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Abstract—A new formulation for the sensitivity analysis of three-dimensional finite elements is presented.
The method is based upon the implicit differentiation and calculates all parts of deformed element stiffness
matrix. These parts are found by a rather simple factoring technique. The design element procedure along
with the isoparametric concept are used in this presentation. Computer coding of the method is compatible
with the finite element programming technique and can be easily used in structural optimization.
Numerical examples, which show the validity as well as application of the formulation, are presented.
According to the results, the new formulation calculates the sensitivity analysis quickly.

NOTATION
[B] strain matrix of initial finite element
B} strain matrix of deformed finite element
11)] elasticity matrix
F equivalent nodal forces
{F} vector of pseudo-loads
I objective function
f; design element shape function
g constraint function
[j] Jacobian matrix
R 1] determinant of Jacobian matrix
11 [ 31, 1J],  derivatives of |J| with respect to master
node coordinates
K] global stiffness matrix
k], element stiffness matrix
N, finite element shape function
{Q;} vector of virtual loads

{q, vector of virtual displacements

r.st local coordinates of design element

{S} vector of shape variables

{S},{S} lower and upper bounds of {S}

S a particular shape variable

{U} nodal displacements

g a particular displacement component

X YZ global coordinates of design element
nodes

x ¥z global coordinates of finite element nodes

{4} vector of adjoint variables
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1. INTRODUCTION

In most structural optimization studies, sizing design
variables such as the cross-sectional area of bars, the
moment of inertia of beams and thickness of plates
are optimized while the shape of the structure is
considered unchanged. However, it is known that
for many problems taking the boundary shape of
structures as variables may yield a further reduction
of weight and cost. This is the case of shape optimiz-
ation problems which have received much attention
in the last 15 years. A typical shape optimization
problem can be mathematically defined in terms

of shape variables {S} and behavior variables {U}
as

minimize f({S}, {U})
subject to  g,({S},{U}<0, j=1,....,07 (1)
{Sh<{s}<{s},

where fis the objective function which is a criterion for
selection of the optimal design. The weight or volume
of structures are widely used as objective functions in
the field of optimization. Furthermore, g; presents
constraint functions that are to be satisfied at the
optimum design. Stress and displacement constraints
under various load cases are such functions. Finally,
{S}; and {S}, show some technological limitations
that are imposed on the shape design variables {S}.

Structural optimization with shape design variables
is more complicated than with sizing design variables.
Since the shape of the structure is continuously
changing, it is difficult to maintain an adequate finite
element mesh and accurate analysis throughout the
design process. Another difficulty of shape optimiz-
ation arises from complex implicit relations between
response of structures and shape design variables.

Most efficient optimization techniques use deriva-
tives of structural responses with respect to design
variables to obtain a new improved feasible design.
However, calculation of these derivatives with respect
to shape variables, which is called shape design sensi-
tivity analysis, is more expensive and time consuming
due to the implicit relations of structural responses
and shape variables.

Sensitivity derivatives in structural optimization
problems are widely calculated by using the well-
known finite difference techniques [1-3]. A disadvan-
tage of these techniques is that a proper step size
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change should be chosen for the design variables.
Furthermore, for a problem with k design variables,
finite difference calculations of the displacement
derivatives with respect to design variables requires
analysis of k + 1 different stiffness matrices. How-
ever, the large number of analyses associated with
finite difference calculations can be avoided by ana-
lytical computation of sensitivity derivatives.

The first analytical formulation for design sensi-
tivity analysis of continuum structures was presented
by Zienkiewicz and Campbell in 1973 [4] and Ra-
makrishnan and Francavilla in 1974 [5]. It should be
noted that these formulations were only introduced
for two-dimensional problems.

An implicit differentiation approach for sensitivity
analysis in shape optimization of three-dimensional
continuum structures was developed by Wang et al.
in 1985[6]. They used a limited number of master
nodes to charaterize the surface of a set of isopara-
metric finite elements and their coordinates were
adopted as design variables for shape optimization. A
similar approach was used for sensitivity analysis and
shape optimization of axisymmetric structures by
Cheu in 1989 [7].

The purpose of this paper is to present an efficient
formulation for the sensitivity analysis of three-di-
mensional continuum structures. A two-dimensional
formulation has been used by the authors. In the
formulations that follow, the technique of isopara-
metric mapping is used to generate the finite element
mesh from a master element, and nodal coordinates
of this master element are selected as design variables.

