained by exact mathematically-based methods.
Regarding the continuous domains, the application of
heuristic methods has been always a challenging
concept. The two available techniques are either
partitioning the domain into a finite set of
components or working with continuous variables.
Enhanced versions of heuristics have been proposed

Proceedings of the 37th International Conference on Computers and Industrial Engineering,
October 20-23, 2007, Alexandria, Egypt, edited by M. H. Elwany, A. B. Eltawil

1287

to optimize continuous problems. Examples include
the Continuous Genetic Algorithm (CGA)
(Chelouah, R., and Siarry, P., 2000), Enhanced
Simulated Annealing (ESA) (Siarry, P., et al., 1997)
or Enhanced Continuous Tabu Search (ECTS)
(Chelouah, R., and Siarry, P., 1999). Four main
versions are also suggested based on the Ant Colony
Optimization (ACO) which will be comprehensively
introduced in section 4. Against the discrete nature of
their original versions, these algorithms employ
continuous operators.

Generally, it is believed that the approach of
discretization of continuous search spaces is only
reliable when the initial range is not wide and the
required resolution is not high. Here it is tried to
examine this concept for the ACO algorithm. Also
the qualitative impressions of being “wide” or “high”
are evaluated by applying the proposed algorithm on
some standard test functions. A standard SA code is
also used for the same problems to provide the
comparison of robustness and convergence quality.
In addition, the obtained results are judged against
the enhanced ACO methods to illustrate the
advantages and drawbacks of discretization.

2. INTRODUCTION
Ant colony optimization is a nature-inspired method
that was introduced in the early 1990’s by Marco
Dorigo for the solution of combinatorial optimization
problems. This algorithm is based on the foraging
behavior of real ants. Real ants are biologically blind;
however, they are capable of finding the shortest path
from a food source to their nest without using any
visual cues. This amazing capability is founded on a
simple fact. Ants secrete pheromone, a chemical
substance, with a constant rate on the paths they
march on and also are able to sense the intensity of
pre-deposited pheromone in the environment. Based
on their instinct, they prefer to follow the paths with
higher amount of pheromone but this tendency is not
deterministic. Therefore in general, if more ants
march on a certain path, more pheromone will be
accumulated and the path will be even more
desirable. This behavior is shown in Figure 1.

The behavior is very simple and not even fully
deterministic but effective enough as it is
cooperative. All this behavior is simulated with a
little difference in the ACO algorithms among which
the Ant Colony System (ACS) is of our interest in
this paper (Dorigo, M., and Gambardella, L.M.,
1997) (It is preferred to call it with the general name

of ACO to the end of paper). The artificial ants
employed in ACO are not fully blind, i.e. they have
general information about the search space, have a
memory of the length of the path they have explored
and also live in an environment where time is
discrete so the decisions are made in a step-by-step
procedure. To understand the ACO algorithm,
knowing the application of it on the TSP problem is
essential as the algorithm have three distinct
operators first defined and best described based on
this problem.

Figure 1 The behavior of ants when encountering an

obstacle on their path

TSP problem is in fact a group of problems being one
of the most distinguished challenges in the history of
applied mathematics, making it a reliable benchmark
for optimization methods. In this problem, there are n
cities where finding the shortest tour including all
cities being visited for just one time and ending in the
first city is desired. The ACO algorithm employs m
ants which are spread randomly on the cities. The
ants start building their tour individually and come to
the end of iterations altogether. Three basic rules
called “state transition rule”, “global updating rule”,
and “local updating rule” build the foundation of this
algorithm.

2.1. State transition rule
Unlike other heuristic methods such as tabu search,
genetic algorithm and simulated annealing where the
coded solution candidate is built altogether and then
evaluated, the ants construct the solution in a step-
by-step procedure in the ACO. It means each ant
should decide where to go for its next step by
selecting among all unvisited candidate elements.
The mechanism used in the ACO is a combination of
directed greedy behavior and Rolette wheel known as
state transition rule. The ant arrived at the city i
chooses the next city among unvisited cities
according to the following mechanism:

Proceedings of the 37th International Conference on Computers and Industrial Engineering,
October 20-23, 2007, Alexandria, Egypt, edited by M. H. Elwany, A. B. Eltawil

1288

[] []{ }
⎩
⎨
⎧ ≤

=
otherwises

qqjijiS

),(.),(maxarg 0
βητ

 (1)

