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ABSTRACT

The optimized shape of trusses are found by presenting a new selection and reproduction
operator. The stress, buckling an displacement constraints, consistent with design code, are used.
Design variables are discrete size variables (member areas) and continuous shape variables
(nodal coardinates). The proposed methods, is fast and has a stable convergence. In addition, it
results in an optimized structure with low weight.

Keywords: genetic algorithms, reproduction operator, optimal truss, size variables, shape
optimization, continuous and discrete variables, buckling constraints.

1. INTRODUCTION

In all of genetic algorithms three basic operators: reproduction, crossover and mutation are
presented [1]. By reproduction operators, it is decided that a string should survive or not. In
addition, how many of that string, should be placed in the mating pool, to produce the next
generation of the strings. Decision is done based on the fitness of any string by different
methods. In fact, fitness shows the ability to survive and reproduction in the next generations. In
the structural optimization problems, the fitness function is a combination of objective function
and constraints [2-4].

Selection and reproduction operator, in addition to final influences the fluctuation of
optimized soulutions in successive generations, and effects the optimized result. Because of the
importance of this operator in genetic search strategies, researchers have looked for new operator
of this type, so that by using it, optimization process has little fluctuation and high convergence.
On the other hand, a structure with less weight will be gained. Thus, it is intended to use the
method of the ranking selection and a mathematical relationship for computing the number of
any string reproduction. The important point is that the number of reproductions should be in
such way, so that, unordinary strings will not dominate the population.

In this paper, at first, the mathematical model of truss shape optimization and the AISC
constraints are discussed [5-7]. Then, the basis and specialities of genetic computational steps
are presented. After that, some examples of truss structures are solved and their convergence
history is compared to other methods. Here, the optimization problem has both continuous
(shape) and discrete (size) variables. In addition, based on the design code rules, the optimized
solution is found under the stress, buckling and displacement constraints.
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2. MATHEMATICAL MODEL FOR TRUSS SHAPE OPTIMIZATION

The optimization problem of truss shape that its design variables are a combination of discrete
variables of member cross section areas {A} and continuous nodal coordinates variables {X}, is
formulized as:

. m m 3 0.5
Minimize: W(A4,X)=Y pAL =Y p,.A,.[Z (s - x;j!)’] (1)
) i=l i=l i=|
Stress constraint: {c'}<{o} < (oY} )
Displacement constraint: {D"} < {D} < {DY} 3)
Nodal coordinates constraint: Xhy<{xy<{x¥y 4)

In these relationships, {A}= {A; , Az ,...., Am}  is the size variable vector that is selected
from the discrete variables list. In addition {X] = {X,, Xz, ..., Xa} " is the shape variable vector
that can have any continuous quantity. In these relationships, objective function, W(A, X) is the
total truss weight and pr , Ai, Li are i the member specific weight, cross section area and member

length, respectively. Also, X is the jth coordinate of the node of member i. m and n are the

number of members and joint coordinates, respectively. Also, {g"}, {c"}, {D'}, {D"}, {X'} and
{X"} are the lower and upper bounds of the member stress vector {¢}, displacement vector {D}
and nodal coordinates vector {X}. On the other hand, nodal displacements and member stresses
are found by structural analysis from the following equations:

[K] {D} = {P} (5)
{o} =[T] {D} (6)

In the presented equations, [K] is the sttiffness matrix of the structure, {P} is the nodal forces
and [T] is a transformation matrix that relates the nodal displacements to the member stresses.
For the member under axial compression, the allowable stress depends on the slenderness ratio
Ai. The slenderness ratio is a function of the member length L; radius of gyration r; and effective
length factor K;. This dependence is written as:

A=t ™
f}

Tensile, {o,}, and compressive, {G}, allowable stresses based on AISC code are found
by:

o 0,<0

o’ =0.6F, 0,20 (8)
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In these relationships, E is the modulusof elasticity, F, is the yield stress of steel and C; is the
slenderness ratio dividing elastic and inelastic buckling zones. C. is calculated as follows:

C. =1’27r2E/Fy ao)

The genetic methods can not solve constrained optimization problems directly, so that the
problem should be transformed to a unconstrained one. To do this, methods such as penalty
function or Lagrangian multipliers should be used. If penalty function technique is used, enough
precision should be employed for the penalty quantity for the constraints viloation. It can be
simply found that how penalty is acceptable. A large penalty can break many designs and slow
down the process [8]. Here, the modified and normalized objective function is presented as:

W‘ m
=i 4RST
é; - pé (1)
_ 8
g

In eq (11)., Wiis the its design weight, W, is the maximum weight among a generation of
designs and R, is the penalty function coefficient. In eq (12), gy is the stress and displacement
constraints and g is the bounds of the constraints.

