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ABSTRACT: Tresca type yield surfaces suitable for a kinematic hardening for
mulation of incremental theory of plasticity are presented. A uniaxial symmetric 
Tresca yield condition, along with a linear kinematic hardening rule, is utilized 
to formulate a small displacement, plane stress incremental theory of plasticity. 
This theory is applicable to materials with both equal and unequal tension and 
compression yield stress. Constitutive laws for sides and corners of the yield 
surface are derived. Finite element formulation, numerical solution and appli
cation are discussed. 

INTRODUCTION 

Incremental theories of plasticity, along with the finite element direct 
stiffness method, have been used widely for inelastic structural analysis. 
A solution procedure for the elasto-plastic problem is to find the incre
mental displacements from the equilibrium equations and proceed to 
calculate incremental strains and stresses. The load may be applied to 
the structure in incremental form. At any step of the analysis, the total 
displacements, strains, and stresses can be found. A new stiffness ma
trix can be formed for any state of stress, and the analysis continued for 
the next step. During any step of the analysis, the state of stress must 
satisfy the yield criterion. 

In the past, most of the elasto-plastic finite element formulations have 
used the von Mises yield condition. The primary reason for wide usage 
of the von Mises yield surface, besides the experimental justification for 
some materials, is the mathematical description of the surface. The von 
Mises yield surface is defined by one smooth elliptical curve, which is 
simpler than other yield conditions for the derivation of constitutive laws 
and computer coding. Among the many excellent studies that have used 
the von Mises yield condition, utilizing both initial strain and initial stress 
approaches, the following are prominent: Refs. 7, 8, 11, 13-15, 18, 21, 
and 23. 

Experimental research by Phillips and others shows that the yield sur
face of metals lies between the von Mises and Tresca surfaces (12,10). 
Phillips also shows that the yield surface for many metals closely follows 
the Tresca surface (12). Anand and his colleagues used the Tresca yield 
condition and isotropic hardening, subject to only monotonically in
creasing loads, to formulate several plane stress and plane strain plas
ticity theories (2,3,4,5). However, theory involving the Tresca type yield 
condition and the kinematic hardening rule, which is suitable for cyclic 
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loading, should also be considered and is the subject of this paper. 
The contribution of this work to the area of plasticity is threefold: (1) 

It uses a linear yield surface with vertices, together with a kinematic 
hardening rule, whose use might become advantageous in some cases 
in which materials do not retain a smooth yield surface after initial yield, 
especially for nonmonotonic loading cases; (2) the formulation is suitable 
for the elasto-plastic analysis of the plane stress problem under static 
and cyclic loading; and (3) the selected yield condition can be utilized 
for the approximate elasto-plastic analysis of tension-weak materials such 
as soil, concrete, glass, and ice. 

In order to formulate the elasto-plastic analysis, the constitutive laws 
have to be established. Establishment of the constitutive laws requires 
three items: initial yield condition, hardening rule, and flow rule. In this 
study, the uniaxial symmetric Tresca yield surface was selected for the 
yield condition. The uniaxial symmetric Tresca yield surface is defined 
as a yield surface with unequal axial tensile and compressive yield stresses. 
It is symmetric about an axis passing through the origin and making an 
angle of 45 degrees with the CTX axis. In contrast, the more usual Tresca 
yield surface is a center symmetric yield surface. Ziegler's modification 
of Prager's kinematic hardening rule, which is suitable for loading and 
unloading and considers Bauschinger's effect, was chosen for establish
ing the conditions for subsequent yield from a plastic state (22). A com
prehensive discussion of different kinematic hardening rules and justi
fication for choosing the Ziegler's hardening rule is given in Ref. 6. The 
associated flow rule for the uniaxial symmetric Tresca yield condition, 
and the kinematic hardening for linear hardening material, were em
ployed in order to relate the plastic strain increments to the stresses and 
stress increments. 

YIELD CONDITION 

The general form of a yield condition suitable for kinematic hardening 
may be expressed as 

F({cr-a}) = 0 (1) 

in which {a} = the state of stresses; and {a} = a vector relating the spatial 
position of the yield surface to the plastic history of the material. 

Tresca Yield Condition.—The center symmetric Tresca yield condition 
for the plane stress problem, in terms of principal stresses, may be ex
pressed as 

F({*}) = K*i - <J2)2 - <T2
0](<T1 - a2)(a| - a\) = 0 (2) 

in which <r,- = a,- — a,-; and a0 = twice the maximum permissible shearing 
stress in the elastic state in tension. Eq. 2 may be expanded to a set of 
six functions, each defining one face or side of the hexagonal yield surface. 