[] []
[] []

⎪
⎪
⎩

⎪⎪
⎨

⎧
∈

= ∑
∈

otherwise

allowedjif
uiui

jiji

s
uallowedu

 0

),(.),(

),(.),(

β

β

ητ
ητ

 (2)

where),(jiτ is the amount of pheromone related to
the path between cities i and j, and),(jiη is the
heuristic function defined here as the inverse of
distance between these two cities. The heuristic
function is an operator in ACO which is defined
according to the nature of the involved problem as it
can be distance like in TSP problem or any other
concepts such as cost or time. It has the rule of
guiding and accelerating the convergence but is not
vital to the concept of ACO. As can be seen, the total
decision term is a combination of both pheromone
and heuristic functions with the latter having a power
of β .
The state transition rule consists of two sub-rules,
while q and q0 determine which one to be used. The
constant parameter q0 demonstrates the relative
importance of sub-rules; however, q is a randomly
generated number, uniformly distributed in domain
[0,1].

If there comes 0qq ≤ which is the case of
exploitation, the city with the largest combination of
pheromone and heuristic is chosen. Otherwise, the
algorithm does not decide deterministically but only
gives chances to the elements in proportion to their
values as it is in a Rolette wheel; which means the
city with the largest calculated term is not necessarily
chosen. Thus, exploration of candidates with smaller
function values is made feasible. In general, the ants
act in a parallel manner. Their first elements of
solution are assigned randomly and then to the end of
constructing the solution, state transition rule is
repeated.

2.2. Global updating rule
In ACO, the globally best ant which is the ant that
has constructed the best solution from the beginning
of the trial is allowed to deposit pheromone on its
trail, even though no better tour is found in several
consequent iterations. This rule which acts as
positive feedback makes the search for the real best
solution more directed. The rule is given by:

),(.),().1(),(prprpr τατατ ∆+−= (3)

1)(1),(−==∆ gbL
F

prτ (4)

where α is a coefficient that acts to decrease the
amount of pheromone inspired by evaporation in
nature. The added amount of pheromone is obtained
by inversing the objective function F which is the
globally best tour length Lgb obtained from the
beginning of the optimization.

2.3. Local updating rule
To avoid premature convergence and just like the
natural phenomenon happening in nature due to
evaporation, a local pheromone trail updating is
performed on the value of pheromone related to the
pair of cities just chosen by state transition rule:

),(.),().1(),(prprpr τρτρτ ∆+−= (5)

0),(ττ =∆ pr (6)

It should be noted that the decay parameter ρ is
chosen from domain [0,1]. Also in general, 0τ which
is the initial amount of pheromone, is calculated as
the inverse of a rough estimate of the objective
function multiplied by n, the problem dimension.

3. ACO FOR DISCRETE PROBLEMS
The TSP problem, on which the ACO was described,
belongs to a group of problems in which the final
solution is a string that includes all the elements of
search space and therefore the design variables are
not defined or even exist in the familiar way as is
known in classical optimization. In other words, the
algorithm is employed to put the search space
elements in the proper arrangement.

In another class of problems, it is requested to select
a proper value for design variable(s) from a finite set
of available choices. In this type of problems, the
solution construction mechanism faces no major
difference in comparison to the described algorithm
except for the definition of path and pheromone
function. In analogy to the TSP problem, the
allowable numerical values of discrete variables can
be modeled as the zones of cities which no
movement between the zones are permitted and only
an ant can go from a zone to another zone in another
city.

Proceedings of the 37th International Conference on Computers and Industrial Engineering,
October 20-23, 2007, Alexandria, Egypt, edited by M. H. Elwany, A. B. Eltawil

1289

The graph appearing from the number of design
variables and their corresponding allowable values
builds the search space where the path and its
subsequent pheromone function may be associated
either with the set of its edges or the vertices of the
graph.

4. ACO FOR CONTINUOUS DOMAIN
As briefly mentioned in the introduction, there are
four important ant-related algorithms proposed in the
literature. They include Continuous ACO (CACO)
suggested in 1995 (Bilchev, G., and Parmee, I.C.),
API (after Pachycondyla APIcalis) presented in 2000
(Monmarche, N., et al.), Continuous Interacting Ant
Colony (CIAC) proposed in 2004 (Dreo, J., and
Siarry, P.) and finally ACOR introduced by Socha,
K., and Dorigo, M. (2006).

