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EM-Based Recursive Estimation of Channel Parameters
Hossein Zamiri-Jafarianylember, IEEE,and Subbarayan Pasupati®gllow, IEEE

Abstract—Recursive (online) expectation—-maximization (EM) the recursive EM algorithm, the recursive estimator increases
algorithm along with stochastic approximation is employed in this  the likelihood monotonically.
paper to estimate unknown time-invariant/variant parameters.
The impulse response of a linear system (channel) is modeled as
an unknown deterministic vector/process and as a Gaussian vec-
tor/process with unknown stochastic characteristics. Using these II. ML ESTIMATION VIA THE RECURSIVE EM
models which are embedded in white or colored Gaussian noise, ) o
different types of recursive least squares (RLS), Kalman filtering L€t us considerd, as a column vector of deterministic
and smoothing and combined RLS and Kalman-type algorithms channel parameters up to tinieto be estimated from the

are derived directly from the recursive EM algorithm. The data vector observed up to tinley, = [y(]€)7...7y(())]77

estimation of unknoyvn parameters al_sp generates new recursive yhare Y7 denotes the transpose &F. ML estimation of@;,
algorithms for situations, such as additive colored noise modeled is given by

by an autoregressive process. The recursive EM algorithm is .
shown as a powerful tool which unifies the derivations of many 0xx = arg max {p(yx|0r)}
adaptive estimation methods. 0, :

Index Terms—Adaptive estimation, colored noise, estimation = alg max {log p(yx|6r)} (1)
and maximization algorithm, estimation theory, Kalman filtering, s . . . .
maximum-likelihood estimation, recursive estimation. whered,,; is ML estimation off;, based on received signgi.

Whenyy, is incomplete data, the maximization &f.(8,) =
log p(yi|0x) is not tractable. Denoting;. as incomplete data
|. INTRODUCTION T = yi. and Dy, as the desired additional information needed
AXIMUM-LIKELIHOOD (ML) criterion serves as a attimek to completeZ;, and following the regular (offline) EM
benchmark in estimation when the unknown parameteatgorithm [1], the two steps of the recursive EM algorithm at
are deterministic. However in many cases the received détae & are as follows.
does not provide complete information necessary for suchl-E step

maximization. The expectation—maximization (EM) algorithm (m—1)\ _ ) ~(m—1)

[1], [2] provides an iterative solution in such situations. @ (okw""‘ ) - E[log P(CrlOw)[ Tk, O } 2)
Applications of the EM algorithm to parameter estimation 2-M step

are considered in [3]-[9]. In particular, the online estimation S(m) (m—1)

of parameters based on the Kullback—Leibler information Ok = arg I%E,}X {Q’“ (ekwm )} (3)

measure and using stochastic approximation is considered ~(m)
in [7] and [8]. Several applications of the EM algorithm” whereCy, = {7y, Dy} is the complete data at timeandéy,;
to receiver design are also presented in [10]-[12]. Othlﬁ'the estimation o#,, at themth iteration based 0? t?e signal
recursive algorithms such as recursive ML and predictidgceived up to timé, y;, for m > 0. Whenm = 0, 0., is the
error methods are presented in [13]. EM algorithm is a batciitial value of estimate;,, based on the received signal 1.
oriented approach which processes the entire received ddta€ steps of the algorithm at tineare repeated until akth

In order to eliminate the delay in decision-making, reduqeerauonoilk) = 027,1 " When, is the unknown parameter
storage and increase the computational efficiency in real-tinmector just for timel, where 4({) is independent of other
applications, it is desirable and often necessary to process plagameters by knowing,, we havedy, = [¢7 @i ., -+, 02 |7
received data in a recursive manner.

