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a b s t r a c t

This article presents a model to simulate the dynamics of boring process. In boring operations the

boring bar should be long and slender; therefore it is easily subjected to vibrations. Tool vibrations

result in reduced tool life, poor surface finish and may also introduce chatter. Hence, predicting the

vibrational behavior of boring process for certain cutting conditions and tool work-piece properties is of

great importance. The proposed method models the cutting tool geometry by B-spline parametric

curves. By using B-spline curves it is possible to simulate different tool geometries with a single

approach. B-spline curves also enable the modeling of the kinematics of chip formation for different tool

work-piece engagement conditions with a single formulation. The boring bar has been modeled by the

Euler–Bernoulli beam theory. The simulation process has been implemented with MATLAB. The

algorithm consists of different computational modules that are interconnected by a main program.

Experimental machining tests have been conducted to verify the validity of the proposed model.

Proposed dynamic models have been able to predict the dynamic cutting force components and

vibration frequencies with less than 15% deviation. The proposed model has been also able to predict

the chatter onset correctly.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Tool or work-piece vibration in machining processes is the
main limiting factor for metal removal rate and machining
efficiency. In boring process due to the slenderness of boring
bar, its flexibility is much more than the work-piece. Accordingly,
the tool is more susceptible to vibrations. On the other hand,
boring is a process that is used in finishing of precise components.
Tool vibrations result in poor surface finish, reduced tool life,
dimensional errors and may also introduce chatter, which is
highly unfavorable. Therefore, the machining parameters should
be set in a way to avoid any kind of unstable vibration during the
machining process. Developing a model to simulate the machin-
ing process while the tool vibrates helps us in understanding the
influence of the machining parameters on the process behavior
and thereby instructs the operator to choose the optimal
machining parameters for a certain boring operation. Predicting
the dynamic behavior of the boring process (e.g. the dynamic
cutting force components) is also necessary for designing and
manufacturing of machine tool structures, tool holders and even
the boring bars.
ll rights reserved.
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In comparison with other machining operations such as
milling or turning, few researches have been conducted on the
stability and dynamics of boring process. These researches can be
categorized into two main groups.

The first group consists of the experimental innovations for
increasing the process efficiency using passive, semi-active and
active control of the machining operation without further
investigation on the influence of geometrical, structural or process
parameter on the boring stability. The design and manufacture of
a carbon fiber epoxy boring bar with high damping coefficients
[1], incorporation of a tunable vibration absorber to suppress
boring vibrations [2] and employment of electrorheological fluids
to control the boring bar stiffness for avoiding chatter frequency
[3] are some recently proposed methods of passive, semi-active
and active boring vibration control.

The second group of research tries to characterize the process
behavior of a conventional boring operation across a certain range
of cutting conditions. Only few researches have been conducted
on the prediction of process behavior. Subramani et al. [4]
introduced simple geometrical relations for cutting force compu-
tation of boring process. Empirical cutting force coefficients were
used to find the cutting force components. They assumed that the
boring process is orthogonal and ignored the inclination angle of
the cutting edge. Later Kuster [5] developed a simulation model
for the dynamics of boring process. His model did not consider the
influence of rake and inclination angles. In addition, the dynamic
chip load was not computed properly. Lazoglu et al. [6] used

www.elsevier.com/locate/ijmactool
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Fig. 1. Regenerative chatter mechanism in boring operation.
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experimental cutting force components along with a modification
factor to compute the dynamic cutting force during the boring
process. The chip load and cutting edge contact length were found
using Boolean operators between the previously meshed work-
piece and the instantaneous location of the tool tip. This method
could correctly predict the stability domain but the dynamic
cutting force amplitudes of the predicted and measured results
had noticeable deviations. In addition, their research was also
confined to empirical cutting force coefficients, which were
derived for a certain pair of cutting tool and work-piece. Budak
and Ozlu [7] proposed a stability analysis model for boring and
turning operations, but dynamic cutting force simulation was not
taken into consideration. In a recent study, Yussefian et al. [8]
proposed a comprehensive model for simulating the mechanics of
boring process. The model consists of a novel geometrical
approach that employs B-spline curves to simulate the machining
process. It also presents a new force model for predicting the
cutting force of machining with nose radius tools.