One of the first attempts to apply an ant-related
algorithm to the continuous optimization problems
was CACO by Bilchev and Parmee. In CACO, the
ants start from a point, called a nest, situated
somewhere in the search space. The good solutions
found are stored as a set of vectors, which originate
in the nest. The ants at each iteration of the algorithm
choose probabilistically one of the vectors. They then
continue the search from the end-point of the chosen
vector by making some random moves from there.
The vectors are updated with the best results found.

There are important differences to the original ACO.
They introduce the notion of nest, which does not
exist in the ACO metaheuristic. Also, CACO does
not perform an incremental construction of solutions,
which is one of the main characteristics of the ACO
metaheuristic.

Another ant-related approach to continuous
optimization is the API algorithm by Monmarche et
al. API does not claim to be based on the ACO
metaheuristic. The ants perform their search
independently, but starting from the same nest (the
nest is moved periodically). The ants use only
tandem running that is a type of recruitment strategy.
This algorithm allows tackling both discrete and
continuous optimization problems.

The third ant-based approach to continuous
optimization is CIAC by Dreo and Siarry. CIAC uses
two types of communication between ants:
stigmergic information (spots of pheromone
deposited in the search space) and direct
communication between ants. The ants move through
the search space being attracted by pheromone laid in

spots, and guided by some direct communication
between individuals. Although also CIAC claims to
draw its original inspiration from ACO, the
differences are many as there is direct
communication between ants and no incremental
construction of solutions.

The final and best known of ACO-based methods is
ACOR. In this algorithm, the discrete probability
distribution in replaced by a continuous one that is a
probability distribution function.

The Gaussian functions as the most popular
distribution is the one employed in this method.
Since a single Gaussian function is not able to
describe a situation where two disjoint areas of the
search space are promising (as it only has one
maximum), Gaussian kernel is the method proposed
(Figure 2).

Figure 2 Example of five Gaussian functions and their

superposition (Socha, K., & Dorigo, M., 2006)

As it can be concluded, all the proposed ant-based
algorithms for tackling continuous problems have
some enhanced operators which normally deal with
continuous variables. Even the ACOR that is the most
straightforward way of extending ACO to continuous
domains is basically intricate due to its additional
actions and consequently is harder to implement.

Based on these explanations, it was tried to examine
the idea of discretizing the search space. Thus, no
modification to the concept of ACO described in
section 3 is needed and consequently the algorithm is
expected to easier to employ. The numerical results
and discussions followed by the implementation of
this algorithm, hereafter called ACOD, are studied in
the next section.

5. BENCHMARKING THE ACOD
As mentioned in the previous sections, the method
that is subjected to examination here makes use of no
enhanced operators. Therefore, it is decided to

Proceedings of the 37th International Conference on Computers and Industrial Engineering,
October 20-23, 2007, Alexandria, Egypt, edited by M. H. Elwany, A. B. Eltawil

1290

compare it with another standard metaheuristic
algorithm. The simulated annealing as a qualified
method can be a reliable counterpart to the ACOD.

In continuous optimization, there has been a number
of benchmarking functions for which the optimal
solution is known a priory. These functions are
generally multiminima and consequently challenging
for optimization. A comprehensive description of the
employed test functions can be found in [9].

In all fields of optimization, it is significantly
important to select a proper criterion of comparison
when two or more methods are engaged. In case of
combinatorial optimization, usually each algorithm is
given the same amount of CPU time and the results
obtained within that time are compared. This makes
the comparison of different algorithms complicated,
as the CPU time depends on some issues such as the
programming language, the compiler, the skills of the
programmer, and finally on the machine used for
running the experiments. Thus, in case of
combinatorial optimization it is strongly
recommended to re-implement all the algorithms
used in the comparison in order to make it fair. This
still does not guarantee an entirely fair comparison,
as it is difficult to ensure that the same amount of
effort is put into optimization of the code of all the
implemented algorithms.

In contrast, the great majority of the papers on
continuous optimization algorithms use the number
of function evaluations needed to achieve a certain
solution quality or the obtained algorithm
performance after a predefined number of function
evaluations. Such an approach gives several key
advantages. It solves the problem of the algorithms
being implemented using different programming
languages; it is insensitive to the code-optimization
skills of the programmer (or to the compiler used);
and it allows comparing the results obtained on
different machines. The drawback of this approach is
that it does not take into consideration the time-
complexity of the algorithms subjected to
comparison. However, in view of the other numerous
disadvantages of using the CPU time as a criterion, it
is an acceptable methodology, and is adopted it in
this paper.

