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1.  Introduction 
   CNC machine tools can simultaneously drive two or more 
axes of motion along tool path computed by CAD/CAM 
softwares. Several algorithms have been developed to 
compute reference points for each axis in real time; due to 
inertia loads, torque and power limitations of each axis, it is 
necessary to improve the current algorithms. 
   In order to machine along a free-form tool path, most of 
machine controllers require that the tool path to be divided 
into linear and circular segments which approximate the 
real path. Path segmentation impose a severe computational 
burden on achieving optimum feed and acceleration rates. 
   Several curve interpolation algorithms  have been 
investigated which are based on approximation methods. 
Farouki [1] introduced the idea of using Phythagorean-
Hodograph (PH) curve in CNC interpolators which offers 
exact computation of reference points. In his recent 
research continuos variation of  feed rate, and along with 
physical constraints have been investigated [2].  
   In this paper, physical constraints on each CNC axis are  
reviewed. Then, an improved quadratic feed rate algorithm 
based on arc-length variations is proposed in order to obtain 
the minimum acceleration length. Lastly, feed dependant 
cutting forces encountered  in real machining are included  
in the developed algorithm which finds the maximum 
constant feed rate and the minimum acceleration length.  
 
2.  Torque and power constraints on axis drivers 
   The requirements for CNC axis drivers are: 1) To 
overcome inertia forces, 2) To act against cutting forces, 
and 3) To overcome friction forces. Among the above 
motion constraints, inertia forces play an important role in 
High-Speed Machining (HSM), therefor they must taken 
into consideration. 
   DC motor operation is governed by two fundamental 
equations:  

ωET KEIKT == ,                                                  (1) 
where T and E are motor torque and back emf, respectively. 
The maximum magnitude of axis acceleration is determined 
by the motor current limit. In addition, the power demand 
for each axis can be considered proportional to the product 
of linear speed v and acceleration a. Thus, the following 
constraints must be satisfied which ensure trouble-free 
machining:   

maxmax , pvaaa ≤≤                                               (2) 
 
3.  Minimum feed acceleration arc- length  
   In CNC machining, one data block can be divided into 
three regions, that is acceleration, constant feed and 
deceleration regions. Constant feed algorithm along with 
physical constraints are thoroughly discussed in [2]. Feed 
rate in the acceleration region can be implemented as a 
linear or quadratic function of arc-length. Due to 
shortcomings of linear arc-length feed rates such as large 
jerk variations [3], quadratic arc-length profile is chosen for 

implementation. In the curvilinear motion, acceleration is 
given by nVtVra ˆˆ 2κ+== &&& . Thus, in the acceleration 
region inequalities (2) can be written along x-and y-axis as 
follows [2]: 
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Quadratic feed rate relation of arc-length expressed as [1]:  
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where s, S , V0 and V1 are arc-length, total arc-length, 
initial feed and a weight, respectively. The maximum 
allowable constant feed rate, mV is computed in [2] by 
considering torque and power constraints. Feed acceleration 
can be defined as follows: 
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where dot denote derivative with respect to time. 
Substituting V& in the relations (3) and considering 

mVVVA +−= 10 2 , ( )012 VVB −= , BSAsC += eight  
constraints can be derived as: 
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where s,,κθ are functions of curve parameter ξ . The 
above constraints are applied to a quintic PH curve  shown 
in Fig.1. Using the graphical method discussed in [2], the 
minimum acceleration region for 3.7=mV is obtained and 
depicted in Fig. 2. It is clear that the safe region is the area 
above Fi(ξ ,S)=0 and to left of the curve Q(ξ ,S)=s(ξ )-
S=0. Using quadratic feed rate , minimum acceleration 
length is equal to in Smin=4.25  while linear feed rate result  
in Smin=13.76. 
 

(5)

(6)



4. Cutting force constraints 
   In applications that cutting forces are considerably high, 
it is important to include cutting force constraints in the 
algorithm. The average cutting forces in milling operation 
is estimated by[4]: 
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where Cp , m are material constraints and s0, h, w ,D are 
feed per tooth, depth of cut, width of cut and tool diameter, 
respectively. Feed rate dependant cutting power can be 
expressed by: Pcut= FT.V. Thus, x- and y-axis power 
constraints including cutting forces can be expressed as: 
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for constant feed rate region and, 
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for acceleration feed rate region. Considering maximum 
motor acceleration ax=ay=18, and maximum motor power 
px=py=30, unit mass and  material constant as cp=210, 
m=0.28, the proposed algorithm result in Vm=6.54 for 
cutting along curve shown in Fig.1. The graphical 
optimization method is shown in Fig.3. Also, Smin 
considering linear feed rate variation is 11.35, refer to 
Fig.4. It is obvious that cutting force constraints decrease 
feed rate and increase acceleration region. 
 
 5. Result and discussion 
Inertial loads, torque and power limitations, along with 
cutting force encountered in real machining are included in 
the optimization  algorithm. The minimum acceleration arc-
length is obtained using quadratic feed rate variations. 
Also, the maximum constant feed rate and minimum 
acceleration arc-length subjecting to feed dependant cutting 
force constraints are computed by the proposed algorithm. 
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Fig.1 Quintic PH curve 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.2 Constraint Curves Defined by Relations (6) 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.3 Constraint Curves Defined by Relations (8) 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Constraint Curves Defined by Relations (9)
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