3. GENETIC ALGORITHM FOR OPTIMIZATION

3.1 Coding and decoding of design variables

In genetic methods, representing a design (design variable set) has a specific importance. These
representations relate the real problem to the genetic algorithm. It should be added that this
process works on coded variables. There are many types of representation, for example,
representing the string with binary numbers, floating point and etc. Each design variable is made
of a substring of 0 and 1. Then, by adding of top and bottom of these substrings, a design is
built. The used variables in the genetic techniques are in fact discrete ones, but, with a specific
precision continuous variables can be entered in the problem. Now, coding and decoding of any
type of variables, discrete and continuous, are discussed.
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3.1.1 Continuous design variable
1- Coding: If the desired precision in continuous design variables is g the minimum length (1) of
substring should be:

xY —x*
1>log,| —— (13)
£

In this equation, x" and x" are upper and lower bounds of the continuous variable .
2- Decoding: First, binary substring is transformed to a decimal I with no sign. Then, the
physical quantity X is calculated as :

U_ L
x=xt+1 2 "% (14)
2-1

3.1.2 Discrete design variables
1. Coding: the length of substring is dependent on the number of discrete design variables. The
following relationship is valid:

S = Number of discrete variables (15)

2. Decoding: to decode the strings, the unsigned decimal equivalent of binary string is
calculated, and then it will be mapped to the physical value of x.

3.2 Fitness Function

Based on the Darwinian survival of the fittest theory, fitness is a qualitative value that measures
the ability of reproduction of living creatures. In the genetic algorithms, fitness is used to
allocate the reproduction ability of tested designs. Thus, a type of measurement, “goodness” or
“quality” is what should be maximized. In other words, strings with higher fitness, have more
chance to be selected as father and mother to produce the next generation. On this basis, fitness
function is found as :

F= - § (16)

In this equation, ¢max is modified objective function, that avoids F from becoming negative.

In genetic schemes, search progresses to find strings with high fitness. Therefore, the
maximization problem of the fitness function is considered. On the other hand, in nature, any
chromosome has a fitness that is qualitative and non-negative. On this basis, to transform the
minimization problem of the weight of structure to a maximization problem of fitness, the
following equation is usually used [9]:

Here, F; is the fitness function and Wi; is the weight of structure in the ith design, and Cpax is a

sufficiently large number to prevent fitness become negative. In the investigation by Wu and
Chou, fitness function was presented as :
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Fi = max — ¢ (18)

Here, ¢i is the modified objective function of the ith design, and ¢m.. is the maximum
modified objective function of the generation.

3.3 Population size

One of the important factors influencing suitable execution of the genetic method is “population
size”. The number of strings in a generation (iteration) is called population size. The greater this
factor, the more will be the number of design points in a cycle of search and less will be the
probablity of falling in the local optimal points. In other words, population size will prevent the
search to be enclosed in a subspace. Thus, it gives the genetic techniques the ability of
multimodal optimization functions. Population size should be an even number and be constant in
the optimization process. Of course, if population size gets big, fitness function evaluation will
increase that will increase the number of analysis in any cycle of search process. Therefore, cost
and time of calculations will increase. It is not usual to take population size more than 100 in the
genetic method [2].

3.4 Selection and reproduction operator
Reproduction process is based on search of production of “better” (with higher fitness) members
(designs) and deletion of “worse” (with low fitness) members [10]. Strings are selected as
parents for proliferation and production of new generation, based on their fitness. The law of
selection is: the best member of a generation produces more, average member remains pair and
the worst member disappears. There are two types of selection: the roulette wheel and the
ranking selection.

In the roulette wheel method, a selection probability is allocated to any member of
population, based on it's fitness. If Fi is the fitness value of this member, its selection probability
is:

P, =—1 (19)

In this equation, np is the population size. The number of reproductions of the ith string can
be found as :

nr, = (np)P, = —— (20)

Here, F.q is the average fitness of the population.