Numerical examples are solved and some related

discussions are presented.

2. SENSITIVITY ANALYSIS

This section deals with the calculation of deriva-
tives of static structural response with respect
to general design variables {X}. Naturally, such
derivatives can be calculated when the structure is
modeled by finite elements. By using a finite element
analysis, nodal displacements of structures are ob-
tained from the solution of the following equilibrium
equation

KKU} = {F}, 2
where [K] is the symmetric stiffness matrix of the
structure formed by assembling all of the element
stiffness matrices [K],, {U} is the vector of unknown
nodal displacements, and {F} the vector of applied
forces. Generally, both [K] and {F} are functions of
design variables. It is believed that over 80% of the
computational effort is spent in analysis and design
sensitivity analysis during the entire design pro-
cess [8). Hence, the efficiency of the process can be
improved by adoption of efficient analysis and sensi-
tivity analysis techniques.
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The objective of sensitivity analysis is to compute
the derivatives of nodal displacements, and a typical
function of them such as a behavior constraint
function, with respect to design variables. A clear
description of analytical methods for calculation of
such derivatives has been presented by Arora and
Haug [9-11). They distinguished three methods of
sensitivity analysis: the direct or design space method,
the adjoint variable or state space method, and
the virtual load method. It has been shown that the
virtual load method can be derived from both the
direct and adjoint methods.

In spite of the fact that the three aforementioned
methods of sensitivity analysis differ in some manner,
all of them are based on the direct differentiation of
eqn (2) as

K] {g} = {f;‘—i} - [gﬂlv} ={F, ©

where {F} is referred to as a pseudo-load. It is clear
that by applying the pseudo-load to the structure and
obtaining the solution of eqn (3), the desired displace-
ment derivatives can be achieved.

2.1. Design space method

In this method, sensitivity derivatives of nodal
displacements (i.e. {dU/dX}) are directly computed
by solving eqn (3). Having these in hand, the deriva-
tives of a general constraint function, g;({X}, {U}),
with respect to design variables, can be obtained from
the following equation

dg; 0g; og |"{oU

a7 QD ol 4

{dX} {ax} * {au xy @
It should be added that for N, distinct loading

conditions, eqn (3) must be solved N, times for each

design variable. Therefore, this process is costly when

the number of design variables and loading con-
ditions is large.

2.2. State space method

If the displacements, {U}, and design variables,
{X}, are assumed as independent variables, the
first-order variations of the constraint function,
g({X}, {U}), can be computed as

o= {ag‘} {oX} + {a‘g’} (8U}. ©)

Now an adjoint equation should be defined to
express the effect of variation of design variables {X'}
on the displacements {U} as follows:

[K}{3,} = {‘3“’} ®

where {4,} is the vector of adjoint variables associated
with the constraint function g;. Having the adjoint
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variables {4}, the derivatives of g, with respect to
design variables can be obtained with

)= (e} wrm. m

At first, the adjoint equations have been looked
upon only as a numerical tool for obtaining sensi-
tivity derivatives. However, Belegundu gave them a
physical interpretation and showed that the equations
offer a new method for obtaining influence co-
efficients [12). In fact, the adjoint vector {4;} associ-
ated with the constraint function g indicates how
sensitive the function g; is with respect to applied
forces {F}.

It is obvious that the adjoint variable method
requires solving eqn (6) once for each constraint
function g;. Therefore, in cases where a limited
number of constraints should be considered at a
current design point, the method is preferred to the
design space method. This is the case where an active
set strategy is used to solve the optimal design
problem.

2.3. Virutal load method

In order to calculate the derivatives of a par-
ticular displacement component w, with respect
to design variables {X}, it can be expressed as
follows:

w={Q;}"{U}, ®

where {Q,} is a virtual load vector and has a unit
value at the jth component and all other terms are
equal to zero. Corresponding to the virtual load {Q}
a virtual displacement field {q;} can be obtained
which satisfies the following equation

Ki{q} = {Q}- ®

After the virtual displacements {q;} are computed,
the derivatives of desired displacement component u;
can be easily obtained as follows:

A -wm.

The virtual load method requires solving eqn (9)
once for each displacement component uw; whose
derivatives are needed.