The recursive (online) EM algorithm developed in this pap
extends and modifies the algorithm in [7] by using iteratio
in each recursion and by considering time-variant unknown 0 - 9(0)
parameters. The proposed algorithm leads, for special cases, to Rk = Ykl =
some new RLS/Kalman-type algorithms for colored Gaussian ) (0)
noise. Although achieving ML estimation is not always guawhere Ptk = Pryippsr and 0k+1|k = 0k+1|k+1 are the

anteed and we do not provide a proof of the convergence &timates ofp,, and#é;.., respectively, based on the entire
received signal up to time:. In general, ¢, can be

. ~(rh) . . . .
Paper approved by E. Eleftheriou, the Editor for Equalizationa and Codify function of 8, ), and is obtained by using the dynam|c

and time-update vect<1fir,(ﬁzl|kJrl for the next recursion of the
rocedures (2) and (3) is given by
-(0)
‘Pk+1|k+1 ]

()
oklk

(4)

of the IEEE Communications Society. Manuscript received December 18 i
1997; revised November 17, 1998 and March 1, 1999. evolution of they,.,, process. From (4) itis clear thy, is
The authors are with the Department of Electrical and Computer Enginetsed as an initial value for next recursion or, in other words,
ing, University of Toronto, Toronto, Ont., Canada M5S 3G4. 0( ) é(m)
Publisher Item Identifier S 0090- 6778(99)07451 -6. klk+1 — Yk|k

0090-6778/99$10.001 1999 IEEE



1298

Since for each iteratior@k(ém)|9§€T,Z_l)) > Qk(ém_l)|
9,27,2_1)), one can show that [1]
~(m) ~(m—1)
Ly, (0k|k) > Ly, (0k|k ) 5)

Meanwhile, from (4) at timé&-+1, we haveLkJrl(éngH) =
~(rh) - -
Li(8y1) + Liss(@y0 ), Where Ly (@) ) =
- ~(m)
logp(y(k + 1| @01, y1). From (5), L1041 1041)
Lk+1(éz£rl|k+1)7 thus we have

=(m) = (") ~(0
Liy1Ori1jrt1) 2 La(Opp ) + Lk+1(<P§€J21|k+1)- (6)

v

Therefore, as (5) and (6) show, the log-likelihood function is
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or the stochastic characteristics of the CIR for stochastic
channels. The communication channel usually suffering from
intersymbol interference (ISI) and multipath fading is modeled
as a discrete finite memory system whose impulse response
length is limited toL + 1, h(l,k) = 0for 0 > [ > L.

In this section, we focus on estimating the channel pa-
rameters(h(l, k) or its statistical parameters) for different
models of CIR based on the recursive EM algorithm. We
assume that the receiver knowgk). The knowledge about
s(k) can be achieved in the detection algorithm based on the
estimation ofs(%) in a decision feedback equalization method
or by using the different hypotheses gft) in a maximum-
likelihood sequence detection (MLSD) method or when the
communication system is in the training mode [15].

increased monotonically both in each iteration and recursion.
The estimation procedure based on the recursive EM algorithm
is more attractive when its maximization step can be dode Unknown Deterministic CIR

analytically in a recursive manner.

In this model CIR is considered as an unknown vector

_ Following Titterington’s approach of stochastic approximasf geterministic parameters which may be time-invariant or
tion of Qx(:|-) based on three elements of its Taylor serigfme-variant. We assume the linear dynamic change in time-

[14], one can show that
~(m—1) -1

?Qu(01105), )
020,

~(m) ~(m—1)
O = Oppe

_glm—1)
0.=0, |k

~(m—1)
Q. (Or|0r. )

variant CIR ash(k) = F(k)h(k — 1), whereh;, = h(k) =
R(E)T .- h(k = N +1)7]7 and F(k) is an N(L + 1) x
N(L+ 1) matrix. z(k) is a stationary colored Gaussian noise
modeled by anA/ — 1)th order autoregressive process with
positive definite covariance matriX, = cov(z;) = E[(zx —
B )z — I";./)H]a where z, = [z(k), -, 2(k — M + 1)]7’

00, 8. =8( @ u. = E[z;]. From the above we have

where (92Qy(-]-)/9%0r) = (92Qi(-]-)/060:907 ), 0} denotes r o y(k)
complex conjugate of,.. When the third and higher deriva- y(k—1)
tives of Qi (+|-) are zero, as is usually true for the Gaussiatix = .
noise case in a linear system, the recursive formula (7) is exact. :