Tables 1 and 2 display the settings used for ACOD
and SA during the optimization procedure,
respectively. The results obtained are also presented
in Table 3. It is notable that the results are averaged
after 5000 function evaluations and 10 independent
runs.

Before bringing the results, it is noteworthy
mentioning that defining the heuristic function
usually brings a dimension of intricacy to the
applying of ACO on most problems. That is because
defining a measurable and meaningful concept
during the solution, between any two elements of
search space and meanwhile having a clear relevance
to the objective function is generally very complex.
Therefore, as done in this paper and also other
reviewed methods, and without damaging the overall
effectiveness of ACO, this function is neglected.

Table 1 ACOD parameter settings
q0 τ0 ρ α m
0.5 1e-6 0.1 0.1 10

Table 2 SA parameter settings
Initial temperature Cooling factor

1000 0.995

Table 3 ACOD and SA results for three test functions

Function Easom Goldstein-
Price

Ackley’s
path 10

Search
domain

[-100,100] [-2,2] [-32,32]

Known
optimum (x1)

π 0 0

Known
optimum (x2)

π -1 0

Known
optimum f(x) -1 3 0

x1 by SA 3.2288 0.0188 0.3655

x2 by SA 3.2917 -1.0244 0.1509

f(x) by SA -0.9427 3.4201 2.4061

x1 by ACOD 3.1511 0.0027 0.0070

x2 by ACOD 3.1471 -1.0006 0.0348

f(x) by ACOD -0.9999 3.0029 0.1604

Error by SA 0.0573 0.4291 2.4061

Error by
ACOD 0.0001 0.0029 0.1604

Results clearly show that ACOD is the winner
against the SA for all the three test functions. Both
algorithms have run away from local minimums;
however, ACOD could converge much closer to the
global optimums rather than the SA.

Proceedings of the 37th International Conference on Computers and Industrial Engineering,
October 20-23, 2007, Alexandria, Egypt, edited by M. H. Elwany, A. B. Eltawil

1291

6. ACOD AGAINST OTHER ANT-BASED
METHOD

The specifically-enhanced ant-based algorithms for
optimization of problems with continuous domain
were described in section 5. They are definitely the
first choices when an ant-based algorithm is to be
selected for continuous problems though a question
is still not answered:

Should the method of discretization be totally
disregarded?

There is certainly no absolute conclusion. Reporting
from the literature, Table 4 gives the averaged
performance of these methods for some test functions
after 100 independent runs. The numbers are the
relative mean number of function evaluations to
achieve the global optimum with the absolute and
relative error of 10-4. The numbers in parentheses are
the actual values.

Table 4 Comparison of ACOD and other ant-based
methods in finding the global optimum

Test function Rosenbrock -R2 Goldstein-Price

ACOR 1.0 (820) 1.0 (384)

CACO 8.3 14

API 12 N/A

ACOD - 19

For example for the R2 function, the worst
performance belongs to CIAC that has been able to
find the global optimum in all its tryouts after the
average number of 11480 function evaluations (not
mentioned in Table 3). The case for ACOD is that
after 20000 function evaluations, it has reached the
solution resolution of 4108 −× and there is even no
guarantee for achieving the global optimum. That is
due to the fact the feedback embedded in the ACOD
fails to improve the solution and it is just the
unbiased randomness of ACO that may result in
progression.

The case for the Goldstein-Price function is different.
The ACOD has been always able to capture the
global optimum. Having a look on Table 4, its
performance is comparable to CACO and much
better than CIAC [8]. This can be interpreted due to
the limited search domain. In addition, the variation
in the amount of function is relatively small.

Based on the results presented in sections 5 and 6,
the following conclusions are presented on the topic
of discretization in continuous problem:

I. The size of the search domain is critically
important. For a predefined resolution, by extending
the search space, the computational costs drastically
increase and the performance is no longer
guaranteed.

II. The required resolution directly affects the
performance of ACOD. For relatively smaller
resolutions, the performance is promising and
skipping the local minimums is generally achieved.
When higher resolution is requested, the ant
algorithms need to be enhanced with additional
operators working with continuous variables.
Insisting on discretization necessitates larger memory
for keeping and evaluating the newly defined points.

