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Abstract. It is practically impossible to manufacture a component exactly with the required dimensions. 
Therefore for each part dimension, a tolerance limit is prescribed. Also for all assemblies, a limit of variation is 
prescribed for a specified parameter of the assembly which is referred to as the assembly specification. In this 
research the Direct Linearization Method (DLM) is used to determine the distribution limit of the assembly 
specification in terms of part tolerances. It has been assumed that the assembly is a mechanism with flexible 
parts; therefore, in addition to manufacturing tolerances, external loading will impose external variations on part 
dimensions which result in extra errors on assembly specification. The effect of flexible components will cause 
change in mean, variance and correlation of the assembly specification. FEM is used to model the mechanism in 
order to compute part dimension variations under external loading. The percent contribution of each input 
variable on the assembly specification is obtained by the proposed multiple linear regression model. It has been 
proposed an optimization algorithm to assign part tolerances which minimizes manufacturing expenses while the 
maximum error of the assembly specification is kept within the desired limit. 
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1. INTRODUCTION 

An important aim in designing kinematic linkages is 
creating an accurate path by means of a point on the 
coupler. This point and the corresponding path are called 
Coupler Point (C.P.) and Coupler Point Path, 
respectively. In each cycle of motion, manufacturing 
tolerances of the parts and also extra variations due to 
flexibilities and loading cause a deviation in the C.P. path 
from its designed or ideal state. These deviations can 
lead to undesirable performance of the mechanism. There 
are several methods which were proposed to determine 
the effect of part tolerances on C.P. path deviations or the 
performance of the mechanism. The Direct Linearization 
Method (DLM) is firstly presented by Marler [1]. This 
method has been extended by Parkinson  and Chase  for 
static structures and kinematic mechanisms [2]. 
However, they assumed that all components are rigid. 
Markley  presented a method to analyze assemblies with 
flexible parts [3]. He used the linear elastic assumption 
for contact of two parts which was proposed by 
Francavilla and Zienkiewicz [4]. He also presented a 
method to determine the variance and mean value of a 

dimension under loading. The current work implemented 
FEM model of kinematic mechanisms and investigated 
variations of assembly specification during one cycle of 
motion under external loading. 
In this paper we are going to applying simultaneity the 
DLM and FEM, the effected of external loading on path 
error variation of a Crank Slider mechanism is obtained. 
Therefore, in this section of paper will be description 
theory of DLM, bivariate distribution and FEM and then 
in next section, the above discussion are using on the 
Crank Slider mechanism.  
In Section 2 of this paper, the kinematic model of a crank 
slider mechanism including tolerances of input variables 
is expressed. In Section 3, the Direct Linearization 
Method is demonstrated and the equations of vector 
loops, sensitivity matrix and position error are obtained. 
In the following section, the DLM method is applied to 
find the bivariate distribution of the C.P. position error. 
In section 4, the FEM model of mechanism and a method 
for obtaining variation of component are described. 
Finally, the multiple linear regression method and 
present contribution are defined.  
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2. CRANK SLIDER MECHANISM MODEL 

In the current work, The C.P. position error of a crank 
slider mechanism is analyzed, (see Figure 1). The 
reference path of C.P. is generated by assuming nominal 
dimensions for all components. 
For each component of the mechanism, the 
manufacturing tolerances are specified on the basis of 
corresponding manufacturing processes and length of 
dimension[5]. Hence, tolerances of each nominal 
dimensions are selected based on Figure 2 [5], and 
reported in Table 1 is presented. 
 

 
FIGURE 1: Crank slider mechanism with driving crank. 
 
Angular position of link 2 (θ2) is considered as an input 
to the mechanism. Therefore, it is not a manufacturing 
dimension and zero tolerance is assigned. All 
manufacturing dimensions are assumed to be normally 
distributed with a mean equal to the nominal link length. 
Also, the acceptable limit of distribution is taken 
according to common standard of 3σ.  
 

 
FIGURE 2: Tolerance range of machining processes [6]. 

 
TABLE 1. Nominal dimensions and tolerances of input 
variables (mm).  
Manufacturing 

Variables 2r  3r  4r  pr  β  1θ  

Nominal 
Dimensions 250 400 25 104 80° 0° 

Tolerances ± 0.3± 0.2 ± 0.02 ± 0.15± 0.5° ± 0.5°
 

3. DIRECT LINEARIZATION METHOD (DLM) 

The Direct Linearization Method (DLM) can be used to 
determine the position error of a kinematic linkage. In 
this paper, point C.P. is designed to follow a specific path 
as the input crank (link 2) is rotated. The nominal 
position of point C.P. for a given input crank angle, θ2, is 
found by solving one closed vector loop equations and 
one open vector loop equation (see Figure 3). 
 

