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ABSTRACT

In this paper, the aero heating of spherical stagnation point is studied. For this purpose, we first calculate the thermodynamic properties behind of the normal shock, for the supersonic flow of the hot gas. After finding these properties, we could calculate the boundary layer properties and then we will be able to determine the heat flux of the spherical stagnation point. This heat flux can be used as a boundary condition in heat transfer code for axial asymmetric case. After computing transient multilayer heat transfer toward the inner side of the shell (which material varies in each layer), we can determine stagnation point temperature and temperature distribution in various layers. To verify the validity of the numerical procedure used in this work, comparisons with the theoretical and experimental results for the X-33 space vehicle have been done.
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INTRODUCTION

High temperatures will be generated inside the boundary layer in hypersonic flows, due to high kinetic energy and friction losses. This high temperature causes vibrating simulation and molecular crack and even ionized air. In this situation we can not suppose air as an ideal gas. For example, if we suppose a rocket that enters the atmosphere with M=10 and
[image: image1.wmf]283

=

¥

T

K, so the hot gas temperature behind shock can be obtained by: 

	(1)
	
[image: image2.wmf]b

g

g

g

2

2

2

sin

)

1

(

)

1

(

2

¥

¥

+

-

=

M

T

T




where 
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K , Of course this is not the real temperature because of incorrect assumptions. These errors are due to considering constant
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. Now, what is the difference between hot gas flow and flow with constant
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? We have answered this question in following expressions:

1- All of the thermodynamic properties are different.

2- Transmission properties are totally different.

3- In hot gas flow condition, 
[image: image6.wmf]g

 is variable, thus equations obtained based on a constant 
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 are not reliable. According to what we have mentioned above, we should use a convenient process to eliminate errors arise from the assumption of ideal gas for the air.

Determination of hot gas flow condition in the edge of stagnation point boundary layer

According to the conditions before the shock, we can use simplified continuity, momentum and energy equations on a streamline:
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Because we do not use any simplification due to ideal gas condition and also our assumptions are based on steady state and Newtonian fluid, then the above relations are useful for hot gas flow. As we have said in pervious section, in supersonic flow, the temperature of fluid will increase greatly behind of the shock, so that; O2 and N2 molecules can be ionized. In this case, thermodynamic properties of the air vary totally, therefore the 
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 will be variable. This means that we can not extract 
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 from differential and integral relations. Also we can not use thermodynamic relations like sound velocity, temperature, equation of state and relations between enthalpy and temperature in hot gas flow condition. If we consider air as a hot gas, we will be able to use similar relations concluded from fitting curves from statistical thermodynamic data [1]. In new relations, every thermodynamic function is a function of two thermodynamic independent variables:       
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In relation (7), 
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 is the sound velocity. For transforming quantities
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By choosing
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( flow properties upstream of the shock) we are able to determine 
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 with using interpolation in relations (5) and (6). We start with an initial guess resulted from ideal gas relation. The values of
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 are known, so relations (3) and (4) convey 
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 with one unknown component. By using iteration procedure we can determine flow properties after the shock. 

After finding 
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Now, we can calculate new density by using  
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Now we can determine new values of 
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 and repeat steps until the convergence reached. Since we have calculated above properties on the streamline, we can use this method for projectile with lateral booster, only if we determine stagnation point streamline with a secondary program.

Solution of flow on stagnation point 
In this study, Fay and Riddell classic solution have been used because their results are applicable in industry and supersonic projectiles. We have following assumptions:

1) Flow conditions in external edge of boundary layer have local thermodynamic and chemical equilibrium.

2) Inviscid velocity distribution in external edge of boundary layer in stagnation region with incompressible classic results is:
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In above relation 
[image: image45.wmf]s

e

dx

du

a

)

(

=

 is the velocity gradient in stagnation point:
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Surface heat transfer can be determined with following relation:
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In above relation D is the mass fraction and C is the diffusion coefficient. It is notable that surface heat transfer in viscous flow in presence of chemical reaction is not only the result of temperature heat transfer but diffusion is affective too.

Riddell and Fay obtained these results in comparison with gas without reaction:

	(16)
	   
[image: image48.wmf])]

(

)

1

(

1

[

)

(

)

(

)

(

)

(

Pr

76

.

0

52

.

0

1

.

0

4

.

0

6

.