The frequently used center symmetric Tresca yield condition does not 
represent the behavior of a material with different tensile and compres
sive yield strengths. In order to extend the generality of the constitutive 
relationships, and to formulate a plasticity theory applicable to a material 
with equal or unequal tensile and compressive yield strengths, the uni
axial symmetric Tresca yield condition is used in this paper (see Fig. 1). 
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LEGEND 
INITIAL YIELD CONDITION 
SUBSEQUENT YIELD CONDITION 

FIG. 1.—Uniaxial Symmetric Tresca Yield Condition 

The equation of this yield surface, in terms of principal stresses, can be 
obtained by writing equations for all six sides of the hexagon as 

F 1 = CTi - cr0 = 0; F2 = —CT2 - «tr0 = 0; F 3 = av1 — a2 - aa0 = 0; 

F4 = o-2 - cr0 = 0; F5 = - d j - av0 = 0; F6 = aa2 ~ di _ a^o = 0 . . . (3) 

It is noted that the mathematical difference between the center sym
metric and uniaxial symmetric yield conditions is expressed by the pa
rameter a, in which a = a c /a ( . ac and cr, are the yield stresses in 
compression and tension, respectively. If a = 1.0, the yield condition 
will be center symmetric; otherwise, it is in the general form of the uni
axial symmetric Tresca yield condition. 

By invoking the relationship between principal stresses and Cartesian 
stresses, these yield functions may be written as 

F1 = c2ax + s2vv + 2csdr '*/ a„ = 0; 

F2 = s2ax — c2vy + Icsdxy - aa0 = 0; 

F3 = (ac2 - s2)ax + (as2 - c2)ay + 2cs(l + «)**, - av0 - 0; 

F4 = S2CTX + c25v - 2CSCT„ - CT0 = 0; 

F = -c &x- s ay - Icsa^ - av0 = 0; 

F" = (asz - cl)ax + (ac2 - s2)5y - 2cs(l + fl)d^ - a<r0 = 0 (4) 

in which c = cos 9; s = sin 9; and 9 = the angle between the x-axis and 
the direction of the major principal stress measured positive counter
clockwise. 

ELASTO-PLASTIC CONSTITUTIVE RELATIONSHIP 

The uniaxial symmetric Tresca yield surface has six sides and six sin-
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gular corners. Fig. 1 shows the initial and subsequent states of this yield 
surface in the principal stress space. Any stress point, depending on the 
state of stress, can be either inside the yield locus, which is the elastic 
state, or at the yield surface, which is a plastic case. Stress points outside 
the yield locus are not defined, and their values are inadmissible. In the 
elastic state, the constitutive laws are well known and the elasticity re
lationships are applicable. In the plastic case, the stress points are lo
cated at the yield surface. Depending on the location of the stress state 
at the yield locus, different constitutive relationships must be applied. 
However, because of the symmetry of the yield locus, only half of the 
yield condition needs to be utilized in the analysis. 

ELASTO-PLASTIC STRESS-STRAIN MATRIX FOR SIDES 

The yield function for side i of the uniaxial symmetric Tresca yield 
surface is expressed by 

F'lW - a}] = 0 (5) 

in which {cr} = the state of stress; and {a} = the position of the yield 
surface origin with respect to the origin of the initial stress space. The 
total derivative of Eq. 5 leads to 

dcrj [ 9a 

and j — I {5(T-8a} = 0 

(6) 

(7) 

The flow rule, or normality principle, is given by 

fdF''] M = X't) (8) 
in which X, = a constant coefficient to be determined later. Decompo
sition of the total strain into elastic and plastic components can be ex
pressed as 

{8e} = {8ee} + {be"} (9) 

Derivation of an elasto-plastic matrix for any side /, [D]'ev, considering 
the Tresca yield condition and isotropic hardening rule, is presented in 
Ref. 3. A similar procedure is utilized herein to derive the relationship 
between the increments of stresses and strains (see Ref. 19 for details). 
The final result is 

(M = 
sF'l TAFH T 

P I . - [ D M - [ M i r 1 - P i . {Be} (10) 

in which [D]e = an elasticity matrix containing the appropriate elastic 
material properties; and 

^-f^MfWfl <-> 
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The kinematic hardening rules provide two more conditions. According 
to Ziegler's modification of Prager's rule, these conditions are expressed 
by 

{8a} = {a - a}d(x (12) 

| — 1 {8CT - Hbe''} = 0 (13) 

In the above equation, H = the hardening properties of the material; 
and d\i = a constant. The unknown constant, d\x,, can be evaluated by 
utilizing Eqs. 7 and 12. 