(10)

3. FORMULATIONS

As the first step of sensitivity analysis based on the
implicit differentiation of eqn (2), the derivatives of
global stiffness matrix [JK/0X] and global nodal
forces {3F/dX} should be calculated. These deriva-
tives can be obtained by assembling all derivatives of
element stiffness matrices and element nodal forces.
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In the case of shape optimization, such derivatives
should be calculated with respect to shape variables
{S}). A treatment for the formulation of {0F/aS} for
isoparametric elements is presented in detail by Wang
et al.[6). Therefore, only a new formulation for
finding [0K/dS] is presented here.

The stiffness matrix of an isoparametric finite
element can be formulated as follows [13]:

[kl = j.‘” [B}'[D][B] dx dy dz

+1 41 L4l
=L J' j (BI'ID[B]|3| d¢ dn ¢, (11)

where [B] is the strain matrix which operates on nodal
displacements to produce element strains, [D] is the
elasticity matrix which relates the element stresses
and strains and |J| is the determinant of the Jacobian
matrix [J] which is the multiplier that yields area
dx dydz in global coordinates from d¢ dnd{ in
curvilinear local coordinates.

In most optimal design problems, the mechanical
properties of material are prescribed and do not
change during the optimization process. Hence, the
derivative of the element stiffness matrix with respect
to a shape variable s, can be written in the usual
manner as follows: '

L
+[BD) [g—g])m +BIDIE]

alJ|
0s,

x

}dc dn d¢. (12)

It is known that a typical coefficient in [B] depends
on local coordinates and has &, n, { polynomials in
both numerator and denominator. Therefore, the
parametric intergration of the stiffness matrix and its
derivatives are complex and it must be done numeri-
cally. It is obvious that evaluation of eqn (12) requires
the derivatives of |J| and [B] with respect to shape
variables. Here a new technique for calculation of
such derivatives is introduced. In order to do this, an
m-node isoparametric design element is selected with
natural coordinates r, s, and ¢, such as the one shown
in Fig. 1. The design element consists of several finite
elements.

Once the nodal coordinates of the design element
are determined, the coordinates of its internal nodes,
such as finite elements nodal points, can be computed
by using the technique of isoparametric mapping. It
should be noted that a comprehensive description of
this approach for shape representation of structures
is presented by Wang et al.[6] and readers are
referred to it for more information. Using this



Fig. 1. Design element and its associated finite element. ll
Design element nodes; @ finite element nodes.

technique, the coordinates of finite element nodal
points are generated in the following form

xX= ilﬁ'(r! 35, ‘)Xf
i=
y=‘zlﬁ(rss: 1)Y;

z= Z f;(rv 5, t)zh (13)
i=1

where X;, Y,, Z, and x, y, z are global coordinates of
the design element and its associated finite element,
respectively. Furthermore, f; shows the isoparametric
shape function corresponding to the ith node of de-
sign element. However, instead of the isoparametric
shape function, a spline blending function typical
of computer graphics can also be chosen for the
definition of design element, such as the one used by
Braibant and Fleury [14].

If the coordinates X;, Y, and Z;, related to the K'th
master node of design element, take small changes as
5X,, 8Y, and 8Z, respectively, nodal coordinates of
each deformed finite element can be computed as

£ =x +£(r, s, 1)0X,
y=y +Li(r, 5 1)8Y,

=z +fi(r, s, 1)8Z,. (14)
Here the quantities associated with the deformed
finite element are distinguished by the hat. Having the
nodal coordinates of deformed finite elements, the
components of their stiffness matrices and their de-
rivatives can be calculated.

3.1. Derivatives of the Jacobian matrix

The mapping between global and natural coordi-
nates of finite element is defined by means of the
determinant of the Jacobian matrix. Since numerical
integration of the isoparametric clement stiffness
matrix is done in natural coordinates, the determi-
nant of the Jacobian matrix appears in the formu-
lation of the stiffness matrix. Hence, its derivatives
with respect to design variables are needed in sensi-
tivity calculations.
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If N, and N, N,,, N, represent finite element
shape function and its local derivatives respectively,
the Jacobian matrix of deformed element can be
presented in the following form

