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Abstract—Recursive (online) expectation–maximization (EM)
algorithm along with stochastic approximation is employed in this
paper to estimate unknown time-invariant/variant parameters.
The impulse response of a linear system (channel) is modeled as
an unknown deterministic vector/process and as a Gaussian vec-
tor/process with unknown stochastic characteristics. Using these
models which are embedded in white or colored Gaussian noise,
different types of recursive least squares (RLS), Kalman filtering
and smoothing and combined RLS and Kalman-type algorithms
are derived directly from the recursive EM algorithm. The
estimation of unknown parameters also generates new recursive
algorithms for situations, such as additive colored noise modeled
by an autoregressive process. The recursive EM algorithm is
shown as a powerful tool which unifies the derivations of many
adaptive estimation methods.

Index Terms—Adaptive estimation, colored noise, estimation
and maximization algorithm, estimation theory, Kalman filtering,
maximum-likelihood estimation, recursive estimation.

I. INTRODUCTION

M AXIMUM-LIKELIHOOD (ML) criterion serves as a
benchmark in estimation when the unknown parameters

are deterministic. However in many cases the received data
does not provide complete information necessary for such
maximization. The expectation–maximization (EM) algorithm
[1], [2] provides an iterative solution in such situations.

Applications of the EM algorithm to parameter estimation
are considered in [3]–[9]. In particular, the online estimation
of parameters based on the Kullback–Leibler information
measure and using stochastic approximation is considered
in [7] and [8]. Several applications of the EM algorithm
to receiver design are also presented in [10]–[12]. Other
recursive algorithms such as recursive ML and prediction
error methods are presented in [13]. EM algorithm is a batch-
oriented approach which processes the entire received data.
In order to eliminate the delay in decision-making, reduce
storage and increase the computational efficiency in real-time
applications, it is desirable and often necessary to process the
received data in a recursive manner.

The recursive (online) EM algorithm developed in this paper
extends and modifies the algorithm in [7] by using iteration
in each recursion and by considering time-variant unknown
parameters. The proposed algorithm leads, for special cases, to
some new RLS/Kalman-type algorithms for colored Gaussian
noise. Although achieving ML estimation is not always guar-
anteed and we do not provide a proof of the convergence of
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the recursive EM algorithm, the recursive estimator increases
the likelihood monotonically.

II. ML E STIMATION VIA THE RECURSIVE EM

Let us consider as a column vector of deterministic
channel parameters up to time to be estimated from the
data vector observed up to time
where denotes the transpose of ML estimation of
is given by

(1)

where is ML estimation of based on received signal
When is incomplete data, the maximization of

is not tractable. Denoting as incomplete data
and as the desired additional information needed

at time to complete and following the regular (offline) EM
algorithm [1], the two steps of the recursive EM algorithm at
time are as follows.

1-E step:

(2)

2-M step:

(3)

where is the complete data at timeand
is the estimation of at the th iteration based on the signal

received up to time for When is the
initial value of estimate based on the received signal
The steps of the algorithm at timeare repeated until at th

iteration When is the unknown parameter
vector just for time where is independent of other
parameters by knowing we have

and time-update vector for the next recursion of the
procedures (2) and (3) is given by

(4)

where and are the
estimates of and , respectively, based on the entire
received signal up to time In general, can be

a function of and is obtained by using the dynamic

evolution of the process. From (4) it is clear that is
used as an initial value for next recursion or, in other words,
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Since for each iteration

one can show that [1]

(5)

Meanwhile, from (4) at time , we have

where

From (5),

thus we have

(6)

Therefore, as (5) and (6) show, the log-likelihood function is
increased monotonically both in each iteration and recursion.
The estimation procedure based on the recursive EM algorithm
is more attractive when its maximization step can be done
analytically in a recursive manner.

Following Titterington’s approach of stochastic approxima-
tion of based on three elements of its Taylor series
[14], one can show that

(7)

where denotes
complex conjugate of When the third and higher deriva-
tives of are zero, as is usually true for the Gaussian
noise case in a linear system, the recursive formula (7) is exact.

In the following sections, we assume that only one iteration
is used at each recursion. This idea is similar to the generalized
EM algorithm [1] which aims at just increasing the value of

instead of trying to obtain its maximum. However,
when only one iteration can achieve the maximum of
at time (a situation which can be true for some cases), the
method achieves ML estimation or a local maximum point
when the likelihood function has many local maxima. In order
to avoid complicated notations, in the following sections we

use and instead of and , respectively, in
applying (2), (3), and (7).

