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Abstract - In this paper a robot with n degrees of freedom is 
considered. The dynamical equations can be obtained by the 
Newton-Euler or the Lagrange method. Many control 
algorithms exist in the literature. There are robust control 
algorithms and adaptive control algorithms. In this paper a 
combination of robust control and adaptive control is proposed. 
This method gives a better performance than only robust and 
only adaptive methods. Two robust control methods are studied 
in this paper: variable structure control and H infinity control. 
A real time identification  is used and the controller is adapted 
in real time. We have Lyapunov stability or input-output 
stability under some assumptions. The method can be applied to 
robotics. The method can also be applied to many other systems 
for example electrical motors and machine tools. Simulation 
results are given.  This method can be used in automatic 
production lines. 

Keywords - Robust control, adaptive control, Lyapunov 
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I. INTRODUCTION 
 
In this paper a robot with n degrees of freedom is considered. 
The dynamical equations are given by n coupled nonlinear 
differential equations. Robust control and adaptive control 
have been subject of a lot of research in the  past  three  
decades  [2], [3],  [4], [5], [12], [17],  [18], [19], [20], [21]. 
Robust control and adaptive control can be used for different 
systems. A combination of robust control and adaptive 
control is proposed in this paper. This method gives a  better 
performance than only robust and only adaptive methods. 
Two control methods are studied in this paper: variable 
structure method and feedback linearization. 
In variable structure control a Lyapunov like function is used. 
The state reaches the sliding surface and slide on it. The 
sliding mode is invariant with respect to parameter variations. 
In feedback linearization the system is globally linearized and 
the effect of the model plant mismatch can be considered as a 
nonlinear perturbation. The stability of the closed loop system 
can be studied by the input-output stability method and the 
small gain theorem.  
In robust control time variations are compensated in some 
limits but if the parameter changes are larger than some limits 
the performance is deteriorated and the closed loop system 

can become unstable. A real time identification can be used to 
adapt the controller.  
 

II. DYNAMICS OF THE SYSTEM 
 
A robot with n degrees of freedom is considered. See figure 1 .          
 

 
Figure 1  A robot with n degrees of freedom 
 
The Newton-Euler method or the Lagrange method can be 
used to obtain the dynamical model of the system. The 
dynamical equations of the system are given by : 
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)(qM  is the inertia matrix,  
),( qqC � is the vector of centrifuge and Coriolis torques and 

 )(qG  is the vector of gravitation  . 
The method can be used for robots with revolute joints and 
with prismatic joints. In this case iq  is the angle for 
the revolute joint and the distance for the prismatic joint. An 
example of such a robot is given in the figure 2  . 
Many  control algorithms exist in the literature for the control 
of robot manipulators [1], [2], [3],   [4], [5], [6], [7], [9], [22], 
[23] . Two control methods have been studied in this paper : 
feedback linearization  and variable structure control . 
 

III. FEEDBACK LINEARIZATION 
 
First we consider the ideal case where there is no model plant 
mismatch. In that case  we have: 
                             
                                                                                    (2) 
                                      (3) 
            
                 (4) 
The differential equations given by (1) are coupled and non 
linear. Let 
                         
                                                                              (5) 
 
  By putting (5) in (1) we have: 
                                                                                                                                                       
 
 
After some simplifications we have 
                                      
                                                                              (6) 
 
 These equations are decoupled and linear. 
 Now we can use different linear methods for the design of 
the controller. For example: optimal control, pole placement, 
root locus, design in the    frequency domain etc… . As an 
example we can use a PID controller. Suppose that 
                    is the desired trajectory. Let 
                                                                               
                                                                             (7) 
                   
where                   is the error vector.                                       
           
 If we use a PID controller we have: 
 
                                                                                                       
                                                                             (8)            
 
Where 
 

PK  , DK  and IK  are the gain matrixes and are diagonal. 
By putting (8) in (5) we obtain the torque vector � .  

 
Robust control 
The dynamical equations of the system are coupled and non 
linear. If we have a good model the system can be globally 
linearized. In this case the H infinity methods can be used. 
The design of the controller can be done in the frequency 
domain. In this case the controller is chosen so that the loop 
gain is high  at low frequencies and the loop gain is low at 
high frequencies and we have a good stability margin near the 
Nyquist frequency. 
In practice we never  have a perfect model. The effect of the 
model-plant   mismatch can  be   considered  as   a  non linear 
perturbation. For measuring how big the perturbation is the 

2L  and 
L norms can be used. The stability of the closed 
loop system can be studied by the input-output methods and 
the small gain theorem. A condition for the stability of the 
closed loop system and a bound on the norm of the error can 
be obtained [2], [3], [4] . 
 
Real time identification 
 
 
Suppose that we have a dynamic system with some inputs 
and outputs. Identification means to estimate the unknown 
parameters of the dynamic equations of the system by using 
the input-output data. In [15] many methods have been 
developed for the identification of dynamic systems in 
discrete time. Here we consider the identification of dynamic 
systems  in continuous time. The  differential equations of the 
robot are given by (1). These differential equations are 
nonlinear. These equations are linear in parameters. The 
parameters can be estimated by using the input-output data. 
The differential equations (1) can be written as: 
        
                                                              (9) 
where          is the vector of unknown parameters, 
            is  the vector of the torques and 
                               is a known nonlinear function. 
Let: 
                       (10) 
Where            is the vector of estimated torques and 
       is the vector of estimated parameters. 
 