(%, 5 £
Ny "Ny Ny P
N=|N, N, N, || & 5 &
Nig= =Ny Ny :
B
[ (X, »n 2
Nig o Ny Ny Lol
=| Ny, Ny Noy X vz
Nl,('”Nt.("'Nu.z :
L L% %
fi(ri, 5, 1)
: X |
+ Ji(ris 81, 1) Y, (15)
: éZ, |

Filras Sur00)

It should be noted that N, N,, and N,; are only
functions of the natural coordinates of Gauss
sampling points and are independent of global coor-
dinates if the number of Gauss sampling points is
held fixed during the design process. Obviously the
Jacobian matrix of deformed finite element can be
presented in a linear form in terms of design changes
8X,, 8Y, and 6Z, as

1=+ U10Xx+ ), Ye + /102, (16)

where
x'{ y'g Z.{-‘ -H_g 0 04
[‘rl= x',’ ya Z‘ s [J]x= HH 00
X; Vi 2zl \_H_c 0 0]
0 H, 0 0 0 HJ:-'
v,=lo H, o Wi=lo o | a7
0 H, 0 0 0 H,
and
H,= ENSfilr, s, 0)
HJ = ZNi.lrfk(rh Siy ‘i)
H.c = EN}.(fk("h 8 1) (18)

In the above formulation, [J}, [/],, [/],, and [J].
show the initial Jacobian matrix derivatives with
respect to master node coordinates X, Yy, and Z;,
respectively. Now, it can be easily proved that the
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determinant of the Jacobian matrix has a linear
relation with the design changes as follows:

W =1T|+ T 0Xx+ 1T |,6Yx+|T|.6Zx, (19)
where
H; yg zz x;g Hp zg
Ue=|H, y, z,b Ul,=|x, H, z,}
Hy y¢ z; x;, Hy z;
x. yo H;
\l.=|x, y, H, (20)
x; yg Hp

are derivatives of |J| with respect to nodal
coordinates X;, Y,, and Z,, respectively. Some
attention to eqn (20) will give a valid relation be-
tween these derivatives. In order to show this re-
lationship, a simultaneous system of equations is
defined as

Xy Vo Za||B2|=|Ha|
X Yo oz ks H,

@1

It is obvious that the coefficient matrix of eqn (21)
is the Jacobian matrix [J] and the right-hand side of
the equation is previously defined by eqn (18). Since
the inverse of the Jacobian matrix is available in the
analysis process, the unknowns A,, h,, and A, can be

easily obtained. Therefore, the derivatives of |J| can

be computed as

le=h-WJl, Ji,=h-lJl, |Jl.=h|J|. (22)
Equation (22) shows that the derivatives |/|,, |/],,
and |J |, are dependent on each other and they can be

computed simultaneously.

3.2. Derivatives of strain matrix

The other component that is required for the
calculation of derivatives of the element stiffness
matrix is the derivative of strain matrix [B]. In
three-dimensional elasticity, the strain matrix [B] is
given as follows:

[B]=[B," - B B,] (23)
[N, 0 0 ]
0 N, 0
0 0 N,
[B]= A I (24)
NEJ N"‘_x 0
0 Nf.z Nr‘.y
Nl'.x Ni.x
where N,,, N,,, and N,, are the derivatives of finite

element shape functions with respect to its global

coordinates. These derivatives can be obtained in
terms of local coordinates as follows:

Nl.x Ni-{
N, [=V1[ N, | 25)

The formulation of strain matrix for the deformed
finite element can be obtained by calculating the
above derivatives in terms of design changes 4X,,
éY,, and 6Z,. However, as mentioned previously, the
derivatives N;, N,,, and N, are only functions of the
local coordinates of numerical integration sampling
points and are independent of design changes. There-
fore, only the inverse of the Jacobian matrix, [J]™',
must be calculated for the deformed finite element.
The inverse of Jacobian matrix [J]~' associated with
the deformed finite element has the following form

o _F

= . 26

V1 ¥l (26)

Here [J} is the adjoint of the Jacobian matrix and its

definition is available in numerical calculus. It can be

proved that [J} has a linear form in terms of the
design changes as follows:

V¥ =¥+ V. FoX + [J,F8Y, +J.FoZ,, (27)

where
0 -T, T,
[Jxr = T; ’ lJyr = 0 ’ ["'I:']‘l =| - Tx »
T, T, 0
(28)
and
Xg Hyl X H,l |x; Hg
T xt( ch x,c Hﬂ x'ﬂ Hﬂ
_ iy yv'f H!'l }',g ch yr‘ H)':
T=|T,|= -
T vo Hel g Hel b H,
H
z!” H'JW — y){ Hl{ y:: H){
2o Hy| |vg Hyl o H,

