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Abstrad-In this paper we propose an adaptive estimation
algorithm for channel matrix singular value decomposition
(SVD) in multiple-input multiple-output (MIMO) orthogonal
frequency division multiplexing (OFDM) systems. The SVD
method is an efficient approach to design space-time
coding/decoding and detection algorithms in MIMO-OFDM
systems. However, the SVD estimation may involve complex
nonlinear optimization methods. The proposed algorithm in this
paper is developed based on a two-step recursive method by
utilizing the linear constrained least mean square (LMS)
technique.

Index Terms- MIMO-OFDM systems, MIMO channel
estimation, SVD estimation, constrained LMS.

I. INTRODUCTIION
Channel matrix singular value decomposition (SVD)

method is employed in MIMO-OFDM systems in order to over
come subchannel interference, to allocate transmitted power
through subchannels in an optimum manner and also to design
the space-time coding algorithm efficiently [1]. Thus SVD
estimation is an important technique to exploit the full
capability of MIMO-OFDM systems. Different methods have
been proposed to estimate MIMO channels [2]-[4] and the
SVD can be obtained from the estimated channel matrix.
However, the SVD is a nonlinear function and its estimation is
very sensitive to the error of estimated channel matrix because
of the nonlinear procedures involved [5]. In this paper we
propose an adaptive SVD estimation algorithm that uses a two-
step recursive method to estimate the SVD of the channel
matrix directly from the received signal. The estimation
algorithm is developed based on the linear constrained LMS
method. The performance of the proposed algorithm is
evaluated by computer simulations under different scenarios.

The organization of the paper is as follows. After the
introduction, in Section II the MIMO-OFDM communication
system model is described. The adaptive SVD estimation
algorithm is derived in Section III. Section IV contains
conputer simulation results and conclusions are presented in
Section V.

II. SYSTEM MODELS
A discrete model of a MIMO-OFDM system with N

transmitting antennas, M receiving antennas and L subcarriers
is shown in Fig. 1. when S(k)=[s(1)(k),...,s(L)(k)] is a
transmitted OFDM symbol matrix and
s(()(k)=[s)(k), ...,s ()(k)]T is a symbol vector transmitted
from the Ith subcarrier. Note that (.)T represents the
transpose operation. Defining H = [H0) ,...,H()]T as an L-
point FFT of the M xN channel impulse response
matrix, H(k), after removing the cyclic prefix, the M xl
received vector of the /th subcarrier, x(1) (k), becomes

x(f)(k) =H(')s(z)(k) +n(')(k) forl=l,I,L (1)

where H(f) is an M xN channel matrix of the hth subcarrier
and n () (k) is the Mxxl vector of the complex additive
white Gaussian noise (AWGN) with zero-mean and
autocorrelation matrix Rn (k) = a 2IM 6(k) for I = 1, LL

while IM is the M xM identity matrix. The SVD of the /th
subcarrier channel matrix, H (f), can be given as

HO) = U£)X(1)V()H (2)

where U°) and V(1) are MxP and NxP unitary
matrices, respectively. Note that P is the rank of H (') where
P < min(M, N). X(') = diag(a(o), v'),,.. ., ao1) is a
diagonal matrix containing the singular values of the Ith
subcarrier channel matrix and (.)H denotes transposed
complex conjugate. Knowing the U('), V°( and I (z)
matrices for all subcarriers I = 1,...* L are vital information to
design space-time coding, decoding and detection schemes
efficiently. Due to the unitary property of U°() and V°()

0-7803-8887-9/05/$20.00 ©2005 iE 552



SI" (k) _m

s(L) (k) - o

IFFT

-=4

P/S

7v
-

Iy1(k) 's I/
I I

%'
YN()

I %

IYNT(k)

Fig. 1. A discrete MLMO-OFDM system withN transmitting antennas and Mreceiving antennas.

matrices, estimation of the subcarmer channel SVD at the
receiver side based on minimizing the mean square error
criterion is a complicated procedure because of nonlinear
constraints U HU°()= Ip and V()HV() = Ip . A two-
step adaptive method is proposed in the Section III based on
the constrained least mean square (LMS) algorithm that
employs linear constraints to estimate the SVD of subcarrier
channel matrices.

III. ADAPTIVE SVD ESTIMATION

We consider one subcarrier channel matrix, H (1), and
develop the adaptive algorithm to estimate its SVD . Also, due
to simplicity, we drop the superscript of (1) in deriving the
algorithm.