^-fiFf (14) 

{CT - a} 
da J 

Using Eq. 8 along with Eq. 13 leads to 

Kt = — = (15) 

Lao-J [do-. 

Substituting X,- from Eq. 15 into Eq. 8 will result in the incremental form 
of the plastic strain-stress relationship: 

{8ep} = = (16) 

„f*q'ff£T 
[ 9cr J [da. 

The previous equation can be utilized to evaluate the hardening coef
ficient, H. This may be done by imposing the uniaxial stress-strain re
lationship upon Eq. 16. 

PLASTIC STRESS-STRAIN RELATIONS FOR SIDES 

Taking the larger principal stress in the direction one, or algebraically 
a i S a 2 , the stress points always lie on or below the 45° diagonal EOB. 
Therefore, it is required that the constitutive laws be defined only for 
three sides and four corners of the yield surface, namely sides AB, EF, 
and AF, and corners A, B, E, and F (see Fig. 1). 

Side 1 (AB).—For i = 1, substituting the value of the derivatives of 
F1 with respect to various stress components from Eq. 4 into Eq. 11 and 
simplifying yields 

[M], = Ht(l + 2 c V ) + -^—2 , (17) 
1 - v 
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This value of [M]x and the derivatives of F1 in Eq. 4 are substituted into 
Eq. 10 to yield the plastic stress-strain matrix for side 1 as 

[ £ > ] * = • 

" 1 V 

V 1 

0 0 

0 
1 - v 

[M] , ( l -v 2 ) 

i du di3 

d22 da | (18) 

SYM dsJ 

for i = 1, in which 

dn = (c2 + vs2)2; d12 = (c2 + vs2)(vc2 + s2); d13 = cs(c2 + vs2)(l - v); 

d22 = (vc2 + s2)2; d23 = cs(vc2 + s2)(l-v); d33 = [cs(l - v)]2 (19) 

The elasto-plastic matrix, [D]^ , is related to the hardening parameter, 
H, which must be determined. Following the same procedure which was 
used by Armen for the von Mises yield condition and kinematic hard
ening rule (6), Eq. 16 is utilized for three components of stresses, 
(ffi/tfy/ffjy)/ one at a time. For each stress component, a corresponding 
hardening parameter was defined, i.e., Hx = (do^/de?); Hy = (da-y/de£); 
and Hxy = (So-^/Se^). Final evaluation of Hx, Hv, H^, assuming an 
average value for H, leads to 

H' 
(20) 

In the equation, H' = the slope of the uniaxial stress-strain curve de
veloped from test data. 

Side 2 (EF).—Proceeding in the same manner as described for Side 1, 
the value of [M]2 is given as 

[M]2 = H2(l + 2 c V ) + 
1 - v 2 

and the stiffness matrix [D]2
p by Eq. 18, for i = 2, in which 

<*„ = (s2 + vc2)2; dn = (s2 + vc2)(vs2 + c2); 

da = -cs(s2 + vc2)(l - v); d22 = (vs2 + c2)2; 

i 2 3 =-cs(vs 2 + c 2 ) ( l -v ) ; d33 = [ c s ( l -v ) ] 2 ; H2 = -
H' 

(21) 

(22) 

Side 3 (AF).—Derivatives of yield function F3 from Eq. 4 are again 
used in Eq. 11, which leads to 

[M]3 = H3[a2(l - 2c2s2) + 1 + 2c2s2 

+ 8acV] + (a2 + 1 - 2av) 
1 - v 

(23) 
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and which, in conjunction with Eq. 10, yields the plastic stress-strain 
matrix for Side 3 as Eq. 18, for i = 3, in which 

dn = [(ac2-s2) + v(as2-c2)]2; 

da = [(ac2 ~ s2) + v(as2 - c2)][v(ac2 - s2) + (as2 - c2)]; 

dn = [(ac2 - s2) + v(as2 - c2)](cs)(l + «)(1 - v); 

d22 = [v(«c2-s2) + (fls2-c2)]2 ; 

d23 = [v(ac2 - s2) + (as2 - c2)](cs)(l + a)(l - v); 

dss = [cs(l + «)(1 - v)]2; H3 = y (24) 