(29)

Now the derivatives of shape functions N,,, N,

and N, associated with the deformed finite element
can be easily found from the following equations

. 1
Ny [= 17 [V + [0 X,

Ni.z
Nr;c | ﬁi.x

+ [, FoY, + [J.)6ZK]| N, =i N, |- (30)
Ni.{ iz
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The last equation shows that derivatives N, N,
and N, have a nonlinear form in terms of design
changes dX,, 0Y,, and dZ; due to the appearance of
|/l in the denominator of eqn (30). The nonlinearity
appears on the strain matrix [B] as well since its
components are formed from the shape functions
derivatives. Although this nonlinearity of [B] may
cause some diffculty in the calculations of its deriva-
tives, it is clear that both the numerator and the
denominator of eqn (30) are linear. Hence, based
upon the defined variables, the strain matrix for the
deformed finite element can be considered in the
following form

(6] = [BY _[BY +[B,J'5X, + [B,'0Y, + [B,}'6Z,
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T, 0 0
0 -T, 0
Br=| ° ¢ 0 1 6
T, T, 0
0 o0 -T,
0o o T,
where
T, N
r=|1, |=im~, | (35)
T, Ny

3.3. Derivatives of stiffness matrix

SV W+ VLeX+ Wi, oY+ V0Z, ° Up to here the strain matrix [B] and the determi-
@31) nant of the Jacobian matrix |J| associated with the
deformed finite element are formulated in terms of
where design changes 3X,, 6Y,, and 6Z,. Hence, the stiff-
ness matrix of the deformed finite element can be
(BY=[B,---B,--- B,y (32) formulated. Here only a formulation with respect to
dX, is presented and, because of similarity, formu-
and lations with respect to Y, and 6Z, are not considered
+1 41+l +1 f+1 f+1 § D j
rﬁ1.=j J I (BD](B)1J| d& dn d¢ =j J' I “”;‘%dc dn A
-1 -1 -1 -1 -1 -1
o PYG1oXE + (IE) + [E]NOX, + [F]
= d¢ dn dz, 36
I_. j I [T1+171,6%, o o)
[ 8, 0o o ¢ A
0 N, 0 .
0 0 N 16
Br=| . (33) y .
N, N, © 10000 N
P Nr'.z "JY:'J x C
N. 0 K, |
Also it can be proved that matrices [B,}’, [B,}’, and 3
[B,F, which are the derivatives of [B)* with respect to
the kth master node coordinates, are as follows:
10

0 0 0
0 T. O
gr=| > 0 T
T, 0 0
0 -T, T,
-7, 0 0
-1, 0 0
0 0 0
0 0 T
(B, = '"
2 0 -T, 0
0 T, 0
T, 0 - T, i

Fig. 2. Three-dimensional cantilever beam (all dimensions
in millimeters).

x10° (mm®)
? -I/“ >

L]
T

v

-
-

Iterations

Fig. 3. Volume design history of cantilever beam.
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6.56

10.25

2.88

2.875

6.56

.

Fig. 4. Initial and final designs of the beam.

where
(E] = (IB.1)1D1(BY
(F] = (B)DP1IBY
[G] = (B.) DB} @3N

Equation (36) shows the stiffness matrix of the
deformed finite element. It is interesting to note that
if design change X, takes a zero value, the formu-
lation gives the stiffness matrix of the initial finite
element. Now the general definition of derivative can
be used to compute the first-order derivative of the
stiffness matrix as follows:

ok .. KL—IKL
[a_n],‘kﬁ 3%,

=j|IJ‘HJ'+I|:([E]+[E]I)
S dar o 71

Vs
|72

—[F] ]df dn d{. (38)

To this end, the first order analytical derivative of
the stiffness matrix is calculated. It should be noted
that eqn (30) is completely general and is applicable
to each of the master nodes coordinates of the design
element.