 

 
FIGURE 3: (a) Closed vector; (b) loop Open vector loop 

 
Since position of point C.P. is defined by two direction x 
and y, so each vector loops is separated in to two 
equation. Closed and open loop equations are shown as 
follow, respectively: 
 

11443322 coscoscoscos θθθθ rrrrhx −−+=    (1) 

11443322 sinsinsinsin θθθθ rrrrhy −−+=   (2) 

( )βθθ ++= 322 coscos.).( px rrPC    (3) 

( )    (4) βθθ ++= 322 sinsin.).( py rrPC

 
In this method, the sensitivity matrix is derived using 
open and closed vector loops. The position error can be 
predicted by applying statistical approaches. Therefore, it 
will be assumed that the actual dimensions are normally 
distributed with a mean equal to the nominal link length 
with a standard deviation 3σ. 
Partial derivatives of equations 1 and 2 with respect to the 
input variables, give us limit of assembly variables. These 
equations are then linearized using a first-order Taylor's 
series expansion [7]. This is written as: 
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0}]{[}]{[ =+ dUBdXA     (5) 

 
Where {X}={r2, r3, r4, rp, β, θ1, θ2} is the vector of input 
variables and {U}={θ3, r1} is the vector of assembly 
variables. and are matrices which represent first-
order derivatives of equations (1) and (2) with respect to 
the manufacturing and assembly variables, respectively, 
i.e. 

][A ][B

 

ji XhA ∂∂=][       (6) 

ji UhB ∂∂=][       (7) 
 
Equation (5) can be rewritten as: 
 

}]{[][}{ 1 dXABdU −−=     (8) 

 
A similar process is applied for open loop equations. 
Equation (9) expresses the variations of the assembly 
specification, i.e. C.P., in terms of the manufacturing and 
assembly variables. 
 

}]{[}]{[.)}.({ dUDdXCPCd +=     (9) 
 
Where [C] and [D] are first-order derivatives of equations 
(3) and (4) with respect to the manufacturing and 
assembly variables, respectively, i.e. 
 

ji XPCC ∂∂= .).(][                 (10) 

ji UPCD ∂∂= .).(][                 (11) 
 
By substituting equation (8) into (9), the following 
equation is obtained. 
 

}{][}{)][]][[][(.)}.({ 1 dXSdXABDCPCd ij=−= −            (12) 
where [Sij] is the sensitivity matrix of the assembly 
variables and can be written as: 
 

][]][[][][ 1 ABDCSij
−−=                 (13) 

 
Based on the sensitivity matrix, the influence of each 
input variable on the assembly specification can be 
evaluated using Root Sum Square (RSS) statistical 
approach. The variance of the univariate normal 
distribution, which expresses the spread of the 
distribution, is determined using DLM method and 
computed by equation (14) [8]. 
 

∑
=

==
n

j
jijiPC SPCVar

i
1

222
.).( )(.).( σσ              (14) 

 
In the above equation, σj

2 is the variance of j-th 
manufacturing. In the case of multivariate distribution, 
the variance of input variables is expressed as the 
variance matrix V, which presents the variance of each 
input variable along with the correlation between the 
variables [9]. It is assumed that there is no correlation 
between the input variables. It is important to note that 
the matrix of component variances V is diagonal only if 
the variations of the components are linearly independent. 
Generally, component variations are assumed to be 
independent [8]. However, if several component features 
are produced with a single operation, as with a pattern of 
holes produced on a gang drill or multiple punch die, the 
component variations may be correlated. If the 
component variables are correlated, their covariance 
terms are placed in the off-diagonal spaces of the V 
matrix. Therefore, the variance matrix is diagonal and 
written as follows: 
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4. BIVARIATE NORMAL DISTRIBUTION 

Brown estimated the concurrent variation limits of two 
assembly specifications d(C.P.)X and d(C.P.)Y by the 
following equation [8]: 
 

T
ijij SVS ][][][][ =Σ                  (16) 

 
The covariance matrix Σ for bivariate distribution of 
assembly specification is presented by: 
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The diagonal elements indicate the deviations of each 
individual variable while the off-diagonal elements 
describe correlation between variables. The eigenvalues 
of the covariance matrix indicate the magnitude and 
direction of greatest variations. These eigenvalues are 
principle variances that represent the major and minor 
diameters of the elliptic contour of distribution [9]. The 
eigenvalues of 2-order variance matrix are determined as 
follows: 
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Also, the rotation angle of principle axes to the y axis is 
given by [10]: 
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The contour of equal probability can be presented by the 
following equation in polar coordinates (r,θ) [9]. 
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Where n is the sigma-level of the process. The maximum 
normal-to-path error, which is defined as the maximum 
perpendicular distance between distribution contour and 
the nominal C.P. path, is estimated with standard 
deviation of ±3σ. 

