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Abstract. A flexible crank-slider mechanism is considered to investigate the variations of Coupler Point (C.P.) position. 
The assembly specifications, i.e. C.P. position,  have variations in x and y directions. The correlation between these 
variations also impresses the limits of variation. The bivariate distribution of the assembly specification is determined 
using the Direct Linearization Method (DLM). The Monte Carlo simulation is implemented to find the valid range of 
DLM solutions. Then, the percent contribution of each input variable to assembly specifications is computed by DLM. 
Critical variables, which have the highest contribution to the variations of the assembly specification, are recognized. By 
improving the tolerance limits of these critical variables and increasing area section r2, the maximum error of mechanism 
can be decreased significantly. According to Figure 15, tolerance improvements result in 19% reduction of the 
maximum normal error at θ2=3°. In addition, the curve which represents the minimum cost versus the maximum is 
derived based on the cost function and the regression equation. It has been observed that external loading will 
remarkably increase the amount of max error.  
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1. INTRODUCTION 

A common use of kinematic linkages is for accurate and 
precise positioning of an object, and various methods 
have been used to determine the effects of manufacturing 
tolerances on the position error. These methods can be 
categorized as either deterministic or probabilistic.  
In contrast, probabilistic or statistical methods involve 
random variables that result in a probabilistic response 
[1]. Deterministic methods are used mostly where 
tolerances are given and the worst-case position error is 
to be determined. Statistical methods are used where 
dimensions have some type of random distribution, and 
the probability of being within a given tolerance is to be 
estimated. 
 
When analyzing the position error in kinematic linkages, 
the goal is usually to find error bands around an ideal 
path. Error bands were first developed by Garrett and 
Hall [2], where they were applied to a function generating 
four-bar mechanism. When applied to coupler point 
position, there are numerous methods for determining the 

magnitudes of these error bands, involving both 
deterministic and probabilistic approaches [3]. 
In this paper, we use the DLM procedure applies for 
determine of variation limits assembly specification. In 
Section 2 of this paper, the kinematic model of a crank 
slider mechanism including tolerances of manufacturing 
variables is stated. In Section 3, the Direct Linearization 
Method is applied and the equations of vector loops, 
sensitivity matrix and position error are obtained [4]. In 
the following section, the DLM method is applied to find 
the bivariate distribution of the C.P. position error. The 
accuracy of DLM results is evaluated by means of Monte 
Carlo simulation in Section 5. The crank slider 
mechanism with external loading is modeled by FEM and 
the variations of the maximum normal-to-path error are 
computed during one cycle of motion. The maximum 
error functions with rigid and flexible component are 
obtained from multiple linear regression models and the 
percent contribution of each manufacturing variables are 
acquired in the following section. Finally, optimized 
product cost and max error curve is determined for the 
case of assembly with flexible parts. 
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2. IMPLEMENTING DLM FOR A CRANK SLIDER 

According to Section 1, the C.P. path error of mechanism 
can be obtained by DLM. In order to implement DLM on 
crank slider mechanism, Equations 1 to 13 from first part 
of the research is used. Nominal dimensions and 
tolerances of the mechanism are according to Table 1 of 
part 1.  
For example, matrices A, B, U are calculated at θ2=3° 
and written as follows: 
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And also, matrices C, D, S are calculated and written as 
below: 
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After defining variance matrix of manufacturing variables 
(V), the bivariate distribution of C.P. of mechanism will 
be achieved. For example distribution contour of C.P. at 
θ2=3° is computed and demonstrated in Figure 1. The 
maximum normal error is also illustrated in the Figure. 
 

 
FIGURE 1. The bivariate distribution of C.P. at. θ2=3° 

3.  MONTE CARLO SIMULATION 

In this section, the results obtained by DLM are 
compared to the Monte Carlo simulation. For this 
purpose, the Monte Carlo simulation, based on reliability 
of 95%, is performed with 400,000 samples of 
mechanism at each value of θ2 [5]. Because of, we 
haven’t data of product, distribution of all of 
manufacturing variables is suggested normal. Figure 2 
demonstrates the comparison of DLM with Monte Carlo 
at θ2=3°. Mean values and covariance matrix of two 
approach are presented in Table 1. 
  

 
FIGURE 2. Comparison of DLM with Monte Carlo at 

θ2=3°. 
TABLE 1. comparison of mean values and covariance 
matrix DLM with Monte Carlo. 

mean Mechanism  
component X Y Variance Matrix 

DLM 263.72 111.79 ⎥
⎦

⎤
⎢
⎣

⎡
 0.0084    0.0433-   

0.0433-   0.3371     

Monte Carlo 263.74 111.78 ⎥
⎦

⎤
⎢
⎣

⎡
0.0090    0.0470- 
0.0470-   0.3605   

 
As noted in Figure 2 and Table1, there is a very small 
discrepancy between the results of DLM and Monte 
Carlo simulations. This is actually a very good result 
considering that the Monte Carlo simulation was based 
upon the nonlinear solution, whereas the bi-variate model 
uses direct linearization. This validation is important 
because DLM is much more efficient than Monte Carlo 
simulations. 
 