ELASTO-PLASTIC STRESS-STRAIN MATRIX FOR CORNERS 

The yield function for any corner, i.e., corner ;', consists of the yield 
functions for the adjacent sides, n and m. These functions and their total 
derivatives can be expressed as 

F"[{a-a}] = 0 (25) 

Fm[{<j-a}] = 0 (26) 

(dF"V 
| — j {5a - 8a} = 0 (27) 

(dFmV 
\ 1 {8cr - Sa} = 0 (28) 

r ^ ' l ["(^"1 f3F m l l Dehnmg [-J = [ ( - j ( - J J (29) 
Eqs. 27 and 28 can be transformed into the following relationships: 
I- •-! T 

d F ' \ r 

{8ff - 8a} = 0 (30) 
da J 

— {8cr} = — {5a} (31) 

According to Koiter's generalization of the flow rule (9), the flow rule 
for corner j is given by 

, , (dF") (dFm] TdF'l . 
{ 8 e P } = x" — + Xm — = — {X'} (32) 

I. da J I 3ff J [ d(T J 
with the specification that 
{\'}T = [\nkm] (33) 

Decomposition of the total strain is given by Eq. 9. 
A procedure similar to that used for the derivation of the elasto-plastic 

matrix for the sides is utilized to derive the elasto-plastic matrix for any 
corner;', [D]'ep. Ref. 19 presents the details of this derivation. The final 
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result is 

{8a} [D]e=[D]e 

3F> 

da 
[M>] h-1 

in which [M1] = H 
5 F 

5a 

8F> 

da 

dF> 

Sa 

+ 

[D], 

8F>' 

5a 

{8e} 

[D]t 

3_F_ 

da 

The kinematic hardening rule can be expressed as 

{8a} = {a - a}d\i... 

BF' 

5a 
{ 8 a - H 8 e ' , } = 0 

Insertion of Eq. 36 into Eq. 31 leads to 

5 P 

5a 
{a — <x}d\x = 

BF' 

3a 
{8a}. 

(34) 

(35) 

(36) 

(37) 

(38) 

Premultiplying Eq. 38 by {8a} r [dF/5a] and solving for d|x we obtain 

T 

{8a}7 

d\L = 

BF' 

3u 

5 F 

5a 
{8a} 

{8a}5 dF> 

5a 

8F> 

5a 

(39) 

{ a - a } 

Insertion of Eq. 32 into Eq. 37 and premultiplication of the result by 
[[dF'/dafldF'/da]]-1 leads to 

, k ' » = H 
TSF" 

5a 

r ~dFr 

5a 

- - l ~3F>~ 

5a {8a}. (40) 

Finally, substituting for {X7} from Eq. 40 into Eq. 32 leads to the incre
mental plastic strain-stress relationship as 

{8ep} = -1 ' H 

3F> 

da 

5 F 

5a 

5 P 

5ff 

5 F 

5a 
{8a}. (41) 

PLASTIC STRESS-STRAIN RELATION FOR CORNERS 

Corner A.—The value of matrix [MA] may be evaluated using Eq. 35 
and derivatives of F 1 and F 3 from Eq. 4. Defining 

[NA]^[MA]'1 = 
nil « u 

«21 #22. 
(42) 

the determinant of matrix [MA] and elements of matrix [NA] are pre
sented as 

Det [MA] = H ( l + 2c2s2) + 
1 - v 2 H[( l + 2 c 2 s 2 ) ( l + a 2 ) + 4 a c V ] 
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„A -
Mil — 

; (fl2 + 1 - lav) 

1 

H[«(l + 2 c V ) + 2 c V ] + 

Det[MA] 

-2«v) ; n4 = «2i = 

H[(l + 2cV) ( l + « ) + 4«cV] + 

1 - v 2 

E 

( f l - v ) 

; (a2 + 1 

Det[M [MA]/i 

(« - v) \; nq2 = 

H[a(l + 2c2s2) + 2 c V ] 

£ 

Det[MA; 
H(l + 2 c V ) + 

l - v : 
(43) 

Substitution of the value of [D]s and derivatives of F 1 and F 3 from Eq. 
4 and matrix [AP4] from Eq. 43 into Eq. 34 leads to the plastic stress-
strain matrix for corner A as 