Let: 
                                                                                     (11)    
                                                                             
The least squares real time identification is given by:  
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Adaptive feedback linearization 

 When we use a feedback linearization we need a model for 
the system. The model can be estimated in real time as 
described in the previous section. The estimated model can be 
used in (5) . The block diagram of the adaptive feedback 
linearization is shown in the figure 3  .
Simulations 
Here some simulations are given. As an example we consider 
a robot with two degrees of freedom. 

Figure 4 ,   A serial robot with two degrees of freedom 
 
The dynamic equations of the robot are given by: 
 
 
 
                            The inertia matrix 
 
 
                                      
 
   Coriolis and centrifuge                   gravitation 
 
                                                 (15) 
 
where 1�  , 2�  are the joint angles 1� , 2�  are the torques 
and m1, m2 are the joint masses and a1, a2 are the length of  
the robot arms. 
 
Robust and adaptive control 
 
We use a robust and adaptive feedback linearization. At the 
beginning the estimations are not good and the errors are big. 
With the passage of time the estimations become good and 
the errors go to zero. 

 
Figure 5, (a) joint angles and reference trajectory,  (b) errors, (c) parameter 
estimates, (d) torques 
Robust but not adaptive control 
We use a feedback linearization with a PID controller. The 
simulation results are given in figure 6 . We suppose that the 
load of the robot changes. The mass m2 changes at t=100 and 
t=200 but the estimate of m2 doesn’t change. We see that at 
the beginning the trajectory following is good. At t=100 and 
t=200 the model plant mismatch increases and the 
performance deteriorates. 

 
Figure 6, (a) joint angles and reference trajectory  (b) errors  (c) parameter 
estimates  (d) torques 
 
Robust and adaptive control 
In this case the parameters are identified in real time and the 
controller is adapted by using the parameter estimates. 
Simulation results are shown in figure 7 .  As it is seen the 
model-plant mismatch is not big and the control performance 
is good.  
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Figure 7,  (a) joint angles and reference trajectory  (b) errors  (c) parameter 
estimates  (d) torques 

 
IV. VARIABLE STRUCTURE CONTROL 

 
Variable structure control is a non linear control method. This 
method is a kind of high gain feedback and is very robust with 
respect to parameter uncertainty and non linearities  [5], [6],      
[7], [8], [9], [10], [11] . The sliding mode is invariant with 
respect to parameter changes. One of the disadvantages of this 
method is the chattering witch can excite the neglected fast 
states. By using a boundary layer the problem of chattering 
can be improved.  
Suppose that the dynamic equations of the robot is given by    
(1) . Let: 
                               (16) 
Where 
 
                                                   and 
 
Consider the Lyapunov function candidate: 
 
      (17) 
Then we have: 
                                                                    
      (18) 
Where: 
                                             
      (19) 
 
If the control is chosen as: 
                                                                    
                                                                              (20)                                                                                                                                      
 
where 
                                             
                                             ,                            and 
 
 

                                                                                     
If         is enough large the derivative of the Lyapunov 
function is negative. If we have  
 
                                                           (21)  
 
 
With                       , 
 

MMM ˆ~ ��   ,  mmm CCC ˆ~
��   and  GGG ˆ~

��
     
then 
 
                          (22) 
 
So   r=0    is reached in finite time and the sliding phase 
begins. Once in the sliding mode the error  e(t) converges 
exponentially to zero. 

 
Figure  8 ,  Arrival phase 
 
 

Figure  9 ,  Chattering during the sliding phase 

Adaptive variable structure control 
 
The model can be estimated in real time as described before. 
The   estimated model can be used to evaluate the torques in   
(20). 
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Simulation, Robust and adaptive variable structure control 
The robust and adaptive variable structure control described 
before is applied to the robot with two degrees of freedom. 
The simulation results are given in figure 10 . 
The mass m2  changes at t=100 and t-200. We have a real 
time identification and the masses are identified and the 
controller is adapted in real time. 

 
Figure 10  ,  (a)  joint angles and reference trajectory  (b) errors  (c) 
parameter estimates  (d) torques 

V. CONCLUSION 
 

The dynamical equations of a robot with n degrees of 
freedom can be obtained by using the Newton-Euler method 
or the Lagarange method. Different control methods exist in 
the literature. A robust and adaptive control has been 
proposed. This method gives a better performance than only 
robust and only adaptive methods. Two robust control 
methods have been considered. Variable structure control 
and H infinity control. A real time identification is used and 
the controller is adapted in real time. We have the Lyapunov 
stability or the input-output stability under some 
assumptions. The method is applied to robotics. The method 
can be applied to many other systems for example the control 
of machine tools and electrical motors. Simulation results are 
given. This method can be used in automatic production 
lines. 
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Figure 3   Adaptive  feedback linearization 
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                                                    Figure 2  : A robot with six degrees of freedom
 
 
 
 