In the following sections, we assume that only one iteration Ly(k—M+1)
is used at each recursion. This idea is similar to the generalized s(k) hy,
EM algorithm [1] which aims at just increasing the value of _ s(k —1) 0 by 1
Qi(+]-) instead of trying to obtain its maximum. However, N 0 : b
when only one iteration can achieve the maximunaf-|-) L s(bk— M+ 1)1 lhy
at time % (a situation which can be true for some cases), the —g(x)h$ + 2, (8)

method achieves ML estimation or a local maximum point

when the likelihood function has many local maxima. In ord§ghere s(k) = [s(k),0] and 0 is an (N — 1)(L + 1) zero

to avoid complicated notations, in the following sections Wgyy vector. The unknown parameter vector up to tie

usefy,_, andéy, instead ofégfi andéﬁi, respectively, in is by, = [b7,---,hZ]7 in this model. Also, the complete

applying (2), (3), and (7). and incomplete data are defined s = 7 = yx =

[y(k),-- -, y(0)]”. Thus,Qy(hy|hys_,) is given as (9) at the

bottom of the next page, whegg = [2(k—1), -, 2(k— M+

o ) i D)7 andX; = cov(2y). £t andXZt are symmetric positive
Data transmission throuLgh a linear noisy channel cgfinite matrices, and by using Cholesky decomposition they

be described ag(k) = %2, s(k — Dh(l,k) + 2(k) = can be factorized into a product of two triangular matrices

s(k)h(k) + =(k), where s(k) is the transmitted signal, yhich are complex-conjugate transposes of each other. After
h(l,k) is the impulse response of the linear charnelgymea manipulations we get

z(k) is additive noise generally modeled as a complex,

circularly symmetric, white/colored Gaussian random proces%? @ |ﬁ )
s(k) = [s(k), -+, s(k = L)), h(k) = [R(0,k), -+, h(L,k)]7 ~ *FTRTHES
andy(k) is the received signal. To detect the transmitted data,
the receiver needs to know channel parameters such as the
channel-impulse response (CIR) for deterministic channels

I1l. CHANNEL ESTIMATION

= Qk—l(Ek—l|ﬁk—1|k—2) — {log() — log(070)
+ (g — S(W)hy — p )y (), — S(k)h§, — p.)}
(10)

1h(1, k) is the time-variant channel response at timeue to an impulse

applied at timek — 1. wherey = [v0,71,--,vm—1]7 is the first column of the
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lower triangular matrix of the decomposition afZ!. Due
to the maximization step at time— 1, the first derivative of
Qi(hx[hy,—1) with respect tohy” at pointh; = Ty_; is
given in (11), shown at the bottom of the page.

Since the first derivative ofQ(-|-) with respect to
h¢" is zero forl # k, only the estimateh is needed
at time k. The second derivative ofQ.(-|-) at point

h; = Iy, is shown in (12) at the bottom of the

page, whereF, is a diagonal matrix and F(k), F(k —

1299

of a matrix is not necessary. This result can be interpreted as
using the whitening filter along with a RLS/Kalman algorithm
wherey™ is the coefficients of the whitening filter. Wheik)
is a zero mean white Gaussian noise with variafnge we

M-1

havey = [(Np)~(/2,0,---,0]7 and it is easy to show that

By, = hyge 1 + Pk|k—~15(/f)H(1 + s(k) (k) Pyr—15(k)™) ™
~(y(k) — s(k)hyj—1)

1, -, Flk— M+ 1)} are its diagonal elements. By defining Pyp = Pyjp—1 — Pk|k—15(k)H(1 + S(k)Pk|k—1S(k)H)_l