[D]'„ = 
1 - v 2 

r l v 

v 1 

0 0 

0 - i 

0 
1 - v 

2 -> 

1-v2 

•dn dl2 

dn 

SYM 

da 

d23 

das-1 

(44) 

for j = A, in which 

dn = «n(Al)2 - 2n&{Al)(A2 + vA3) + n2\(A2 + vA3)2; 

d12 = n£(Al)(A4) - nt2(Al)(vA2 + A3) - K£,(A4)(A2 + vA3) 

+ *4(A2 + vA3)(vA2 + A3); d13 = cs(l - v){nfi(Al) - n£(A2 + M3) 

+ (1 + a)[n?2(Al) - n£(A2 + vA3)]}; d22 = n?i(A4)2 - 2«f2(A4)(vA2 

+ A3) + ni2(vA2 + A3)2; d23 = cs(l - v){n£(A4) - n?2(vA2 + A3) 

+ (1 + a)K2(A4) - n2\(vA2 + A3)]}; 

d33 = [cs(l - v)]2[n£ + 2n&(l + a) + »&(1 + a)2]; 

Al = c2 + vs2; A2 = s 2 - a c 2 ; A3 = c2 - AS2; A4 = vc2 + s 2 . . . . (45) 

The parameter, H, for corner, A, can be obtained from Eq. 41. The pro
cedure is to find Hx, Hy and H^ corresponding to (do^/de?), (doy/ds.vy) 
and Sff^/SeJ,,), respectively. Assuming an average value for H, one ob
tains the result H = 2H'/3. 

Following the procedure previously outlined, stress-strain relations for 
corners B, E, and F may be derived. They are given as follows. 

Corners B and E.—Stress-strain relations for these two corners are the 
same. Defining 

[NB] = [ME »11 «12 

M B « B 

. " 2 1 " 2 2 . 

(46) 

elements of matrix [NB] are 

784 

Downloaded 25 Nov 2009 to 194.225.128.135. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright



H(l + 2c2s2) + 
Kl l - «22 -

1 - v 2 

„ 2 n , , 2 2 U
 E / 4HEc 2 s 2 \ H2(l + 4 c V ) + ^ — - (£ + 2H) + I j 

2Hc2s2 

"12 = " ! i = 

vE 

1 - v 2 

H2(l + 4 c V ) + ^ — - (£ + 2H) + I j 

(47) 

The elasto-plastic matrix for corner B is given by Eq. 44, for / = B, in 
which 

du = n?:[(s2 + vc2)2 + (c2 + vs2)2] + 2n\2(c
2 + vs2)(vc2 + s2); 

d12 = 2nB
u(c

2 + vs2)(vc2 + s2) + nB
12[(c2 + vs2)2 + (vc2 + s2)2]; 

d13 = cs(l-v)2(c2-s2)(nB
n-n

B
n); 

d22 = nB
n[(c2 + vs2)2 + (vc2 + s2)2] + 2n\(c2 + vs2)(vc2 + s2); 

d23 = cs(l - v)2(s2 - c2)(nB
n - nB

12); 

2F-T' 
d33 = 2[cs(l - v)2(nB

n - nB
2); H = — 

Corner F.-—Defining 

(48) 

[NF] = [Ml «11 «12 
F F 

n2l ^22_ 

(49) 

the determinant of matrix [MF] and elements of matrix [NF] are pre
sented as 

Det [MF] = (AF)H2 + (BF)H + (CF); 

AF = [(1 + 2cV) ( l + a2) + 4 cV] ( l + 2 c V ) - (1 + 2«cV + 2c2s2)2}; 

BF = ; {[(1 + 2c2s2)(l + a2) + 4c2s2] 
1 - v 

+ (1 + a2 - 2«)(1 + 2c2s2) - 2(1 + 2flc2s2 + 2c2s2)(l - av)}; 

CF = 
(«E)2 

1 - v 2 nfu = 
Det[Mf 

H(l +2c2s2) + 

"12 = «21 = 

1 - v 2 

E 

1 ~v 

" 2 2 = 
1 

Det[MF] 

. ,, H(l + 2 a c V + 2 c V ) + ; (1 - «v) 
D e t [ M F ] " v i _ , . 2 ^ 

H(l + 2c2s2)(l + a2) + 4 c V ] 