III. CHANNEL ESTIMATION

Data transmission through a linear noisy channel can
be described as

where is the transmitted signal,
is the impulse response of the linear channel,1

is additive noise generally modeled as a complex,
circularly symmetric, white/colored Gaussian random process,

and is the received signal. To detect the transmitted data,
the receiver needs to know channel parameters such as the
channel-impulse response (CIR) for deterministic channels

1h(l; k) is the time-variant channel response at timek due to an impulse
applied at timek � l:

or the stochastic characteristics of the CIR for stochastic
channels. The communication channel usually suffering from
intersymbol interference (ISI) and multipath fading is modeled
as a discrete finite memory system whose impulse response
length is limited to for

In this section, we focus on estimating the channel pa-
rameters or its statistical parameters) for different
models of CIR based on the recursive EM algorithm. We
assume that the receiver knows The knowledge about

can be achieved in the detection algorithm based on the
estimation of in a decision feedback equalization method
or by using the different hypotheses of in a maximum-
likelihood sequence detection (MLSD) method or when the
communication system is in the training mode [15].

A. Unknown Deterministic CIR

In this model CIR is considered as an unknown vector
of deterministic parameters which may be time-invariant or
time-variant. We assume the linear dynamic change in time-
variant CIR as where

and is an
matrix. is a stationary colored Gaussian noise

modeled by an th order autoregressive process with
positive definite covariance matrix

where
From the above we have

...

...
...

(8)

where and is an zero
row vector. The unknown parameter vector up to time
is in this model. Also, the complete
and incomplete data are defined as

Thus, is given as (9) at the
bottom of the next page, where

and . and are symmetric positive
definite matrices, and by using Cholesky decomposition they
can be factorized into a product of two triangular matrices
which are complex-conjugate transposes of each other. After
some manipulations we get

(10)

where is the first column of the
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lower triangular matrix of the decomposition of Due
to the maximization step at time the first derivative of

with respect to at point is
given in (11), shown at the bottom of the page.

Since the first derivative of with respect to
is zero for only the estimate is needed

at time The second derivative of at point

is shown in (12) at the bottom of the
page, where is a diagonal matrix and

are its diagonal elements. By defining

and using

we have

(13)

where from (12) Therefore from
(7) the recursive estimation of at time becomes

(14)

where As can be seen the recursive
formula (14) is similar to RLS/Kalman-type algorithm. When

is colored noise, the recursive formula in RLS algorithm
needs to invert a nondiagonal matrix and the unknown param-
eters may not be estimated sequentially in time [16, p. 248].
In developing the recursive formula (14), however, the inverse

of a matrix is not necessary. This result can be interpreted as
using the whitening filter along with a RLS/Kalman algorithm
where is the coefficients of the whitening filter. When
is a zero mean white Gaussian noise with variance we

have and it is easy to show that

(15)

where

and Meanwhile, selecting
where and is an

identity matrix, and defining unknown parameters
the time-variant model leads to

a modified RLS algorithm with a forgetting factor When
the time-variant impulse response becomes time-

invariant and the estimation of leads to the well-known
RLS algorithm. Meanwhile, due to Gaussian assumption for

the recursive estimating formula is exact. In addition, if
where is a zero-

mean random process, becomes a random process (see
Section III-B-2). However, by assuming a deterministic model
for , all of the obtained results in this section remain the
same.

...

...

(9)

(11)

(12)
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B. Gaussian Random CIR

The channel in a mobile communication system is generally
modeled as a linear system whose impulse response is a
random vector or random process. One such common model is
the Rayleigh multipath fading channel. In this model, the CIR
is a complex Gaussian random vector/process whose amplitude
is Rayleigh distributed. Also, without loss of generality we
assume that is a zero-mean white Gaussian noise with
autocorrelation for colored noise one can
follow the same procedure developed in Section III-A. In the
following, we consider the estimation of the Gaussian CIR
parameters using the recursive EM algorithm.

1) Gaussian Random Vector:The received signal is ob-
tained from where is the Gaussian
random vector. The maximuma posteriori (MAP) estimation
of the CIR at time is

Therefore, the unknown vector of deterministic
parameters at time is the conditional mean of The
complete and incomplete data are defined as and

respectively, at time Then (2) becomes

(16)

From the definition of
we have

(17)

Therefore, by replacing
the first derivative of at

point becomes

(18)

Meanwhile and can be ex-
panded as

(19)

(20)

where From (16) and (20), the second
derivative of at point becomes

(21)

As shown in (21), the estimation of is necessary to
estimate By choosing the initial value of the covariance
matrix as an estimate value, from (16), (19), and (20), it is
easy to show that the estimation of at time is

(22)

Hence, the recursive formula for estimating from (7)
becomes

(23)

As seen in (22) and (23), the recursive relation is the same as
the stochastic RLS algorithm.

2) Gaussian Random Process:It is very common to model
the CIR as a Gaussian random process in the mobile commu-
nication system with relatively fast fading rate. The dynamic
changing of the CIR can be represented by

where Also,
and are and

matrices defined by

...