After evaluation of the maximum normal-to-path error at 
each value of θ2, the variations of the error for one cycle 
of motion is determined. In Figure 3, the maximum 
normal-to-path error using DLM method is compared to 
the Monte Carlo simulation.  
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FIGURE 3. Comparison of maximum normal-to-path 

error using DLM with Monte Carlo. 

4. DIMENSION VARIATIONS DUE TO LOADING 

In order to determine the effect of loading on C.P. 
position error of a crank slider mechanism with flexible 
component, the FEM model of mechanism as shown in  
Figure 5 of Part 1, built using CALFEM. Beam elements 
are considered to have elastic modulus of 210 GPa, 
cross-sectional area of 100 mm2 and area moment of 
inertia equals to 833.33 mm4. Also, plane elements are 
considered to have elastic modulus of 210 GPa, Poisson 
ratio of 0.3 and thickness of 5 mm in the state of plane 
stress. The crank r2 and the coupler are subdivided into 6 
and 36 equal elements, respectively. Also the slider is 
divided into 32 identical triangular elements and 5 
contact elements which are on contact surface the slider 
and the frame. Therefore, in total 79 elements are created 
for the FEM model. 
A 10 KN load with angle of 45° respect to positive x axis 
is applied on the C.P. position. The magnitude and 
direction of this load is assumed to be constant during the 
cycle of motion. The internal load on each member of the 
mechanism varies with the rotation angle of the crank r2. 
Therefore, the input variables have different mean values 
and tolerances over the cycle of motion. The dimensional 
variation of each manufacturing variable is computed by 
FEM. The length variation of the bar can be evaluated by 
nodes displacements. The mean value and tolerance of r2 
are estimated by Equations (23) and (24) of Part 1, at 
angular position of θ2. Figure 4 shows the variations of 
r2 for one cycle of motion. 
After calculating the variations, new lengths and 
tolerances of each variables is used in DLM and the 
maximum normal error of mechanism is obtained. It is 
obvious that the variation of input variables influences on  
The bivariate distribution and the maximum error. For 
example, the distribution contour of C.P. for the flexible 
crank slider mechanism is computed at θ2=3° and 
compared to that of the rigid mechanism in Figure 5. The 
illustrated contours are computed using DLM. Also, 
Table2 presents mean values and the covariance matrix of 
two cases (rigid and flexible) at θ2=3°. 
 

 

 
FIGURE 4. The variation of Mean and tolerance value r2  
 

 
FIGURE 5. Comparison of the C.P. distribution contours 

at θ2=3° with flexible and rigid parts. 
 
TABLE 2. Comparison of mean values (X,Y) and 
Covariance of bivarite distribution C.P.  

mean Mechanism  
component X Y Variance Matrix 

Rigid 263.72 111.79 ⎥
⎦

⎤
⎢
⎣

⎡
 0.0084    0.0433-   

0.0433-   0.3371     

Flexible 264.79 111.61 ⎥
⎦

⎤
⎢
⎣

⎡
2.1673    0.6541- 
0.6541-   0.5071   

 
Table 2 and Figure 5 confirm that loading the flexible 
mechanism leads to shifts in the mean value and the 
variance of C.P. distribution. The shifts in mean values 
are 1.07 and -0.18 mm in X and Y direction, respectively. 
The distribution variances in X and Y directions have 
variations of 0.17 and +2.1589 mm2, respectively. 
Therefore, the elliptic distribution contour is stretched in 
Y and X directions. The changes of the covariance, about 
0.6108 mm2, confirm that part flexibilities have a 
significant effect on covariance of the distribution.  
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Variations are calculated for one cycle of motion, i.e. θ2 
is changed from 0 to 360º with increment of 1º and 
obtained input variables are used in DLM. Therefore, the 
maximum normal error of mechanism with flexible 
component can be computed. The variation is shown in 
Figure 6. 

 
FIGURE 6. Comparison of maximum normal error. 

 

5.  MULTIPLE LINEAR REGRESSION MODEL 

The maximum error of the mechanism is at θ2=3°. In 
order to determine the maximum error function at this 
angle, the distribution of the error is obtained by 
changing the manufacturing tolerances within their 
specified limits. The error function is derived using 
multiple linear regression. For example, the error 
functions for the mechanism with rigid and flexible 
components computed at θ2=3° are as follows, 
respectively: 

1p2 1.5068.69r3.340.35r0.05 θβ ++++=Error

263.02353.0049.0117.0838.3

rigid   (7) 

212 θθβ ++++= rErrorflex
 .(8) 

The valid-ness of the above relationship is verified by the 
normality test. According to before section, if P-value of 
test is less than 0.05 thus H0=βi=0 will rejected [6]. The 
P-value of above equations are 0.038 and 0.042, 
respectively. Therefore, these equations are valid.  
In order to determine the percent contribution of each 
manufacturing variable on the error, βi are divided by the 
summation of βi and the sensitivity of each 
manufacturing variables is determined ( Figures 7 and 8).  