1 - v 
(1 + a2 - 2av) (50) 
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The elasto-plastic matrix for corner F is given by Eq. 44, for ; = F, in 
which 

d11 = nd(F2 + vF3)2 + 2n[2(F4)(F2 + vF3) + nf2(F4)2; 

rfiz = nF
n(F2 + vF3)(vF2 + F3) + n[2[(F5)(F2 + vF3) 

+ (F4)(vF2 + F3)] + nf2(F4)(F5); d13 = cs(v - l)[nF
n(F2 + vF3)(l + a) 

+ nF
12(F2 + vF3 + F4 + aF4) + nf2(F4)]; d22 = n[i(vF2 + F3)2 

+ 2«f2(F5)(vF2 + F3) + nF
22(F5)2; rf23 = cs(v - l)[nF

u(vF2 + F3)(l + a) 

+ nF
12(vF2 + F3 + F5 + aF5) + nF

22(F5)]; 

2/-f' 
d33 = [cs(l - v)]2[nfj(l + a)2 + 2«f2(l + a) + nF

22]; H = — ; 

F2 = s2 - ac2; F3 = c2 - as2; F4 = s2 + vc2; F5 = c2 + vs2 (51) 

FINITE ELEMENT FORMULATION 

The constant strain triangular element (CST) is used in this study. The 
finite element formulation of the incremental equations of equilibrium, 
relating the nodal incremental displacements to incremental forces through 
the elasto-plastic stiffness matrix, is described in Refs. 5 and 19. The 
incremental force-displacement relationship of the whole structure in a 
global coordinate system is in the form 

{BQ} = [K]^} (52) 

in which {8Q} = a column matrix of the incremental nodal forces; {hq} 
= a column matrix of the incremental nodal displacements; and [K]ep = 
the stiffness matrix of the structure. 

SOLUTION PROCEDURE 

Among the many solution procedures for nonlinear static problems, 
a method of solution should be selected that is suitable for cyclic anal
ysis, easy to implement, has the desired accuracy, and is computation
ally economical (17). Based on these factors, a combination of the tan
gent modulus and the residual force method was selected for the 
computational process (23). 

For any step of the analysis, locating the stress point with respect to 
the yield surface will result in an elastic, plastic, or inadmissible state of 
stress. In the elastic or plastic case, the corresponding element stiffness 
can be utilized. For the stress points outside the yield surface, an in
admissible state, the stress point will be forced to the yield surface and 
the inadmissible part of the stresses will be calculated. 

Solving equation [K]ep{bq} = {8Q}, the incremental displacements can 
be found; then incremental strains and incremental stresses can be ob
tained. Adding these incremental values to the corresponding previ
ously known values, the total displacements, strains, and stresses can 
be calculated at any stage of the process. 

Although the solution obtained by this technique is in equilibrium at 
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any step, some stresses may violate the yield condition unless special 
corrective schemes are imposed during each load increment. If the total 
stresses are inadmissible stresses and exceed the yield surface by the 
amount of {8cr}c, then these excess stresses can be assumed as initial 
stresses. These initial stresses exist within elements and are to be bal
anced by a set of nodal corrective forces, {P}c. These nodal forces are 
expressed in the finite element formulation as 

{P}c = J [B]T{b<T}cdv (53) 
JVOL 

Having the elastic properties of the element and the corrective nodal 
forces, {P}c, incremental stresses are found, which can be corrected in 
a similar fashion, if necessary. The correction procedure is repeated until 
the stresses in all elements satisfy the yield condition and the corrective 
nodal forces, {P}c, approach sufficiently small values. At this stage of 
analysis, equilibrium, as well as the yield criterion, is satisfied. 

In the same way, the incremental value of the translation vector, which 
shifts the yield surface position, is obtained at any step. Superimposing 
this value on the stored value of the last step, the total value of the 
translation vector and, therefore, the position of the yield surface for the 
next step, will be known. 

The remainder of the residual nodal forces, along with the next step 
incremental load, is applied to the structure at the beginning of each 
successive step. The same procedure is repeated for the next step, by 
updating the stiffness and finding the new displacements and stresses. 

Loading and unloading criteria for sides and corners are well estab
lished. A summary of these conditions is presented in Ref. 19. 

EXAMPLES 

Two examples are presented herein. The purpose of the first example 
is to study the load-deflection behavior of a material, with unequal ten
sion and compression yield strengths, under cyclic loading using elasto-
plastic analysis with a linear kinematic hardening rule and the Tresca 
yield surface. 