Py = (—(32Qk(Hk|Hk|k—1)/32h2)|ﬁk:ﬁk kil)fl and using

(A+BC) ' =A1-A'BI+CA'B)"'CA~! we have

Prr = Prpe1 — Prp_1S(8) 91+ S (k)
Prp—1SE) ) TS (k) Prp—r (13)

where from (12)Py—1 = FkPk_1|k_1F}j. Therefore from
(7) the recursive estimation af;, at time k£ becomes

by = by + P 1S(k) v (1 + 475 (k)
'Pk|k715(k)H’Y)_l’YH(yk—S(k)hakfl—uz) (14)

- s(k) Prjr—1 (15)

where Py, = (—N0(82Qk(Hk|ﬁk|k_1)/82hk)|ﬁk:; )1

hy 1

and Pyi—1 = F(k)Pe_1p—1F(k)™. Meanwhile, s‘electing
F(k) = "/2] where0 < A< 1and/isanN(L+1) x
N(L + 1) identity matrix, and defining unknown parameters
@ = h = [h(0),---,h(L)]7, the time-variant model leads to
a modified RLS algorithm with a forgetting factor. When
F(k) = I, the time-variant impulse response becomes time-
invariant and the estimation di leads to the well-known
RLS algorithm. Meanwhile, due to Gaussian assumption for

whereh?, | = Fkﬁi—uk—l- As can be seen the recursivez(k) the recursive estimating formula is exact. In addition, if
formula (14) is similar to RLS/Kalman-type algorithm. Wherh(k) = F(k)h(k — 1) + G(k)W (k) where W (k) is a zero-

z(k) is colored noise, the recursive formula in RLS algorithrmean random procesh(%) becomes a random process (see
needs to invert a nondiagonal matrix and the unknown para®ection 111-B-2). However, by assuming a deterministic model
eters may not be estimated sequentially in time [16, p. 248r h(k), all of the obtained results in this section remain the

In developing the recursive formula (14), however, the inversame.

Qu(hy by 1) =Eflog p(yrlhw)lye, hypr-1]
=log p(yr—1|hx_1) +log p(y(k)|[hy,yr—1)

=Qr—1(hp_1|hy_1pp—2) + 108‘{

p(yx|by) }
p(y(k - 1)7 o 7y(k - M + 1)|h2)

=Qr1(Bra 1) — § log(m) +log(det(3.)) — log(det(32) + (g — S5, — )

0 : 0
sl (g — S(B)h — p.) 9)
o : x;t
- Q-1 (M [ 1 1o
0Qr (hy|hyr—1) Qr-ab 1| kotfi—2) =0, 0<i<k—1
T _ = ah? _ Ek—l=ﬁk—l\k—l (1)
PR SEY yy" (= S(R)h3y_y — b)), I=Fk

O*Qr(hr by 1)

Ekzﬁk\k—l

&7hg, hs

g\ [ 0*Qu_1(br_1hy_15_2)
Ry,

ohy,_4 )T
. =) = SE) " S(k)
Hk1=Hk1k1> < ahk

_FH <82Qk—1(ch—1 |Hk71|k72)
Tk

ohy_,

(12)

)FZI — S(k) T yy™ S (k)

hp_1=hy_1jp_1
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B. Gaussian Random CIR where ¥; = cov(h|y;). From (16) and (20), the second
The channel in a mobile communication system is generafigTivative ofQ (. |f—1) at pointuy, = fy,_; becomes

modeled as a linear system whose impulse response is g N
random vector or random process. One such common model & Qn (bl ip—1) = 51 SN, sE). (21)
the Rayleigh multipath fading channel. In this model, the CIR Py, =i k=1 0

is a complex Gaussian random vector/process whose amplitude

is Rayleigh distributed. Also, without loss of generality wés shown in (21), the estimation df;_; is necessary to
assume that(k) is a zero-mean white Gaussian noise witestimatep,. By choosing the initial value of the covariance
autocorrelationR. (k) = Noé(k); for colored noise one can matrix as an estimate value, from (16), (19), and (20), it is
follow the same procedure developed in Section IlI-A. In theasy to show that the estimation Xf;, at timek is

following, we consider the estimation of the Gaussian CIR R
parameters using the recursive EM algorithm. S = (B, + s Ny ts(k)