This research extends the previously proposed model to
simulate the dynamic behavior of the boring process. The
presented approach employs B-spline and their specific features
for the geometrical modeling of the machining process. Advanced
curve intersection methods are used to find the instantaneous
chip boundary and thereby compute the instantaneous chip load.
The boring bar vibration is modeled by the Euler–Bernoulli beam
equation. The model aims to describe the vibrational behavior of
the boring process for a certain range of machining parameters.

Henceforth the paper is organized as follows. In the second
section, an introduction to the self-excited vibration is presented.
The boring bar equation of motion is then modeled using the
Euler–Bernoulli beam theory. In Section 3 the kinematics of chip-
load formation is modeled by B-spline parametric curves. Section
4 describes the dynamic simulation methodology using MATLAB
programming. Section 5 explains the experimental machining
tests and compares the simulated and experimental results.
2. Tool vibrations

The machine, cutting tool and work-piece form a structural
system with complex dynamic characteristics. Under certain
conditions this system may undergo excessive vibrations [9].

2.1. Types of vibrations

Vibrations in machine tool structures can be generally
categorized into three main groups:

Free or transient vibrations: Free vibrations in machine tools
occur almost in every machining operation. The vibrations due to
the initial engagement of the tool and work-piece or the
vibrations caused by the rapid reciprocal motion of the machine
tool table are some sorts of transient vibrations. The machine tool
vibrates in its natural modes until the vibration is damped.

Forced vibration: Forced vibrations occur when a periodic force
is applied to the machine tool structure. The engagement of multi-
insert tools in the cut and the run-out of the tool tip are the two
main sources of forced vibrations. Also, there exist other sources
like the vibrations transmitted to the machine tool by its
foundation from the nearby machinery. The system vibrates in
the actuating frequency and if this frequency coincides one of the
system’s natural frequencies the resonance occurs.

Self-excited vibration: The most important type of vibration in
machining processes is self-excited vibration. When the tool
initially engages the cut, it undergoes transient vibrations. If
machining parameters like depth of cut, feed rate and cutting
speed are not set properly, transient vibration may lead to
self-excited or chatter vibrations. If the tool vibrates, the chip
thickness will change from its nominal value. The variation of chip
thickness results in the oscillation of cutting force magnitude. The
new cutting force will impose a new deflection to the cutting tool.
Consequently, the interaction of cutting force, tool deflection and
chip thickness forms a loop (Fig. 1). If machining parameters and
structural characteristics of the machine tool structure are not
maintained accordingly, chatter occurs and unstable vibrations
will commence (Fig. 1). As a result, the vibration amplitude
increases by every tool pass during the machining process.
This continues until the tool or the work-piece or one of
power transmitting components fail, unless a limiting factor
(like the jump out of the cut of the tool) confines the vibration
amplitude.

2.2. Equation of motion

In boring process the boring bar is more flexible than the work-
piece; thus the most flexible component is the tool. The boring bar
is much stiffer in torsion than in bending [10]. Hence, in the
analysis of boring bar vibrations, the bending modes of radial and
tangential directions should be taken into account. On the other
hand, it is known by geometrical considerations that the boring
bar deflections in tangential direction (Z) do not affect the chip
thickness [6]. Therefore, the boring bar can be modeled as a
cantilever beam vibrating in the radial (DOC) direction, Fig. 2.
Most of the previously proposed models for boring bar vibrations
rely on modeling the boring bar equation of motion by lumped
parameters [4–7]. However, modeling a distributed system of
boring bar consisting of infinite number of modes with lumped
parameters brings future potential problems [10]. A reasonable
model for boring bar is an Euler–Bernoulli beam with clamped
free boundary conditions. The Euler–Bernoulli beam differential
equation describing the transverse motion in radial (Y) direction is
expressed by [11]

rAb
@2yðx; tÞ

@t2
þ
@2

@x2
EIðxÞ

@2yðx; tÞ

@x2

" #
¼ f ðx; tÞ ð1Þ

where r is the boring bar density, Ab is the boring bar cross-
sectional area, EI the flexural stiffness and f(x, t) the force per unit
length of the bar.