0

e

O

D

w

e

O

S

e

w

w

e

e

w

h

h

Le

h

h

x

d

u

d

q

-

+

-

=

-

m

r

m

r

  


In above equation Le is the levies number and ho is the stagnation enthalpy and subscripts e and w introduce boundary layer conditions near the surface condition respectively. 
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  is obtained with following relation:
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Furthermore, 
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 is related with the heat transfer parameter 
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Temperature distribution in transient condition 
The governing equation is multi layer transient heat transfer equation in cylindrical coordinates with axial asymmetry is given here:
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After generating a computational flow field, the governing equations are discretized and solved by using Gauss-Sidle algorithm. In each time step the heat flux resulted from relation (16) is used as boundary condition for above equation. Because of complexity the problem geometry, general coordinate have been used.

For this purpose, the calculations have been done in the rectangular coordinate system 
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 initially, and then the results transfer to physical coordinate system
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Temperature gradient in physical coordinate system is defined as
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Also, Laplacian T in rectangular coordinate system is given by:
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We can calculate 
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In above relation J is the transformation Jacobin, where:
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Furthermore, according to figure (1), in multi layer problems, we can use following relations in separation place of bodies:
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Results and Conclusion

Because the existing codes have some problems in computing stagnation point heating, the presented code in here along with another codes can be used to compute  the stagnation point temperature in general locations and also in presence of air chemical reactions. Furthermore, since the stagnation point temperature is the maximum value, thus its effect should be concluded in design of thermal shields. Determining heat flux and stagnation point temperature as the first step in the design is very important. Presented code, by using trajectory data, determines the heat flux and stagnation point temperature in a short time and a good accuracy. 

To validate the presented code in computing the stagnation point heat flux (
[image: image83.wmf]w

q
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In this code the wall temperature 
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varies from 300 K to 3000 K. According to   figure (2) the results are very similar in references [2] and [3], and the differences are because of Prandtl number. In above procedure Prandtl number must be computed but in the references Prandtl number 0.71 is considered. Also the obtained results have been compared with Hollis and Horvath theoretical and experimental results that have been done on X-33 space vehicle (Figures (3), (4)). In this experimental study the effect of turbulent and laminar flow have been investigated on an aero heating model for flight trajectory in wind tunnel,. Calculations are based on attack angle 30°   and heat distribution is based on 
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 Fraction where  is the coefficient of reference heat transfer. In related calculations, h is:
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In above relation 
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  is the heat rate of the wall based on the Fay-Riddle theory for the nose of the model X-33 (a hemisphere with radius 1.6 cm). The Enthalpy at wall is calculated with a wall temperature equal to 300 K. Non dimensional geometric positions are, in which L is the initial length (25 cm). In this experiment free jet conditions are following: 
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The comparison presented in figure (5) belongs to point 
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0.05. According to space vehicle attack angle 30° the stagnation point occurred in this point. As shown in this Figure, the results presented in this paper are very close to the experimental and theoretical results obtained by others. In order to validate the code for multi layer heat transfer, results have been compared with the results obtained using Fluent Software. For this purpose a material composed of three layers is considered: Asbestos
[image: image96.wmf]÷

÷

ø

ö

ç

ç

è

æ

=

=

=

k

m

w

k

k

kg

J

C

m

kg

P

.

42

.

0

,

.

1200

,

1850

3

r

, Steel
[image: image97.wmf]÷

÷

ø

ö

ç

ç

è

æ

=

=

=

k

m

w

k

k

kg

J

C

m

kg

P

.

20

,

.

500

,

7800

3

r

 and Aluminum
[image: image98.wmf]÷

÷

ø

ö

ç

ç

è

æ

=

=

=

k

m

w

k

k

kg

J

C

m

kg

P

.

4

.

202

,

.

871

,

2719

3

r

. In this problem inner radius of quadrant is 0.6 cm and outer radius is 1.5 cm. The constant heat flux in top surface is  
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 and other surfaces are insulated, also initial temperature assumed to be 300°K. Contours of temperature distribution after 118sec are compared with Fluent results in Figures (6) and (7) which are very close to each other. For this purpose, a quadrant geometry with inner radius R=2.4m and outer radius R=2.43m   is considered for a ceramic material
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Fig 1 Geometry of multi layer in rectangular coordinate system
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Fig 2 Heating of stagnation point   
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Fig 3 Overall view of X-33
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Fig 4 Different views of X-33 model
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Fig 5 Heat flux of stagnation point    

and Comparison with Ref [4] 
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  Fig 6 Contours of temperature for multi layer condition

(presented code)
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 Fig 7 Contours of temperature for multi layer condition(Fluent)
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Fig 8 Height variation vs. time
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Fig 9 Mach variation vs. time
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Fig 10 curves of stagnation point      temperature
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