In the ranking selection, the fitness of strings are used indirectly for selection and
reproduction. The selection process is such that, first all of the population strings are sorted in
ascending or descending order, based on their fitness, then, their selection probability is
calculated based on their rank in this group. Ifa group of strings with population size np are
sorted in ascending fitness of Fy ,..., Fop , then, selection probability is found by:
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P, = i _ i _ 2i @1
ii np(np +1) np(np + l)
. 2

i=1

To distinguish number of rcproductions of this string, p si probability is multiplied by
population size, so the number of reproductions of i th string equals to :

2i
np +1

nr, = (np)P, = (22)

The advantages of ranking selection are :
1. The ability to prevent the predominance of unordinary members, so that early
convergence is avoided.
2. Wandering among approximately equal values and even standstill in population is
avoided. ’
These are aspects of the genetic methods called survival of the fittest. In other words, better
members produce more so that their desirable specialties can be transferred to their children.
The algorithm of selection and reproduction used in this paper is as follows:
First step -strings are descendingly sorted based on their fitness.
Second step -the rank (R) of any string in population is calculated.
Third step -the generation index (N) of ith string is found as :

N, =(np-R, +1)* | (23)
Fourth step -the sum of generation indices of the last step is calculated as :

i N, = (np)’ (:p +1)? a9
i=1

Fifth step. the number of reproduction of the ith string is found as :

N, 4N,
ar, = (np) e = — (235)
np(np +1)
S,
=]

Selection of suitable crossover operator is dependent on the problem domain and string
representation of the variables. Usually, in traditional genetic algorithms, unipoint or two points
operators have been used. However, some recent researches have shown that operators with
more crossover points, like three or four points, are much more powerful.

3.5 Mutation operator
This operator has an important role in genetic methods as a guard. In these techniques, mutation
seldom happens, ‘and that is a reflection of mutation in real world. Some of numbers (0, 1) in a
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particular situation in all strings of a population may be deleted in the reproduction and

crossover process. Recovering of these situations, is not possible only by use of reproduction

and crossover operators. To fix this by the mutation process, some of binary numbers in strings

change with mutation propability of P,. The mutation probability s.hould be calculated precisely.

If it has a low value, reproduction of good schemas will be prevented, and calculation will be

lowered to a random search method. Jenkins proposes a mutation propability of
=0.05 [8]..

3.6 Schema theory
First, some terms used in the schema theory are descirbed. Then, theinfluence of the three
operators, reproduction, crossover and mutation, on spreading a special type of schema in
squential generations is considered. Here, strings are shown as binary numbers. This assumption
does not damage the generality of the problem. Any of the 0 or I numbers in a string is called a
gene. A schema H is composed of three symbols 0, 1 and *.* shows a number 0 or 1 in a specific
situation. For example, H=* |1 * 0 ** is a schema of length 7. The string A = 0111000 is one
- example of schema H, because genes of string A is compatlble with constant sinations 2,3 and 5
of schcma In a binary string of length 1, there are 3' schemas. Generally, for k symbols, there
are (k+1)' schemas. In a populatlon with np strings, there exsits maximum number of np x 2'
schemas, because any string shows 2' schemas [1].

It is assumed that in a given time interval t, the number of special schemas H existed in
population A(t), are written as m = m(H , t). The number of expected reproductions of a special
schema H in the next generation, under simultaneous action of reproduction, crossover and
mutation operators, is given by the next equation. It is reminded that the multiplication of very
small numbers are neglected.

m(H,t+1)>m(H, :){F g’”] [l (P)J(H) -O(H)(P, )] (26)

In this equation, F(H) is the average fitness of strings that schema H presents in time t. Also,
F =ZF,/np is the average fitness of the total population. Pcand Py, are the crossover and

mutation probability on strings, respectively. Generally, the smaller the defining length of
schema, the lower its order, and higher its average fitness, it will increase in the next
generations. This growth is done exponentially. For the importance of this conclusion, it is called
“the schema theorem” or “the fundamental theorem of genetic algorithms”. This theorem tells
what happens in genetic search process and proves that search process is not random at all [9].

3.7 Convergence criteria

A critical and very important part of optimization process is ascertaining when search for
optimized solution should be stopped. The convergence criteria can have great influence on
workability and dependability of optimization process. One of stopping criterion is the number
of iterations. In genetic search, the new strings of a generation are better than the last generation,
and after some generations, depending on the reproduction, crossover and mutation operators,
and also, the number of problem variables and the number of integers that variables can allocate,
population gets full of strings with high fitness that have only a little difference with the best
member of that generation's fitness. It is evident that in such a state, the average fitness gets
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close to the best member's fitness. Rajeev and Krishnamurthy have proposed that search should
be stopped when the fitness of 85 percent of existant strings in the population becomes similar
[4]. Grierson and Pak use this convergence criteria: “search process in genetic methods goes as
far as in specific numbers of simultaneous generations, there is no improvement in the most
feasible design or when a defined degree of homogenity is found in design groups”.