4. NUMERICAL EXAMPLES

4.1. Three-dimensional beam

Minimum weight design of a three-dimensional
cantilever beam with rectangular cross-section is con-
sidered here. The initial shape of the beam and its
loading are shown in Fig. 2. The width of the beam
is constant and the position of its upper and lower

Table 1. Design variables for cantilever beam

Final
Design This
variable  [nitial Paper [Exact Ref. [16] Ref.[17]
A 80 5125 5000 5006 5.154
B 8.0 3582 353 3619 3.540
C 80 1440 — 1.440 1.630
Volume (mm?) 8000 3484 — 3487 3488

surfaces, which are parallel to the x—y plane, are to
be determined. Based upon the beam theory, the
exact solution of the optimum shape is given as

follows [15]:
.= 6P(L — x)
=/

where z is the height of the beam at a distance x from
its clamped end, L is the length of the beam, b is the
uniform width of the beam, and ¢ is the maximum
allowable value of the bending stress.

The beam is modeled with five 20-node isoparamet-
ric finite elements. Using symmetry and constant
width conditions, the shape of curve ABC determines
the shape of the whole beam. Thus, the heights of the
three nodes A, B, and C calculated from the midplane
are selected as design variables. A concentrated load
of 10,000 N is applied at the free end of the beam.
Poisson’s ratio, Young's modulus, and allowable
bending stress are 0.3, 10.0 x 10% and 3000 MPa,
respectively.

A sequential linear programming technique along
with a combination of fixed and variable move limits
is used to solve the design problem. The initial
volume of the beam is 8000 mm® which is reduced to
3484 mm? at the optimum design. This volume re-
duction of the beam is achieved after nine iterations
as shown in Fig. 3. The initial and final designs of the
beam are presented in Fig. 4 and Table 1. It should
be noted that the numerical solution of the problem
is also presented by Yang and Botkin [16], as well as
Kodiyalam and Vanderplaats[17). In order to com-
pare the results, all of these are presented in Table 1.

4.2. Three-dimensional bar

As a second example, design of a three-dimensional
steel bar with a square cross-section is considered.

. 1
10
o

Fig. 5. Three-dimensional bar of square cross-section (all
dimensions in millimeters).

(39

10
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:

The bar is under an axial tension of 10,000 N as
shown in Fig. 5. For imposed limitations, the dimen-
sions of the clamped end of the bar are considered
fixed. In this case, only the z-coordinates of master
nodes B and C are assumed as design variables and
all other coordinates are obtained from the symmetry
conditions.

Maximum value of tensile stress at the bar cross-
section is considered as a behavior constraint.
Poisson’s ratio, Young’s modulus, and tensile allow-
able stress are 0.3, 2.0 x 10°, and 140 MPa, respect-
ively.

After 10 design iterations, the optimal shape of
the bar is obtained as in Fig. 6 and Table 2. The
initial volume of the bar (i.c. 10,000 mm?) is re-
duced to 8903 mm® at the optimum design. The
volume reduction history of the bar is shown in
Fig. 7.

——
s ——

0508
8.984
0508

Fig. 6. Optimal shape of the bar under tension.

[ 100 |

5. DISCUSSIONS AND CONCLUSIONS

In order to carry out sensitivity analysis in
structural design, a finite difference or an analytical
formulation can be used. The finite difference is
simple and straightforward, but it requires solving
finite element equilibrium equations several times.
This disadvantage needs a large amount of computer
work. Another alternative procedure to perform sen-
sitivity analysis is based upon the implicit differen-
tiation of equilibrium equations. This approach has
been used in shape optimization of the structure
successfully. In this technique, design element con-
cept is found to be effective. According to the afore-
mentioned method, the variation of the structural
shape is defined by a number of nodes. In fact, only
a limited number of predefined master nodes charac-
terize the change of the finite element shapes. This
procedure uses the coordinates of these master nodes
as shape design variables.

9.8
-EM— .
= 9.4 \
-
% 9.2 e
\.
9 Se— .
[ I R T A N SR

3.80 1 2 3 4 5 6 7 8 9 10

Iterations
Fig. 7. Volume reduction of three-dimensional bar.

Table 2. Initial and final values of design variables

Design variable Initial Final
B 5.0 4.700
C 5.0 4,492

The formulation presented in this paper calculates
the derivatives of element stiffness matrix analyti-
cally. Structural stiffness derivatives are assembled
from the element stiffnesses and are used to find
pseudo-loads. By applying this load to the structure,
desired displacement derivatives are calculated. In
spite of the fact that the method is very general, this
paper considers the formulation required for sensi-
tivity analysis of three-dimensional isoparametric
finite elements.