A fixed-fixed end beam with rectangular cross section under a grad
ually and uniformly distributed cyclic load is considered for the first ex
ample. The beam is assumed to be made of material with linear elastic 
and perfect plastic behavior. The initial yield strength in tension is as
sumed to be 350.00 psi (2.41 MPa), and the corresponding value in 
compression is 10 times higher, 3,500.00 psi (24.13 MPa). The modulus 
of elasticity is assumed to be 3,500,000.00 psi (24,132.50 MPa), and Pois-
son's ratio is taken to be 0.15. 

A graphical representation of the beam and finite element mesh is given 
in Fig. 2. In this figure, L = 72.00 in. (1,828.80 mm) and H = 12.00 in. 
(304.80 mm); the thickness of the beam is assumed to be 3.00 in. (76.20 
mm). 

The applied load is sinusoidal in the form of F(i) = A sin (wf), in 
which A = 750.00 lb/in. (131.34 N/mm) and co = 1.0 rad/sec. Here t = 
a parameter to control the cyclic behavior of the load. 
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placement of Node at Center and Bot
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The load is applied incrementally, with a starting parameter increment 
of At = 0.02 sec. Since the applied load should be small in the plastic 
analysis, this parameter increment was reduced once the plastic region 
started and progressed. A total of 950 increments, equivalent to a pa
rameter value of 13.024 sec, is considered in this case. This is more than 
two cycles of loading. 

Due to the low tensile yield stress of the material, the first elements 
that yielded were those located at the top surface of the beam at the 
fixed supports. Progression of plastic enclaves continued at the supports 
toward the center of the beam, until the number of yielded elements at 
each support reached two. At this point, another plastic region started 
at the bottom and center of the beam. By increasing the applied load, 
the progression of plastic enclaves continued vertically at the supports 
and both horizontally and vertically at the center of the beam. When 
loading started in the opposite direction, another region of plasticity started 
at the bottom of the beam at the fixed supports. 

The load-deflection relationship for point A, located at the center and 
bottom of the beam (see Fig. 2) is shown in Fig. 3. The horizontal shift 
of the hysteresis loops, with no vertical shifting, is an indication of elas-
tic-perfectly plastic material behavior. 

For the sake of comparison, a load-deflection curve of the same beam, 
considering elastic behavior and the same applied load, for a duration of 
20.0 sec and the equivalent of 1,000 load increments, is shown in Fig. 3. 

The purpose of the second example, which is a notched specimen, is 
threefold: (1) To compare the initial yield load of this example with that 
of the isotropic hardening rule to confirm the accuracy of the theory and 
computer program developed in this study; (2) to compare the progres
sion of the plastic enclaves in the isotropic and kinematic hardening rules 
materials; and (3) to compare the distribution of the strains in the X and 
Y directions with the results of experimental research. 

This example was previously investigated experimentally by Theocaris 
and Marketos (16), solved numerically by Allen and Southwell (1), and 
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Specimen in Plane Stress and Isotropic 
Hardening 

solved by finite element analysis, assuming the von Mises yield condi
tion, by Marcall and King (11), Yamada et al. (21), and Zienkiewicz et 
al. (23). Anand et al. (2) and Weisgerber (20) used the finite element 
method together with the Tresca yield condition for a perfectly plastic 
and isotropic hardening rule material in plane stress to obtain the stress 
and strain distribution in the notched specimen. Some of the results in 
these references are included for comparison purposes. 

Fig. 4 shows the finite element mesh of 1/4 of the notched specimen, 
which is used in this paper. This mesh has 321 elements and 189 nodes 
and is as close as possible to that previously used by Anand and Weis
gerber (3). The linear strain-hardening material has the following prop
erties: the initial yield strengths in tension and compression are equal 
to 36.00 ksi (248.21 MPa); the modulus of elasticity is 30,000.00 ksi (206.84 
GPa); and H' = 0.032E. A value of 0.30 is taken for Poisson's ratio. The 
applied load is taken in the form, F(t) = A sin (cof), with A = 19.04 
kips/in. (3,334.26 N/mm) and co = 1.00 rad/sec. 