It is assumed that both the cross-sectional area and flexural
stiffness are constant along the bar. If normal modes of the system
Fn(x) are known, its deflection at any point x along the beam can
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be evaluated by [11]

yðx; tÞ ¼
X1
n¼1

qnðtÞfnðxÞ ð2Þ

where qn(t) is generalized coordinate or modal participation
coefficient and must satisfy the following condition:

d2qnðtÞ

dt2
þ 2znon

dqnðtÞ

dt
þo2

nqnðtÞ ¼

Z
f ðx; tÞfnðxÞdx ð3Þ

For a constant concentrated force Eq. (3) will convert to

d2qnðtÞ

dt2
þ 2xnon

dqnðtÞ

dt
þo2

nqnðtÞ ¼ FfnðaÞ ð4Þ

where a is the location of the applied force. The solution to the
boundary conditions yields the characteristic equation of
cos(bL)cosh(bL) ¼ �1. bn are the eigen values of the characteristic
equation and for the three first modes can be evaluated by

bn ¼
1:8752

L
;

4:6941

L
;

7:8548

L

� �
ð5Þ

The theoretical natural frequencies of the boring bar are
expressed by

fn ¼
bn

2p

ffiffiffiffiffiffiffiffiffi
EI

rAb

s
ð6Þ

The normal modes fn(x) can be computed by substituting the
beam boundary conditions as follows:

fnðxÞ ¼ ln½coshðbnxÞ � cosðbnxÞ

�mjðsinhðbnxÞ � sinðbnxÞÞ� ð7Þ

mn ¼
coshðbnÞ þ cosðbnÞ

sinhðbnÞ þ sinðbnÞ
ð8Þ

ln is the normalizing coefficient of the nth mode and must
satisfyZ L

0
rAbf

2
nðxÞdx ¼ 1; j ¼ 1; 2 . . . ð9Þ

In addition to four boundary conditions that are determined by
cantilever beam end conditions, two initial conditions are also
needed to solve Eq. (2) which are as follows:

yðx; t ¼ 0Þ ¼
X1
n¼1

qnð0ÞfnðxÞ ¼ y0ðxÞ

@y

@t
ðx; t ¼ 0Þ ¼

X1
n¼1

qn
0ð0ÞfnðxÞ ¼ V0ðxÞ

ð10Þ

where qn(0) and q0n(0) can be computed by

qnð0Þ ¼

Z l

0
rAðxÞfnðxÞy0ðxÞdx

qn
0ð0Þ ¼

Z l

0
rAðxÞfnðxÞV0ðxÞdx ð11Þ

2.3. Modified Euler–Bernoulli beam equation

The Euler–Bernoulli model of the boring bar overestimates the
actual bar first resonance frequencies. The first reason for this is
Table 1
Dynamic properties of boring bar.

Le (m) L (m) xy w1y (Hz) Parameter

0.1535 0.14 0.025 620 Value
the fact that the Euler–Bernoulli beam model considers the
clamping condition rigid while the clamping applied by clamping
bolts in an actual bar fixture is not infinitely rigid. Secondly, since
the Euler–Bernoulli beam model ignores the effects of shear
deformation and rotary inertia, the boring bar Eigen frequencies
will be slightly overestimated [12,13]. In order to compensate for
the flexibility in the clamping condition, and thereby correlate the
natural frequency of the Euler–Bernoulli beam model with that of
an actual boring bar, a method similar to the one proposed by
Andren et al. [12] is employed. For this, the theoretical bar should
be considered longer than the actual boring bar. The modified bar
length can be found by measuring the first resonance frequency
by the impact test method. Having the first resonance frequency,
the modified length of the bar can be evaluated by Eq. (6).

Table 1 illustrates the dynamic properties of the boring bar
used in the current research along with the computed values of
modified bar lengths. Damping ratio has also been computed by
the impact test.