1) Gaussian Random VectoiThe received signal is ob- = = H = Hy—1
tained fromy(k) = s(k)h + z(k), whereh is the Gaussian X1~ Bip-18(k) " (No + s(k)Zp-15(k)™)
random vector. The maximum posteriori (MAP) estimation - 8(k)X k-1 (22)
of the CIR at timek is h = arg maxp{log p(hly,)} = _ o
E[hly,] = p;.- Therefore, the unknown vector of deterministidience, the recursive formula for estimating; from (7)
parameters at timé is p,, the conditional mean ok. The becomes
complete and incomplete data are defined;as- {yx,h}and , - -
7w = yu, respectively, at times. Then (2) becomes B = By + Zpeo15(k) (Vo + s(k)E_1s(k)) 7

(k) = s(k)i—r). (23)

Qk(l"|k|l~"|k—1)
= Ellog p(yw, blu)|ye, Bjp—1] As seen in (22) and (23), the recursive relation is the same as
the stochastic RLS algorithm.
loo 1 h . 2) Gaussian Random Proces#tis very common to model
+log p(u(R)lmye, -1, Rk, fypei] the CIR as a Gaussian random process in the mobile commu-
= Qu-1(ppr|Bjp—1) — {log(mNo) + E[(y(k) nication system with relatively fast fading rate. The dynamic
_ s(k)h)HNgl(y(k) — s(k)R)[yks frp_1 ]} (16) changing of the CIR can be representedi¥f¥) = F(k)h(k—
1) + G(EYW (k), whereW (k) = [wo(k), - - -, wr(k)]7 . Also,
From the definition ofQx—1(plitjk—1) = Ellog p(yr-1,h| F(k)andG(k) areN(L+1)xN(L+1) andN(L+1)x(L+1)

= Ellog p(yxr—1,hlp)

)|V ks Byi—1], We have matrices defined by
Qw1 (| By Qe (B [ Byp2) [Fi(k)  Fy(k) - Fn(k)
* - * I 0 - 0
aIl’|k‘ Bi=R ap’““*l Bl 1=R_1 F(/%) = .
0 I 0

Therefore, by replacind[h™ Ah|y;] = E[(h — u|k)HA(h -

) [yr] + sy Ay, the first derivative ofQp (s |fry. 1) at Glk) = 0 (24)
point gy, = py,_, becomes

Olernliu=s) | e k) — ().
all'|k B =R_1

where I is (L + 1) x (L + 1) identity matrix and0 is
(L+ 1) x (L +1) zero matrix in (24). MeanwhileW (k)

18) . .
(18) is a zero-mean complex white Gaussian random vector whose
Meanwhile Qs (sl _1) and Qu—1(ppelin_) can be ex- (L+1)x (L+1) autocorrelation matrix ity (k) = 16(k) and
panded as it is independent og(k). Similar to the Gaussian vector case,
it can be shown that in MAP estimation of time-variant CIR,
Qr(ppp|p—r) the conditional mean oh; = [hi,hi_,,---,h]]” at time
= —{log(m)“T" + log(det(S ;) k, B = Efhi|yx], is necessary and should be considered
+ B[R )Hzfl(h ) . I as the unknown parameter vector. Let us deﬁz)g:k and
Hies S 8T Bk Bk Siin = cov(hylys) = E[(By, — i) (B — Fyy) |y based
+ log p(yule;) (19) on their elements
Qr—1(px|pp—1) B
= —{log(m)"** +log(det(Sp 1)) B Br_1)k
+E[(h_I"|k71)HE|_k1,1(h_I"|k71)|Yk7I)'|k—l]} Pl =