The kinematic hardening formulation, presented in this paper, leads 
to the initial yield load of P/AvQ = 0.318, which is very close to the one 
reported by Anand and Weisgerber (3). Since the elastic solution is in
dependent of the strain-hardening phenomenon, the difference is due 
to several factors, such as possible difference in finite element mesh points, 
the magnitude of the applied load increments, numerical solution dif
ferences, and others. It should be noted that two different magnitudes 
of loading have been considered for this example: (1) Cyclic loading— 
in this case unloading was started before plastic failure (the results of 
the cyclic loading are not reported here); and (2) monotonically increas
ing load up to plastic failure, for comparison with the isotropic hard
ening rule. However, once plastic flow has been initiated in the speci-
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men, the progression of plastic enclaves is significantly affected by the 
hardening rule. Fig. 5 shows a comparison between the kinematic and 
isotropic hardening results. It is seen that the plastic region for the ki
nematic strain-hardening progresses faster across the plate than for the 
isotropic strain-hardening material. Therefore, the kinematic hardening 
plate has smaller plastic load carrying capacity than the isotropic strain-
hardening one. Nevertheless, in both cases the plastic enclaves do tend 
to progress, basically, in the horizontal direction from the notch root 
when the Tresca yield condition is used. 

The average strain distribution of the nodes along the minimum sec
tion of the specimen, expressed in terms of the initial yield strain, both 
in X and Y directions, is shown in Fig. 6. The strain distribution at Y = 
0.0 is very close to that reported by Anand and Weisgerber (3), and the 
distribution pattern is similar to the experimental results of Theocaris 
and Marketos (16), except near the notch root. As mentioned by Weis
gerber, this is attributed to the fact that the experimental specimen does 
have a small notch root radius, whereas the radius at the notch root of 

0.25 D.50 0.75 1.00 ° 0.25 D.5D 0.75 1.00 

0I5TANCE FROM NOTCH, X/W DISTANCE FROM NOTCH, X/W 

FIG. 6.—Average Strains of Nodes at Y = 0.0 for Notched Specimen In Plane Stress 
and Kinematic Hardening 

DISTANCE FROtt NOTCH, X/H DISTANCE FROM NOTCH, X7W 

FIG. 7.—Strains from Experiment by Theocaris and Marketos 

0.25 D.50 0.75 1.00 ° 0.25 0.50 0.75 1.00 

DISTANCE FROM NOTCH, X/H DISTANCE FROM NOTCH, X/H 

FIG. 8.—Average Stresses of Nodes at Y = 0.0 for Notched Specimen in Plane 
Stress and Kinematic Hardening 
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DISTANCE FROM NOTCH, X/W 

FIG. 9.—Average £et/o-0 of Nodes at Y = 0.0 for Notched Specimen in Plane Stress 
and Kinematic Hardening 

the specimen investigated by finite element analysis is zero. For the sake 
of clarification, Eex/<T0 obtained from the finite element results of Fig. 6 
is expanded and is shown in Fig. 9. The strains obtained experimentally 
by Theocaris and Marketos are shown in Fig. 7. 

The average stress distribution of the nodes along the minimum sec
tion of the specimen is shown in Fig. 8. The distribution of stresses <jj 
(j0 at Y = 0.0 is again very close to the results reported in Ref. 3. The 
effect of the strain hardening property of the material in the Y-direction, 
i.e., on ffy/ffo/ is clearly shown in this figure. 

CONCLUSIONS 

A formulation based on the incremental theory of plasticity with the 
assumption of small displacements was presented for the plane stress 
problem. This formulation uses kinematic hardening and the associated 
flow rule of the uniaxial symmetric Tresca yield function. 

The constitutive equations were developed for the uniaxial symmetric 
Tresca yield surface. From these laws, the elasto-plastic matrices for the 
sides and corners of the yield locus were evaluated. These matrices were 
utilized in the elasto-plastic finite element analysis. 

Through two examples, the procedure demonstrates the ability to trace 
the elasto-plastic behavior of material under cyclic loading. Progression 
of plastic enclaves in the body shows the path of the plasticity. Strains, 
stresses, and displacements at any step of the analysis were evaluated. 
Weak-tension and equal tension and compression strength materials were 
used in this study. 

From comparison of the results, it appears that, at least for the notched 
specimen, the plastic load carrying capacity of a material obeying a ki
nematic hardening rule is less than that of a material obeying an iso
tropic hardening rule for the Tresca yield surface. In general, using the 
method formulated herein leads to an analysis of the behavior of a duc
tile material under cyclic loading beyond the yield limit of the material. 
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