It should be noted that this method compensates a portion of
the natural frequency overestimation by the Euler–Bernoulli beam
theory.
3. Kinematics of chip-load formation

The cutting edge has been interpolated by a third degree
clamped B-spline with uniform parametization and knot vector
[14]. The cutting edge equation can therefore be expressed by

cj
xðuÞ ¼ NðuÞPx

cj
yðuÞ ¼ NðuÞPy ð12Þ

where N(u) and P are B-spline basis functions and B-spline control
points, respectively. u is the B-spline parameter that belongs to [0, 1].

In order to model the instantaneous tool location, work-piece
is divided into a number of angular elements, Fig. 2. As the work-
piece revolves with the spindle speed, the cutting edge engages
these elements consecutively. In any element, the instantaneous
cutting edge equation can be found using the B-spline parametric
curves translation property [14]:

ck; j
x ðu; tÞ ¼ NðuÞ½Px � j c�

ck; j
y ðu; tÞ ¼ NðuÞ½Py þ yðtÞ� ð13Þ

where c is feed per revolution and y(t) is the deflection in radial
direction (see Fig. 3).
B

Work Piece

Fig. 2. The meshing of work-piece into angular elements.
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When the tool does not vibrate the chip load can be found by
considering two successive cutting edge locations [8]. It should be
noted that four different chip configurations can be identified
depending on the values of depth of cut (DOC), feed rate (c) and
also the tool nose radius (r) [15].

Due to the tool vibration, the chip load varies as a function
of machining parameters, tool edge geometry and structural
properties of the boring bar. In order to include the effect of
regeneration, three successive locations of the cutting edge have
been taken into account. Depending on machining parameters,
cutting edge geometry and instantaneous deflection of the tool
tip, five different vibrational configurations can be identified,
Fig. 4 As can be seen in Fig. 4, case 5 represents the condition at
which the amplitude of vibration is in such a way that the tool
jumps out of the cut. It is obvious that for this case the chip load
on the cutting edge is zero; consequently, the cutting force
components vanish. For the remaining four configurations the tool
is engaged in the cut. Combining these four vibrational
configurations with four chip configurations results in the
identification of sixteen different conditions of tool and work-
piece dynamic engagement. It should be noted that during a
machining experiment the actual depth of cut (DOC) and feed rate
(c) change as a function of the tool deflection. Consequently,
depending on the instantaneous values of DOC and c with respect
to the tool nose radius value (r), any of these sixteen conditions
can be the case of tool and work-piece engagement. For each tool
work-piece engagement condition the geometry of the chip load
differs. This is designated by the shaded area (current cut)
in Fig. 4.

In order to determine the chip boundary the intersection
points of the current cutting edge location, the last effective
c

Stable

DOC

r

r

j.c

y(t)
X

Y

Unstable

Fig. 3. Instantaneous cutting edge location.

c

DOC

1

cc

3

DOC

Fig. 4. Different vibratio
cutting edge location and the DOC marginal line should be found,
Fig. 5. This is done by an analytic parametric curve intersection
method; further details can be found in [8]. Once the chip
boundaries have been determined, for any tool work-piece
engagement condition the instantaneous chip load and cutting
edge contact length can be computed by

Ak; j
t ¼

Z uk; j
int

uk; j
st

Ck; j
y ðuÞ

dCk; j
x ðuÞ

du
du�

Z uk; p
int

uk; p
st

Ck; p
y ðuÞ

dCk; p
x ðuÞ

du
du

�
Xq

i¼1

Ak; j�q
t ð14Þ

Lk; j
t ¼

Z uk; j
int

uk; p
st

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dCk; j

x ðuÞ

du

" #2

þ
dCk; j

y ðuÞ

du

" #2
vuut du ð15Þ

where ust and uint are the corresponding parameters of the first
and the last points of the cutting edge that are engaged in the cut,
respectively. p is the number of the last effective cutting pass and
q defines the total number of intermediate chip loads between the
current and last effective cutting edge. The values of p and q
Intermediate Cut

Current Cut

2

5

c

cc

4

c

Effective Cut

nal configurations.

c

C     (u   )st
C       (u      )

Chip Load

Fig. 5. Dynamic chip boundary and chip-load computation (Case 1).

Table 2
Values of the parameters p and q of Eqs. (14) and (15).