+log p(yr—1lm;) (20) Ho



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 47, NO. 9, SEPTEMBER 1999 1301

and respectively. The recursive formula (28) is the estimation
procedure of smoothing for the entire unknown parameters

ik K]k Tkk-1k 0 Zk0lk up to time k based on the available information up to this

S = Lh—1klk Zk—lk—1lk " Zk—10[k (25) time. By selecting’s, = {yx, hs+;} and unknown parameter

vector ., ;. Where j>0, it is straightforward to modify

the estimation procedure to include the prediction problem

as well. In a smoothing algorithm it is common to assume

where p;, = E[h;lyi] and 2, . = E[(hi — p;,)(h; —  that the estimatolr knows the entire received sequence gnd
1t;1%) 7 |¥x]. The complete and incomplete data at tilare two Kalman algorithms, forward and backward, are applied in

defined asCy = {yx,hx} andZ; = y;, respectively. From the estimating procedure. However, the recursive estimating
(2), the E-step becomes method developed here based on the recursive EM algorithm

is more general. Not only are the entire unknown processes re-
estimated at each time, but also the boundary of the available
data is changing with time.

20 kK Sok—1k 0 20,0[k

Qk(ﬁk|k|ﬁk|k—1) = E[IOgP(YkaHk|l_1'k|k)|yk7ﬁk|k—l]
= Ellog p(y(k) | nx, Ya—1: Fg i)

(
+ 1ng(yk—l|l_"k|k)|kaI_l'k|k—1] Sometimes the unknown set of parameters is a combination
= —{log(xNo) + E[(y(k) — s(k)hk)HNO_l of t_he c_onstant and sequential parameters. In this situatio_n the
(k) = s(k)) |y, ] estimation procedure needs both the methods developed in the
Y Rk Bklie—1 Sections 1lI-A and 1lI-B. In general, the complete data may

+ log p(hr|yr—1, g ) C. Hybrid of Unknown Parameters and Gaussian Process

+ log((m)N*HDEAD et (32, _1)) also be different for the two types of unknown parameters and

+ E[(hy, — ﬁk|k—1)H the estimz.;\ting algorithm can Cont.ain. two cqmbined recursive
P ~ EM algorithms. Although there is interaction between the
’ klk—l( k= B[k B} unknown parameters at different times, estimating parameters

+E[logp(yk,1|ﬁk|k)|yk,ﬁk|k_1]. (26) at time k depends on the estimation of the other parameters
at time %k — 1. Hence, not only the unknown parameters, but
Similar to Section IlI-B-1, by taking the first and the secondlso the complete data may be partitioned to run the recursive
derivatives 0ka(ﬁk|k|ﬁk|k_1) with respect tog,,;,, at point EM algorithms. Let us focus on more details of this situation
B = ﬁMk_l, the estimation o2y, andz,,;, becomes in channel estimation. o .
The procedure for estimating the Gaussian random process
Zaie = X1 — Snpr—15(k) (N + 5(k) Bpqu_15(k) ™) CIR is based on knowing”(k) and G(k)G(k)™ matrices.
= These parameters are generally unknown and should also be
) ;S(k)x’““{,—l ) (27)  estimated in the receiver. Assuming time-invaria#it and
B =Bt + Xrp—15(k) (Vo + 5(k)Xwp—15(k)™)™" G matrices, there are two unknown parameter sets at time
(y(k) — s(k)fugp 1) (28) k, O = By and g, th_e el_ements ofF" a_md GG™.
The complete data for estimating;; and ¢, is not the
wheres(k) = [s(k),0] and 0 is the kN(L + 1) zero row Same. While the complete data for estimat#hg is Ci). =

vector. The relation betwedn; andhy_; is given by {¥x, hi}, the complete data for estimating, at time & is
Car. = hy; however the incomplete data for both I3, =

F(k)hg_, G(EYW (k) Tor. = ¥yi. Since less informative complete data improves

hy, = + ) (29) asymptotic convergence rate [17], entire set of unknown

hy 0 parameterg#;, -} is estimated with two separate recursive

EM algorithms. The first recursive formula for estimating
Obtaining gy, ;,_; and Xy,_1 from gy, and X151 011 is the same as the Gaussian random process case where

are straight forward by using (29). Meanwhile, since the fir&¢1x(01x(61xjk—1,Po)i.—1) is defined as
L + 1 elements of the vect@&(k) are nonzero, only the first y .
L+ 1 columns of 3}, are necessary to be calculated for @1k (01x/01kix—1; Papp—1)
obtaining fzy .. = Ellog p(yr, he|01k, o 1)[yr: Oraii—1, @1