A simple and effective factoring technique is used
throughout this formulation, According to the pro-
cedure, the derivatives of the Jacobian matrix have
been found for use in numerical integration of iso-
parametric element stiffness. This matrix is written
linearly in terms of design variables. The inverse of
the Jacobian matrix along with the derivatives of its
determinant are found through the analysis process.
Another part which is required to compute element
stiffness matrix in terms of design changes is the
derivatives of strain matrix. This matrix has been
evaluated from the presented formula. It is shown
that the strain matrix for the deformed finite element
has a nonlinear form. However, the matrix was
decomposed into two parts. These parts, which occur
in numerator and denomenator, have both linear
variations in terms of design variables. After calculat-
ing all parts required to form the stiffness matrix of
the deformed finite element, the derivatives of the
stiffness matrix can be found easily.

Based upon the present formulation, a finite
element analysis of a three-dimensional structure was
done. The method shows the ability to optimize the
structural shapes. It is straightforward to code the
procedure or use it along with already available
computer programs. Application of the performed
sensitivity analysis demonstrates effciency of the for-
mulation and its swiftness to reach the optimization
solution.

REFERENCES

1. M. E. Botkin, Shape optimization of plate and shell
structures. AIAA Jnl 20, 268-273 (1982).

2. J. A. Bennett and M. E. Botkin, Structural shape
optimization with geometric description and adaptive
mesh refinement. A7/4A Jnl 23, 48-464 (1985).

3. M. E. Botkin and J. A. Bennett, Shape optimization of
three-dimensional folded-plate structures. AT4A Jnl 23,
18041810 (1985).

4. O. C. Zienkiewicz and J. S. Campbell, Shape optimiz-
ation and sequential linear programming. In Optimum
Structural Design (Edited by R. H. Gallagher and O. C.
Zienkiewicz). John Wiley, New York (1973).

5. C. V. Ramakrishnan and A. Francavilla, Structural
shape optimization using penalty functions. J. Struct.
Mech. 3, 403-422 (1974-1975).



Three-dimensional sensitivity analysis using a factoring technique

6. S.-Y. Wang, Y. Sun and R. H. Gallagher, Sensitivity

analysis in shape optimization of continuum structures.
Comput. Struct. 20, 855-867 (1985).

7. T. C. Cheu, Sensitivity analysis and shape optimization

8.

9.

10.

11.

of axi-symmetric structures. Int. J. Numer. Meth. Engng
28, 95-108 (1989).

C. H. Tseng and K. Y. Kao, Performance of a hybrid
sensitivity analysis in structural design problems. Com-
put. Struct. 33, 1125-1131 (1989).

J. 8. Arora and E. J. Haug, Efficient optimal design of
structures by generalized steepest decent programming.
Int. J. Numer. Meth. Engng 10, 747-766 (1976).

J. S. Arora and E. J. Haug, Methods of design sensi-
tivity analysis in structural optimization. AJAA Jnl 17,
970-974 (1979).

E. J. Haug and J. S. Arora, Design sensitivity analysis
of clastic mechanical systems. Comput. Meth. Appl.
Mech. Engng 15, 35-62 (1978).

12.

13.

14.

15.
16.

17.

165

A. D. Belengundu, Interpreting adjoint equations in
structural optimization. ASCE, J. Struct. Engng 112,
1971-1975 (1986).

R. D. Cook, D. S. Malcus and M. E. Plesha, Concepts
and Applications of Finite Element Analysis, 3rd Edn.
John Wiley, New York (1989).

V. Braibant and C. Fleury, Shape optimal design using
B-splines. Comput. Meth. Appl. Mech. Engng 44,
247-267 (1984).

M. H. Imam, Three-dimensional shape optimization.
Int. J. Numer. Meth. Engng 18, 661673 (1982).

R. J. Yang and M. E. Botkin, A modular approach for
three-dimensional shape optimization of structures.
ATAA Jnl 25, 492-497 (1987).

S. Kodiyalam and G. N. Vanderplaats, Shape optimiz-
ation of three-dimensional continuum structures via
force approximation techniques. AI4A Jnl 27,
12561263 (1989).