Configuration 1 2 3 4

p j�1 j�2 j�3 j�3

q 0 1 2 2
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depend on the vibrational configuration (Fig. 4) and are listed in
Table 2.

It should be noted that B-spline parametric curves not only
facilitate the modeling of the complicated tool work-piece
interaction during a dynamic machining process with a single
approach but also enable the modeling of different cutting edge
geometries.
Cutting ForceCutting ForceCutting Force
B-spline

Interpolation

Chip Boundary
Determination

Chip Load/ Cutting
Edge

Computations

C (u)
k,j

u
k,j-1

st , u
k,j

int, u
k,j

st

k = k+1

p, , q
4. Dynamic simulation

Having found the cutting edge contact length and the chip
load, the instantaneous cutting force components are computed
using the previously proposed method, see [8] for details. It
should be pointed out that due to the employment of B-spline
parametric curves, the previously proposed force model remains
valid for the condition that there exist tool deflections [8].
Orthogonal cutting force coefficients were used to correlate the
chip-load geometry to the cutting force components. Once the
dynamic chip flow angle and cutting force components are
known, the tool deflection can be computed by Eq. (1). It should
be noted that the computed end beam deflection and velocity at
the previous work-piece element are taken as the initial condi-
tions of Eq. (1), that is

yk; jðx; 0Þ ¼ yk�1; jðx; DtÞ

Vk; jðx; 0Þ ¼
@yk; j

@t
ðx; 0Þ ¼ Vk�1; jðx; DtÞ ð16Þ

where Dt is the time step of the simulation process and depends
on the spindle speed and the number of work-piece elements. The
newly computed deflection is then used to find the new cutting
edge engagement condition and the instantaneous chip load in
the succeeding work-piece element.

Based on the above-mentioned approach, the algorithm of the
dynamic simulation of the boring process is implemented in
MATLAB. The algorithm contains different computational mod-
ules, which can be classified as follows:
A
k,j

k,j
t
�
Lt

Tab
Geo

Par

Val
The module of geometrical simulation of the cutting edge
using B-spline parametric curves.

�

Cutting ForceChip Flow Angle
Cutting Force
The module of chip boundary determination using advanced
parametric curve intersection approaches.
Coefficients

�
 The chip load and cutting edge contact length computation

module.

F ,F ,Fy x z
�
 The dynamic chip flow angle and dynamic cutting force

components computations module.

k,j
�
 Structural Dynamicsy
The boring bar vibration simulation module.
Tool Deflections

Fig. 6. The algorithm for dynamic simulation of boring process.
Fig. 6 illustrates the flow chart of the proposed algorithm for the
dynamic simulation of boring process.
le 3
metrical specifications of the cutting tool.

ameter L (m) r (mm) as (deg.

ue 0.14 0.4 �5
5. Results and discussion

A boring bar with 20 mm diameter and 140 mm length
(L/D ¼ 7) is used to implement the machining tests. The
carbide inserts with 0.4 mm nose radius and flat rake face
are used to machine the aluminum 6061 tubes. The geo-
metrical properties of the cutting tool are presented in
Table 3.

In order to validate the proposed method, 30 boring
experiments were conducted. The cutting speed, feed rate and
radial depth of cut were in the range of 70–110 [m/min], 0.08–0.24
[mm/rev] and 0.2–4 [mm], respectively. Cutting force
components are measured in three orthogonal directions by a
KISTLER 9255b dynamometer. The dynamic simulation
program was also implemented for every corresponding machin-
ing experiment. For the sake of comparison between the
experimental measurements and numerical simulations, two
different cutting tests will be presented. The cutting conditions
for these two cutting experiments are reported in Table 4.
The depth of cut (DOC) is set to 0.5 and 4 mm for tests A
and B, respectively. All other conditions for these tests are
equal.
) ab (deg.) cs (deg.) ce (deg.)

0 �3 32
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Table 5
Comparison of experimental values of cutting force components for test A.

Fy (kgf) Fx (kgf) Fz (kgf)

Simulated mean value 7.35 8.23 13.68

Measured mean value 8.08 8.09 12.18

Simulated [min, max] [2.27,13.85] [3.45,12.45] [4.08,24.08]

Measured [min, max] [3.97,12.45] [0.20,16] [1.01,23.60]

Simulated results for test A E xperimental results for test A 
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Fig. 7. Experimental and simulated cutting force values for test A.