5. FEM MODELING OF CRANK SLIDER 
MECHANISM  

In the current work, The C.P position error of a crank 
slider mechanism with flexible component is analyzed, 
(see Figure 1). In the case, a vibrations and loading (force 
and moment), may by changing on tolerance and length 
of input variables of a assembly, are effected on 
performance of assembly.  
This variation may be by deflection or deformation is 
created. Hence, affect of material, length and area of 
section of components, are substantial. In the preceding 
sections, the normal-to-path error was computed for 
assemblies with flexible components. In the study, affect 
of loading and tolerance of component, Simultaneity, on 
correlation and covariance of C.P. position is determined. 
The crank slider mechanism under external loading is 
modeled by the Finite Elements Method (FEM) using 
CALFEM toolbox. The beam and plate elements are built 
based on Euler-Bernoulli beam and Constant Strain 
Triangle theories, respectively. Shape function of all 
elements is linear we have used two-dimensional 
elements to approximate the force distribution along rods 
and plate [11]. Hence, utilizing a linear function for 
elements, so we use two nodes and three nodes to define 
an beam element, respectively. Those elements are shown 
in Figure 4.  
 

            

 
FIGURE 4. (a) Beam element (b) Constant Strain 

Triangle element [12] 
 
Also contact elements are simulated by spring elements 
and friction forces in nodes of slider [13]. These elements 
are given between each nodes of slider and guide 
surface.(see Figure 5) 

 

 
FIGURE 5. One sample of contact element. 

 
Figure 5 demonstrates an FEM model of the crank slider 
mechanism under loading which is constructed by 
CALFEM.  

 
FIGURE 6. FEM model of Crank slider mechanism. 
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6. DIMENSIONAL VARIATIONS OF INPUT 
VARIABLES 

All parts of an assembly have a nominal dimension with a 
tolerance limit due to unwanted variations in 
manufacturing processes. These dimensions and 
tolerances are varied by stretches, compressions and 
bendings occurred through part flexibilities. To determine 
the new dimensions and tolerances, the input variables 
are considered with their maximum and minimum 
allowable values, and then the corresponding deflections 
are computed using FEM. The new tolerance limits are 
achieved by adding these deflections to the former 
values. According to Figure 4, the maximum and 
minimum lengths of each variable are L+T+δL+T and L-
T+δL+T , respectively. 
 

 
FIGURE 7. The maximum and minimum lengths a 

variable after loading. 
 

The new mean value and tolerance of each variable are 
also determined by equations (22) and (23). 
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                  (23) 

 

7. MULTIPLE LINEAR REGRESSION MODEL 
AND PERCENT CONTRIBUTION 

A regression model that contains more than one variable 
is called a multiple regression model. A multiple linear 
regression model is defined by the following 
relationship[14]: 
 

∈+++++= KK XXXy ββββ L22110                (24) 
 
where y represents the maximum normal error, Xi 
represents the input variables, and ε is a random error 
term. 
The percent contribution chart tells the designer how each 
dimension contributes to the assembly specification 
variation. The contribution includes the effect of both the 
sensitivity and the tolerance. In order to determined the 
percent contribution of each input variable on the error, βi 
are divided by the summation of βi and the sensitivity of 
each input variables is determined It is common practice 

to present the results as a bar chart, sorted according to 
magnitude [14].  
After the percent contribution is defined, the maximum 
error of mechanism will been decreased by changing 
tolerance of each variables that have major percent 
contribution. This variation is effecting on product cost . 
therefore, to optimization of error and product cost, using 
optimization algorithm.  

8. OPTIMIZATION OF ERROR AND 
MANUFACTURING COSTS 

A promising method of selecting part tolerances is 
assigning tolerances such that the manufacturing 
expenses are minimized. This can be accomplished by the 
cost-tolerance function for each component. Chase et. al.  
proposed the following general form for this purpose 
[15]: 
 

kB/tol A   C += (25) 
 
Where the constant coefficient A represents fixed costs. It 
may include setup cost, tooling, material, prior 
operations, etc. The B term determines the cost of 
producing a single component dimension to a specified 
tolerance and includes the machine cost rate. Costs are 
calculated on a per part basis. In order to reach tighter 
tolerances, speeds and feeds should be reduced and the 
number of passes increased, requiring more time and 
higher costs. The exponent k describes how sensitive the 
process cost is to changes in tolerance specifications.  
Finally, the variation of the maximum error of assembly 
versus the minimum cost is derived. Based on the 
computed curve (max error versus min cost), the 
optimum tolerances for the input variables are 
determined. 

9. CONCLUSION 

The first part of the current research deals with 
background and the theory required for tolerance analysis 
of flexible mechanism. A flexible crank slider mechanism 
is chosen in order to introduce the proposed method step-
by-step. The last section of this paper states the 
optimization approach to assign part dimension tolerance 
with objective of minimization manufacturing costs along 
with minimization of the maximum error of the assembly 
specification. 
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