In addition to these convergence criterion, a criteria is defined as :

F_-F
L L. | PO 27
! - @

max

In this relationship, Fmex and Favg are equal to maximum and average fitness in the present
iteration, respectively, and ¢ is the desired precision.

3.8 The algorithm
Now, the steps of the discussed genetic method is presented:

First step -Data: The geometric and mechanical properties of the structure are entered. If the
size variables are discrete, they should be entered, too. For continuous variables, shape or size,
the upper and lower limits and desired precision are needed. Population size, crossover and
mutation probabilities, crossover type, penalty function coefficient and maximum number of
interations are other data needed.

Second step - Initial population production: Binary string of necessary length, which is a
function of number of design variables and their precision, are produced randomly. The number
of these strings is equal to population size.

Third step — Decoding: In this step, the strings produced from the previous step are decoded
and the real values of design variables are calculated.

Fourth step — Fitness function evaluation: All designs (strings) in the population are analyzed
and stresses, displacements and their weights are calculated. Then, using external penalty
function, fitness function of any string is found.

Fifth step - Reproduction operator: In this step, using proposed selection and reproduction
operator, number of reproductions of any string is determined and the same number of strings
are put in the mating pool.

Sixth step - Crossover operator: Depending on crossover probability, necessary number of
strings, two by two, are selected randomly and based on their type, crossover takes place on
them.

Seventh step - Mutation operator: In this step, the nature of a perecentage of total binary
numbers in population, which depends on mutation probability, is changed. In other words, a
number of 0 or 1s are selected randomly and are changed from 0 to lor from 1 to 0.

Eighth step - Convergence criteria: Here, the criteria to stop the search is controlled. If this
criteria is reached, it goes to the next step, else, goes back to the third step.

Ninth step -Reporting the results and end of process: The results of genetic search that
contain design variables and the optimum weight of structure, and also, the time elapsed in
process, are printed in the output files.

4. NUMERICAL WORKS
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In this section, some optimization problems, having size and shape variables, are analyzed.
These examples have been selected such that they are being useful and practical. To decrease
design variables and also make them applicable, approximate linking of variables have been
used. Some of the shape variables, nodal coordinates, are linking to each other. In grouping these
variables, in addition to keeping symmetry with respect to one or two axes, suitable operation of
structure, and beautiful architecture are considered too. The upper and lower limits have been
chosen so that the nodes can not move on each other. The cross section of the members are
selected as double angle that are presented in table (8). In this table, the minimum radius of
gyration of any section, that is used in calculation of allowable compressive stress, is given. The
cross sections are grouped so that the diagonal, upper and lower members are placed in different
groups. Such groups are inserted in related tables. In all of examples, the modulus of elasticity,
E, density, p, and yield stress of steel, Fy , are as follows:

E =2.07 x 105 MPa, p = 7860 kg/m’ , F, = 2.38 x 10 MPa

Because of applicablity aspect of structures, constraints of optimization are the design rules
of AISC. The constraints are: Stress, buckling and nodal displacements. Stress and buckling
constraints are used for all members. On this basis, their stress is checked so that it does not
exceed the allowable value. If stress in one or some members is exceeded from the allowable
stress, this constraint is not valid and the design is not acceptable. To pull the design to the
feasible space, external penalty function has been used. In this method , designs are transferred
to the acceptable zone of design space by allocating suitable penalties for the invalid constraints.
If a member is compressive, buckling phenomena is controlled based on design code. Also, key
nodal points, for instance, the nodes that loads act on them, or the free end nodes in cantilevers,
that have the largest and most critical displacements are constrained to a maximum value in all
directions. In fact, with this constraint, the required stiffness of the structure is provided. In this
paper, the penalty function coefficient is increased 5 units after 20 iterations. Selection of this
coefficient is simple by normalizing the objective and constraints functions.