Table 4
Geometrical specifications of the cutting tool.

Parameter DOC (mm) c (mm/rev) V (m/min) D0 (mm) Result

Test A 0.5 0.14 95 30.5 Stable

Test B 4 0.14 95 30.5 Chatter
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5.1. Test A

Measured and predicted cutting force components for boring
with machining conditions of test A are depicted in Fig. 7. When
the tool first engages the cut, it undergoes transient vibrations.
But after several revolutions, the cutting process becomes stable
and the tool continues to vibrate periodically with relatively
constant amplitude. So the condition of test A is stable and
chatter-free cutting machining operation. The simulated peak
frequency occurs at 672 Hz with a deviation of 12.94% above the
measured value of 594 Hz. This deviation results from the
overestimation of the Eigen frequencies by the Euler–Bernoulli
beam equation. Table 5 compares the results of cutting force
components measurement by a dynamometer with the
simulation results by the proposed algorithm. As can be seen in
the table the measured values of the cutting force components in
x, y and z direction have been predicted by 9%, 2% and 12%
errors in magnitude. This amount of error is consistent with the
validity interval of 710% for the cutting force computation
[8], which could be due to the cutting force coefficient
computations.

Fig. 8 illustrates the enlarged view of the measured and
predicted cutting force components. As can be seen, the proposed
model predicts the cutting force components with good
agreement.
5.2. Test B

Experimental and simulated cutting force components in time
domain for the condition of test B are shown in Fig. 9. It was
observed from the measured data that the machining process was
unstable with chattering frequency around 573 Hz. In case of
chatter, measured force components oscillate randomly and grow
rapidly to large amplitudes. It is obvious from Fig. 9 that the
simulated results had also predicted the incidence of chatter
vibrations. Although the model was capable of truly predicting the
chatter occurrence for the conditions of test B, the variation of
simulated and measured cutting force amplitudes is increased.
This is due to the fact that the measured cutting force components
have been amplified by chatter frequency [6]. As a consequence of
high vibration amplitudes, the actual geometrical angles of the
cutting tool will change from their nominal values. It is well
known that the variation of cutting tool angles will affect the
cutting force components significantly [8,16]. The high
reciprocating velocity of the tool tip makes the cutting process
be accompanied with the plunging of the tool into the work-piece.
The high acceleration of the tool increases the effect of the tool
inertia forces on dynamometer measurements. All of these will
make the prediction of dynamic characteristic of the process
under chatter vibration almost impossible. However, for any
dynamic model the correct prediction of chatter onset is enough
since no practical machining operation will be carried out under
chatter conditions.
6. Conclusions

In this research a model is presented to simulate the dynamics
of boring process. The proposed approach relies on the novel
algorithms of geometrical modeling. In contrast to the previous
models that were only able to predict the stability region, this
model computes the dynamic cutting force components and
frequencies in stable boring operation. The performed cutting
experiments have shown that the cutting force components and
the vibration frequencies in chatter-free dynamic boring operation
could be predicted within 715% error margin. The model is valid
for both finishing (DOCor) and roughing (DOC 4r) boring
processes. The model is also able to predict the chatter onset in
boring operation.

Due to the nonlinear geometry of the edge, the influence of
depth of cut and feed rate is interrelated and should not be
separately investigated. The instantaneous chip load is computed
to incorporate the effect of depth of cut and feed rate. The
influence of geometrical properties (like tool angles and nose
radius) as well as structural and process parameters could
be investigated using this model. The stability and efficiency of
the process depends on the combined effect of all these
parameters.

The proposed model provides a better understanding of a
certain boring process. By using this method, a multivariate
analysis could be performed to obtain the optimal geometrical,
structural or machining process parameters. The proposed
method could also be employed for machine tool, boring bar
and tool holder design where a better understanding of the
operational vibration frequencies and cutting force amplitudes is
a necessity.
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Simulated results for test B
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Fig. 9. Experimental and simulated cutting force values for test B.
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