...
(24)

where is identity matrix and is
zero matrix in (24). Meanwhile,

is a zero-mean complex white Gaussian random vector whose
autocorrelation matrix is and

it is independent of Similar to the Gaussian vector case,
it can be shown that in MAP estimation of time-variant CIR,
the conditional mean of at time

is necessary and should be considered
as the unknown parameter vector. Let us define and

based
on their elements

...
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and

...
...

.. .
...

(25)

where and
The complete and incomplete data at timeare

defined as and , respectively. From
(2), the E-step becomes

(26)

Similar to Section III-B-1, by taking the first and the second
derivatives of with respect to at point

the estimation of and becomes

(27)

(28)

where and is the zero row
vector. The relation between and is given by

(29)

Obtaining and from and
are straight forward by using (29). Meanwhile, since the first

elements of the vector are nonzero, only the first
columns of are necessary to be calculated for

obtaining
The recursive relation (28) estimates the entire unknown

sequence of parameters in each recursion by processing over
a new sample of the received signal. If only part of
is selected from (28), the recursive formula becomes Kalman
filtering. In general, by defining the unknown parameter vector

and the complete data at time and
following the same procedure used in this subsection, it can
be shown that the recursive EM algorithm leads to predicting,
filtering and smoothing algorithms for and ,

respectively. The recursive formula (28) is the estimation
procedure of smoothing for the entire unknown parameters
up to time based on the available information up to this
time. By selecting and unknown parameter
vector where it is straightforward to modify
the estimation procedure to include the prediction problem
as well. In a smoothing algorithm it is common to assume
that the estimator knows the entire received sequence and
two Kalman algorithms, forward and backward, are applied in
the estimating procedure. However, the recursive estimating
method developed here based on the recursive EM algorithm
is more general. Not only are the entire unknown processes re-
estimated at each time, but also the boundary of the available
data is changing with time.

C. Hybrid of Unknown Parameters and Gaussian Process

Sometimes the unknown set of parameters is a combination
of the constant and sequential parameters. In this situation the
estimation procedure needs both the methods developed in the
Sections III-A and III-B. In general, the complete data may
also be different for the two types of unknown parameters and
the estimating algorithm can contain two combined recursive
EM algorithms. Although there is interaction between the
unknown parameters at different times, estimating parameters
at time depends on the estimation of the other parameters
at time Hence, not only the unknown parameters, but
also the complete data may be partitioned to run the recursive
EM algorithms. Let us focus on more details of this situation
in channel estimation.

The procedure for estimating the Gaussian random process
CIR is based on knowing and matrices.
These parameters are generally unknown and should also be
estimated in the receiver. Assuming time-invariant and

matrices, there are two unknown parameter sets at time
and the elements of and

The complete data for estimating and is not the
same. While the complete data for estimating is

the complete data for estimating at time is
however the incomplete data for both is
Since less informative complete data improves

asymptotic convergence rate [17], entire set of unknown
parameters is estimated with two separate recursive
EM algorithms. The first recursive formula for estimating

is the same as the Gaussian random process case where
is defined as

(30)

and its derivatives are taken with respect to at point
and The estimation procedure

of is the same as the procedure described in Gaussian
random process in Section III-B-2 using the estimates of
and at time instead of their real values. It is
more convenient to estimate based on an ARMA model
of instead of the state-space model. It is
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clear from (24), only for and diagonal
elements of should be estimated
When the ARMA model of

is

(31)

where is the th row of matrix. By defining
where for

the E-step of estimating at time is given by

(32)

By taking the first and the second derivatives of
with respect to and at point and

and also assuming
and for

and doing some manipulations, it can be shown that [18]

(33)

(34)

where and is given
by

(35)

All conditional mean values in (33) and (34) can be obtained
from (28). Meanwhile, the approximation procedure used
to generate the recursive formula (33) is similar to RLS
algorithm. For starting the algorithm proposed in Section III-
C, such that the assumed approximations become valid we
recommend that in the first step the stochastic RLS algorithm,
(23), be used for estimating the initial values of and

for a short time period, then (33) and (34) be used to
estimate the initial values of and and then finally the
complete procedure proposed in Section III-C be applied.

IV. CONCLUSIONS

The recursive (online) EM algorithm was presented for
estimating time-invariant/variant parameters by using the gen-
eralized form of Titterington’s approach. From the recursive
EM algorithm, we have obtained different types of RLS,
Kalman and combined RLS/Kalman-type algorithms some
of which were not available before. These algorithms were
derived directly based on the EM approach which emerged
as a powerful tool for the unification of different types
of adaptive algorithms. Meanwhile, the channel estimation
algorithms proposed in the paper have yielded good results
when simulated in the framework of MLSD receivers [15],
[18].
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