4.1 Two dimensional truss bridge with 26 members

In this example, the optimum shape of a two dimensional truss with 26 members, shown in Figure 1,
is found. In this structure, the lower joints are loaded. These joints should have constant
situation. The optimization problem includes stress, buckling and nodal displacement
constraints. The allowable stresses are found from the AISC code. Here, displacement of nodes
number 3, 5, 7,9, 11 and 13 are restrained to 0.05 meters. The members of the truss are located
in four groups as presented in table 1. The cross sectional area of the members are selected from
double angles of table (8).
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Figure | Two dimensional truss bridge with 26 members

Table | Member cross section groups

Group Member Nummber
1 2,6,10,15,19,23,26
2 1,4,8,12,17,21,25
3 3,7,11, 16, 20, 24
4 5,9,13, 14, 18, 22

The nodes 2,4, 6,8, 10 and 12 can move along Yy axis. Shape design variables, using the
structure symmetry, has upper and lower bounds in meters as:

475< X, =y, =y <5
4<X,=y,.=y,5475
2<X,=y,=y,<4

The maximum difference of upper and lower shape variables equal 2 meters. If precision of
0.01 is needed for these variables, minimum length of shape and size variables are 8 and 6,
respectively. This optimization problem includes four independent variables of size and 3 of
shape. So, the length of any string equals 48.

The final optimized solution for this structure, using all of four methods, are presented in
table 2. The best solution is found using proposed method, having weight of 2588 kilograms.
After that, the methods of 7, 2 and 5 are in orders. The difference between the proposed method
solution with the best one of other methods 7 with the minimum weight of 2671 kg is 3.1
percent. In this example, 5 gives the worst optimized solution. One reason is the selection of a
nonsuitable weight normalization factor that should be entered in that method. Numerical
experience is needed for any problem to find a suitable value for this factor. This, damages the
automation of the method and is one of difficulties for this technique.
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Table 2 Final solution for truss bridge with 26 members

Variable Ref. [2] Ref. [7] Ref. [5] Proposed
Ai(cm?) 15.06 15.06 16.26 15.06
A; 60.00 60.00 60.00 55.00
As 23.8 21.00 22.00 22.00
As 50.20 50.20 50.80 50.80
X,(m) 475 4.75 4.808 4750
X, 4.00 4.00 4.006 4.00
X3 2.25 2.563 2.484 2.500
Weight (kg) 2680.0 2670.9 2707.02 2587.5
Time (Sec) 171.03 167.41 161.81 168.35

The solution fluctuation of any generation is shown in Figure 2. Rapid convergence and little
fluctuation in the proposed algorithm and method of ref [2]) and [7]) is evident in the figure. In
these methods, the fluctuation has been omitted completely after 25th iteration, but in ref [5])
method, this exits till the end of the process.

- e

Esmas m

— R

Seans  Propcasd

o\’\-—l"J‘Hﬂr . @
Y el
] + +

. » - - L L]

Iteration

Figure 2 Convergence history for optimized solution of truss bridge with 26 members

4.2 Space truss with 34 members

In this example, a space truss with 34 members, shown in Figure 3, is studied. The structure
loading is presented in table 3. Optimization of the shape of this truss is performed under stress,
buckling and nodal displacement constraints. The stress in all members should not be more than
allowable ones. In nodes 9, 10, 11 and 12, displacement in z direction is restrained to 0.05
meters, and also, to 0.02 meters in x and y directions. The structure members are divided to 7
groups -as presented in table 4 -and their cross section will be chosen from double angle profiles

of table 8.



58 M. Rezaiee-Pajand and M. Mahdian

Table 3 Loading or space truss with 34 members

Node Py KN P,KN P,KN
9 0 10 -25
10 0 0 -25
1 10 0 -25
12 10 10 -25

Table 4 Groups of members for space truss with 34 members

Group Member Number

1 1,2,3,4
5,6,7,8,9,10,11, 12
13, 14, 15, 16
17,18, 19,20
21,22, 23,24, 25, 26, 27, 28
29,30, 31, 32
30, 34

SN v |lwvn | AW

The displacement of nodes 1,2,3 and 4 in x and y directions, and also, of nodes 5,6,7 and 8 in
X, Y and z directions are selected as shape design variables. Because of symmetry of the structure
with respect to xz and yz planes, the variables are divided into 5 groups. These groups and their
upper and lower limits are as:

ISX] =X, =X, =—X; =X, <4
1£X,=y,=y,=-y,=-y, <4

1SX,=y;=y,=-y;=-y; <4
25 X,=2,=2,=2,=2,<6

The maximum difference between upper and lower limits of shape variables is in the fifth
group (Xs) and equals to 4. If precision of 0.01 is used, the length of substrings showing these
variables will be 9. The total number of independent design variables in this example equals to
12. Here, to make the optimization problem unconstraint, a penalty function coefficient of 10 is
used. The weight normalization factor for [5] scheme will be equal to 1500.