 
FIGURE 7. Present contribution of manufacturing 

variables at θ2=3°(rigid component). 
 

 
FIGURE 8. Present contribution of manufacturing 

variables at θ2=3° (flexible component). 
 

Figures 7 and 8 are shown which percent contributions of 
manufacturing variables are changed based on rigid or 
flexible component of mechanism. It can be observed 
that rp and θ1 have the major percent contribution of 
mechanism with rigid component whilst θ1 and β on 
flexible mechanism is too. Thus, decreasing their 
tolerance limits can substantially decrease the error. 
Because of improving tolerance limits of angular 
dimension (i.e. θ1, β) imposes manufacturing cost with 
higher rate, r2 and rp are chosen for decreasing the error 
and the modified tolerance limits are reported in Table 3. 
 
TABLE 3. New tolerances of manufacturing variables 
(mm) 
Manufacturing
Variables 2r  3r  4r  pr

 
β  1θ  

Nominal 
Dimensions 250 400 25 104 80° 0° 

Initial 
Tolerances ± 0.3 ± 0.2 ± 0.02  ± 0.15 ± 0.5° ± 0.5°

Modified 
Tolerances ± 0.15± 0.2 ± 0.02  ± 0.07 ± 0.5° ± 0.5°

 
Based on the improved parameters, the distributed of 
normal-to-path error at θ2=3° along with the variation of 
maximum error for whole cycle are computed and 
depicted in Figures 9 and 10, respectively. Also, variation 
exerted on flexible mechanism and result of this variation 
is presented on Figures 11 and 12. 
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FIGURE 9. Comparison of  bivariate distribution of C.P. 
at  θ2=3°,after and before modify (rigid component) 
 

 
FIGURE 10.Variation of maximum error in cases, 

modified and initial tolerances (rigid component). 
 

 
FIGURE 11. Bivariate distribution of C.P. position at 
θ2=3°,after and before modify (flexible mechanism). 

 

     
FIGURE 12.Variation of maximum error in cases, 

modified and initial tolerances (flexible component). 
 

Variations of tolerance limits of input dimensions (r2 and 
rp) result in variations of C.P. limit. For example at θ2=3° 
shifts in mean values are 0.05 and 0 mm in X and Y 
directions, respectively. The variances in X and Y 
directions have the variations of -0.358 and -1.7986 mm2, 
respectively. The results are summarized in Table 4. 
 
TABLE 4. Comparison of mean values (X,Y) and 
Covariance of bivarite distribution C.P.  

mean Mechanism  
component X Y Variance Matrix 

Initial 
Tolerances 264.79 111.61 ⎥

⎦

⎤
⎢
⎣

⎡
2.1673    0.6541- 
0.6541-   0.5071   

Modified 
Tolerances 264.75 111.61 ⎥

⎦

⎤
⎢
⎣

⎡
0.3687    0.1199-

0.1199-  0.1488  

6. OPTIMIZATION OF ERROR AND 
MANUFACTURING COSTS 

In this study, the tolerance limits of input variables are 
modified in order to reach optimized case where the total 
cost is minimized and the maximum error is kept within a 
certain limit. This can be accomplished by considering 
the error function equation (Eq. 8) and the cost equation 
(Eq. 9), simultaneously. Thus, it is possible to come up 
with minimum cost versus maximum error curve wich is 
depicted in Figure 13. Lt has been assumed that all of the 
components are produced by milling operations and fixed 
costs of product is suggested to be 2 dollars. 
 

kB/tol A   C += (9) 
If data given in Table 3 is taken into consideration, Point 
A of Figure 13 will be the optimized solution. 
 

 
Figure 13. Optimized minimum cost versus max error  

7.  CONCLUSION 

The Coupler Point (C.P.) position of a crank slider 
mechanism during one cycle of motion is considered as 
the assembly specification which has variations in two 
directions. The correlation between these variations also 
impresses the limit of variation. The bivariate distribution 
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of the assembly specification is determined using the 
Direct Linearization Method (DLM). The valid range of 
DLM is firstly determined by means of the time-
consuming Monte Carlo simulation and then the percent 
contribution of each input variable to assembly 
specification is computed by DLM. Thus, the most 
critical variables, which have the highest contribution to 
the variations of the assembly specification, can be 
recognized. By improving the tolerance limits of these 
critical variables and increasing area section r2, the 
maximum error of mechanism can be decreased 
significantly. According to Figure 15, tolerance 
improvements result in 19% reduction of the maximum 
normal error at θ2=3°. In addition, the curve which 
represents optimize max error versus minimum cost is 
derived based on the regression equation and the cost 
function. 
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