III. Time is always a key point in evaluation of
algorithms. When the continuous domain is
discretized, the pheromone function should be
defined for all the inserted points. Consequently, the
next-step evaluation-selection procedure is inevitably
repeated for all of them. In contrary, the ACOR
method for instance is equipped with a limited
number of continuous distribution functions which
cover all the search space. These algebraic functions
can be easily calculated for any point of the search
space. Therefore, the search for a point is replaced by
a search for a continuous region. This way the
algorithm needs much less CPU time.

IV. For real applications with continuous domains
where the global optimum and smoothness of the
objective function is not known, ACOD can be
expected to converge to a relatively acceptable
estimation of the global optimum. This estimation
might be sufficient in some cases or at least direct
other enhanced algorithms. However when achieving
a solution with high resolution in a wide range is
requested, employing other experienced methods is
inevitable.

7. CONCLUSION
In the beginning, a standard version of Ant Colony
Optimization (ACO) called Ant Colony System
(ACS) has been described on the traveling
salesperson problem. Afterward, the modifications
needed to apply the same algorithm on the class of
discrete problems with the selection (and not
sequencing) have been introduced. Based on this
foundation, the concept of applying ACO as a

Proceedings of the 37th International Conference on Computers and Industrial Engineering,
October 20-23, 2007, Alexandria, Egypt, edited by M. H. Elwany, A. B. Eltawil

1292

basically discrete method on continuous domains has
been explained. The enhanced ant-based algorithms
for tackling continuous problems including CACO,
API, CIAC and ACOR were briefly reviewed. The
ACOD method which is based on discretization of
search domain has been later proposed and examined
with the help of some test functions. Comparing the
results with those obtained by applying the SA
method clearly proves that ACOD has achieved
reasonable outcomes and also outperformed SA in all
cases. To challenge the proposed ACOD, cases with
higher resolution, wider range and more intense
variation in function values were employed. The
results confirmed that this method fails to compete
with other enhanced methods and therefore stating
that it should be carefully employed.

REFERENCES
Bilchev, G., Parmee, I. C., (1995), “The Ant Colony

Metaphor for Searching Continuous Design Spaces”
Proceedings of the AISB Workshop on Evolutionary
Computation, Sheffield, pp. 25-39.

Chelouah, R., Siarry, P., (1999), “Enhanced Continuous
Tabu search”, in Meta-Heuristics Advances and Trends
in Local Search Paradigms for Optimization, ed. by
Voss, S., Martello, S., Osman, I. H., Roucairol, C.,
Kluwer Academic Publishers, Boston, MA, pp. 49-61
(chapter 4).

Chelouah, R., Siarry, P., (2000), “A Continuous Genetic
Algorithm Designed for the Global Optimization of
Multimodal Functions”, Journal of Heuristics, Vol. 1,
No. 6, pp. 191-213.

Dorigo, M., Gambardella, L. M., (1997), “Ant Colony
System: A Cooperative Learning Approach to the
Traveling Salesman Problem”, IEEE Transaction on
Evolutionary Computation, Vol. 1, No. 1, pp. 53-66.

Dreo, J., Siarry, P., (2004), “Continuous Interacting Ant
Colony Algorithm Based on Dense Hierarchy”, Future
Generation Computer Systems, Vol. 20, No. 5, pp.
841-856.

Elbeltaghi, E., Hegazy, T., Grierson, D., (2005),
“Comparison Among Five Evolutionary-based
Optimization Algorithms”, Advanced Engineering
Informatics, Vol. 19, No. 1, pp. 43-53.

Monmarche, N., Venturini, G., Slimane, M., (2000), “On
How Pachycondyla Apicalis Ants Suggest a New
Search Algorithm”, Future Generation Computer
Systems, Vol. 16, pp. 937-946.

Siarry, P., Berthiau, G., Durbin, F., Haussy, J., (1997),
“Enhanced Simulated Annealing for Globally
Minimizing Functions of Many Continuous Variables”
ACM Transaction On Mathematical Software, Vol. 23,
No. 2, pp. 209-228.

Socha, K., Dorigo, M., “Ant Colony Optimization for
Continuous Domains” European Journal of Operational
Research, In Press.

Proceedings of the 37th International Conference on Computers and Industrial Engineering,
October 20-23, 2007, Alexandria, Egypt, edited by M. H. Elwany, A. B. Eltawil

1293

	1
	1012726