The optimization results of the four discussed methods are presented in table 5. As it is
evident in the table, the best sqlution belongs to the proposed method giveing an optimized
structure with the weight of 1327.5 kilograms. Next is [2] method, with minimum weight of
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1385.4 kg and [5] with weight of 1397.8 kg and at the last, [7] technique, with an optimized
structure having weight of 1398 kg. It is reminded that the optimum structure dimensions in xy
plane will be 2 x 2 meters and these dimensions are constant through the height of structure. In
other words, the optimized structure is the one being prismatic in the height.

Table 5 The optimized solution for space truss with 34 members

Variable Ref. [2] Ref. [7] Ref. [5] Proposed
Ai(cm?) 21.60 21.60 21.60 16.26
A, 13.80 16.26 16.26 13.82
A; 9.68 9.68 9.68 9.68
Aq 11.64 11.38 11.64 11.64
As 15.06 11.64 11.64 15.06
As 9.68 9.68 11.38 9.68
A; 1.000 9.68 9.68 9.68
X(m) 1.000 1.000 1.041 1.094
X, 1.000 1.000 1.000 1.000
X; 1.000 1.000 1.059 1.000
X4 1.000 1.000 1.029 1.000
Xs 3.578 4563 4.266 3.594
Weight (kg) 1385.4 1398.0 1397.8 1327.5
Time (Sec) 259.64 255.63 238.81 254.58

The convergence history in any generation 1s shown in Figure 4. In this problem the solution
fluctuations have been reduced in ref [5]) method.

Figure 3 Convergence history of optimized solution for space truss with 34 members
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5. CONCLUSIONS

In this method, variations of the optimized weight of the structure in sequential iterations has
less fluctuations. It proceeds monotonously to a design with smaller weight.

Studying the proposed relationship for selection and reproduction operators, it was seen that
strings with less fitness than the average total fitness is omitted soon and they loose the
opprotunity of being placed in mating pool. In other words, they will not participate in
generating the strings of the next generation. In addition, the population characteristics will not
be broken in any generation and good schemas will remain from the previous generations.
Therefore, convergence to the optimized solution, specially in large populations that have
population size greater than 50, will increase significantly.

Based on the experience of the previous investigation and also the writers numerical works,
crossover type is effective in search process. Three points, four points and uniform crossovers
having percentages of 10, 20, 30, 40 and 50 have been studied in this investigation, and among
them, three points crossover has shown to be the best. So, this type of crossover has been used
for the analysis. -

REFERENCES

1. Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning.
Addison - Wesley, Reading, Massachusetts, 1989.

2. Grierson, D.E., and Pak, W:H., "Optimal Sizing, Geometrical and Topological Design
Using a Genetic Algorithm, “Structural Optimization”, 6(1993)151-159.

3. Gage, P.Y., Kroo, L M. and Sobieski, I. P., "Variable-Complexity Genetic Algorithm for
Topological Design", AI4A Journal, No.11, 33(1995) 2212-2217.

4. Rajeev, S, and Krishnamoorthy, C.S., "Discrete Optimization of Structures Using
Genetic Algorithms". J. Struct. Engrg. ASCE., No.5, 118(1992).

5. Adeli, H., and Cheng, N. To, "Integrated Genetic Algorithm-for Optimization of Space
Structures" J. Aerospo Engrg, ASCE, No.4, 6(1993).

6. Wu, S. J. and Chow, P. T., "Integrated Discrete and Configuration Optimization of
Trusses Using Genetic Algorithms", Computers & Structures, No.4, §5(1995) 695-702.

7. Ohsaki, M, “Genetic Algorithm for Topology Optimization of Trusses”, Computers &
Structures, No.2, 57(1995)219-225.

8. Jenkins, W. M., “Towards Structural Optimization Via the Genetic Algorithm”,
Computers & Structures, No.5, 40(1991) 1321-1327.

9. Wu, S. J. and Chow, P. T., “Steady-State Genetic Algorithms for Discrete Optimization
of Trusses”, Computers & Structures, No.6, 56(1995)979-991.

10. Hajela. P ., and Lin, C. Y., “Genetic Search Strategies in Multicriterion Optimal
Design”, Structural Optimization, 4(1992)99-107.



