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1. INTRODUCTION

In this study the Uniaxial Symmetric Tresca yield surlace has
been selected for the yield condition. The kinematic hardening
rule, which is suitable for loading and unloading and considers
Bauschinger's effect, is chosen for establishing the conditions
for subsequent yield from a plastic state. The associated flow
rule for the Uniaxial Symmetric Tresca yield condition, and the
kinematic hardening for 1linear ‘hardening material, have been
employed to relate the plastic strain increments to the stresses
and stress increments.

2. YIELD CONDITION

The equation of the uniaxial symmetric Tresca yield condition,
in terms of principal stresses, can be obtajned by writing
equations for all six sides of the hexagon as:
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By 1invoking the relationship between principal stresses and
cartesian stresses these yield functions may be expressed in the
cartition coordinate system.

3+ ELASTO-PLASTIC MATRIX FOR SIDES

The yield function for side i of the Uniaxial Symmetric Tresca
yield surface is expressed by:

Fi{{e - «]] = 0 _ (2)

In this equation [#} is the state of stress, and |&} represents
the position of the yield surface origin with respect to the
origin of the initial stress space. Reference [2]) presents the
derivation of the elasto-plastic matrix for sides. The final

result is:

(8¢} = ([p), - (0], (§EL1rmIzt (§E 17001, 116¢e] (3)
where
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The Prager-Ziegler rule is applied, with the consideration of the
yield function for each side. The incremental form of the
plastic strain-stress is expressed by:
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The above equation can be utilized to evaluate the hardening
coefficient, H. This may be done by imposing the uniaxjial stress-
strain relationship upon equation 5.

The constitutive laws for sides 1~3 and derivation of the
constitutive . laws for +the corners, are presented in the

reference [2)

The constant strain triangular element (CST) is used in this
study. Finite element formulation of the incremental equation of
eguilibrium, relating the nodal incremental displacemeqts ?o
increrental forces through elasto-plastic stiffness matrix, is
described in [1, 2]. The incremental force-displacement

relationship of whole structure in global coordinate system is in
the form
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4. EXAMPLE

A fixed-fixed end beam with rectangular cross-section under a
gradually and uniform distributed cyclic load is considered for
this example. The beam is assumed to be made of material with
linear elastic and perfect plastic behavior. The initial {ield
strength in tension is assumed to be 350.00 psi (2.413 MPa) and
the corresponding value {in compression 1is 10 times higher,
3500.00 psi (24.133 MPa). The modulus of elasticity is assumed
to de 3,500,000.00 psi (24132.500 MPa) and Poisson's ratio is
taken to be 0.15.

A graphical representation of the beam and finite element mesh
is given in Figure (4-1). 1In this figure, L=72.0 in. (1828.800
om) and H=12.0 in. (304.800 nmm), the thickness of the beam is
assumed to be 3.0 in. {76.200 mm).

The applied load is sinosoidal in the fora of F{t)=A.Sin(wt),
where A=750.0 1b/in {131.339 }/mm) and w=1.0 rad/sec. Here t is
a parameter to control the cyclic behavior of the load.

The load #s applied incrementally, with starting parameter
increment of At=0.02 second. Since the applied load should be
small in the plastic analysis, this parameter increment was
reduced, once the plastic region started and progressed. A
total, 950 increments, equivalent to a parameter value of 13.024
seconds, are considered in this case. This is more than two
cycles of loading.

Due to the low tensile strength of the material, the first
elements which yielded are those located at the top surface of
the beam at the fixed supports. Progression of plastic enclaves
continue at the supports toward the center of the beam, until the
number of yielded elements at each support reaches two. At this
point another plastic region started at the bottom and center of
the beam. By increasing the appiied load, the progression of
plastic enclaves continued vertically at the supports and both
horizontally and vertically at the center of the beam. Another
region of plasticity started at-the bottom of the bean at the
fixed supports, when the direction of applied load changed, and
loading started in the opposite direction.

The load-deflection relationship for point A, located at the
center and bottom of the beam (see Figure 4-1), is shown in the
Figure (4-2). The horizontal shift of the hysteresis loops, with
no vertical shifting, is an indication of elastic-perfect plastic
material behavior.
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For the sake of comparison, a load-deflection curve of the

same beam, considering elastic behavior and the same applied load
for a duration of 20.0 seconds, and the equivalent of 1000 load

increments, is shown in the Figure (4-2).
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Figure 4-2: Two Cycle Load vs. Displacement of a Node at

Center and Bottom of Concrete Beam
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