The recursive relation (28) estimates the entire unknown (30)
sequence of parameters in each recursion by processing over
a new sample of the received signal. If oy, part of,,, and its derivatives are taken with respect@f, at point
is selected from (28), the recursive formula becomes Kalmap, — 0111 and g, = Poli_1- The estimation procedure
filtering. In general, by defining the unknown parameter vectef 4., is the same as the procedure described in Gaussian
ki, and the complete datd, = {yx,h;} at time & and random process in Section II-B-2 using the estimateg’of
following the same procedure used in this subsection, it cand GG™ at time & — 1 instead of their real values. It is
be shown that the recursive EM algorithm leads to predictinmore convenient to estimate, based on an ARMA model
filtering and smoothing algorithms fgr-%, j = k, andj<k, of hi(k) = h(l,k) instead of the state-space model. It is
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clear from (24), onlyF; for ¢« = 1,.--,N and diagonal
elements ofgg”™ should be estimatedRy (k) = I5(k)).
When diag(g) = {g° g!,---,g%}, the ARMA model of
hl(k') is

IV. CONCLUSIONS

The recursive (online) EM algorithm was presented for
estimating time-invariant/variant parameters by using the gen-
eralized form of Titterington’s approach. From the recursive
EM algorithm, we have obtained different types of RLS,
Kalman and combined RLS/Kalman-type algorithms some
of which were not available before. These algorithms were

hy(k) = f'hy 1 + glu(k), 0<I<L (31)

where f! is the ith row of F' matrix. By definingp, =
[£F,--- £%, Ryr,---, Ryp] where Ry = glg! for |
0,---,L, the E-step of estimating, at timek is given by

derived directly based on the EM approach which emerged
as a powerful tool for the unification of different types

of adaptive algorithms. Meanwhile, the channel estimation
algorithms proposed in the paper have yielded good results

Qa1 (0101111, Popr—1)

= E[log p(hi|01sx: 02) 1Y%, Orri1, Pajp—1]
L

k
D —flog(wRy) + El(hu(s) — £hy)

=0

-Rg_zl(hz(j) - flhj—l)b’kvélk|k—17¢2|k71]} 2]

, , N 3
+Elog p(hi(0)01kk )Yk O1kk— 15 Pore—1] S

(32) [4]
By taking the firs} and the second derivatives @8.(-|)
with respect tof! and Rgﬁl at point @1, = 6y and
Dot = s and also assuming;_y ;_1|; < f; 15871,
and doing some manipulations, it can be shown that [18]

(5]

(6]

o | | | 7
£ =+ B P (U s P adig—)
(fhgre = BB 1) (33) -
. N 1 . ) o
Ry ~ Ryj—1 + I (Rgllk—l - |/“L§c|k - f|lk—1ll'k71|k|2)7
0<I<L 34 O

k-1 ~ o H - is qi 10
where Py |, = (372 fi;_q ;)" and Pg, ., is given [10]

by
[11]
Pirr = Po_pe — P p (1 + ﬁzf_ukpzj—uk

~ 1~ 12
'Il'klkfl) lﬂ?j—ukpljfuw (35) 2]

All conditional mean values in (33) and (34) can be obtaindd®!
from (28). Meanwhile, the approximation procedure useds]
to generate the recursive formula (33) is similar to RLS
algorithm. For starting the algorithm proposed in Section i
C, such that the assumed approximations become valid e
recommend that in the first step the stochastic RLS algorithlirlul]
(23), be used for estimating the initial values @f_,; and

;; for a short time period, then (33) and (34) be used to
estimate the initial values df and R, and then finally the
complete procedure proposed in Section 11I-C be applied.

when simulated in the framework of MLSD receivers [15],
[18].
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