By defmning the following matrices

WI =U (3)

W2 = VI (4)

It is straightforward to show

wli=Hvi= iui (5)

wH =UHH=H T VH (6)

where ui, vi, wIi and w2i are the ith columns of U,
V, W1 and W2, respectively, and oi is the ith diagonal
element of £.
We assume that the training sequence is an independent and
identically distributed (iid) signal such that
E[s()s(kH ] = N for all subcarriers (note that we drop

the superscript I ) and also E[s(k)n(j)H ] =0 for all k and j.
By assuming 2 = 1, from (5) one can show that

wli = E[x(k)s(k)Hv i] for i = ,***,P (7)

Based on (7) , in the first step, by receiving x(k) and

assuming v'i(k- 1) is the estimated vi at time k- I, the

iproved estimation of w11 at time k-i, i'j+(k-1),
based on the estimation of w lj at time k -1 becomes

w+i(k -1) = wl (k -1)
+ u, (x(k)s(k)H ^ji (k - 1) - w (k - 1))

for i=1,** ,P (8)

where y1 is a positive scalar step-size of the LMS algorithm.
Due to the orthogonality property of the column vectors of
W1, the estimation of w1 at time k, wi (k), should be
obtained under the following constraint

Wl j (k)H wli (k) =0 for j<i (9)

Defining

for i =I P

for i=I, ,P
(10)

(11)

where v Ii (k) is a Mx vector. w Ii (k) is obtained under
the defined constraint (9) so that vli (k)H vl, (k) is
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minimized [6]. For j < i, the constraint (9) can be given as

Wl (k)H.WTIi(k)=0 fori=I,* ,P (12)

Using the Lagrange multiplier method, the criterion of
obtaining V i (k) becomes

v b (k) =arg min {vIi (k)H vIi (k)
vli (k)

+ Xli (k)HWlI (k)H('WVj (k-1) + vli (k))}
for i=1,***,P (13)

where XliA(k) =[41(k),...,Xli-l(k)]T is the Lagrange
multiplier vector. By doing some manipulations, one can show
that

V ii(k)= Wli (k)
I ^ \-I ,

x (, (k)H Wi (k)) Wli (k)H W,i (k -1)
for i= P (14)

Substituting vli(k) and wt'(k-1) in(10), wl attimek
can be estimated by

wIi (k) =('M - Wli (k)(Wli (k)H Wi (k))-I W1i(k)H )

x (li (k-1) + /u1 (x(k)s(k)H ^v (k -1)- W^jj(k -1)))
for i= 1, P (15)

Based on (5), the estimation of u i at time k is given by

ui (k) =(wli(k)H wIi(k)) Iw(k) for i =1,**,P (16)

By having ui (k) from (16), in the second step, w 2i at time

k can be estimated with similar procedure of estimating w .
From (2) and (6), one can show that

wH=E[uHx(k)s(k)H] fori=1**,P (17)

The improved estimation of w2i at time k-I, w2i (k-i),
can be given by

w +i( - 1) = ŵ ( - 1)
+ /2 (s(k)x(k)H ii (k) - W2i (k 1))

fori=I,*,P (18)

where uij(k) is obtained from the fst step, x(k) is the
received signal at time k and /12 is a positive scalar step-size.
Due to the orthogonality property of the column vectors of

W2 defined in (4), the W 2i at time k should be estimated so
that the following constraint is hold

W2 (k)H w21(k)=0 for i=1,* ,P (19)

where W2j (k) = [A 21 (k), , A 2i-I (k)]. By defining

W 2i (k)=w 2i (k - 1) + V 2i (k) for i = 1,***,P (20)

w 2i is estimated by minimizing v2i (k)H V 2i (k) under the
constraint (19). By using the Lagrange multiplier method and
following the similar procedure of estimating wIi (k), one
can show that

A A A A

W 2i (k) = (N -W2 (k)(W2j (k)H W2j (k))1-W2j (k)H)

X(W 2i (k-1) +/2 (s(k)x(k)H,i(k) -w 2i (k -1)))
for i= P (21)

By using w2i (k) from (21), c7 and vi for i = 1,**,P at
time k are estimated by

i (k)=(W2 (k) 1 2i (k)) 2 for i =1, P (22)

vi (k) = (w ) 22 w2i (k) for i = 1, ,P (23)

After choosing the initial value of vi4) (0) for all subcariers
I =1, .,L and i=1,-,P, the adaptive SVD estimation
algorithm can be summarized as follows

For l=1, L{
Fori=I, P{

For k =1,2,...

w{U (k) =(IM - W1RZ (k)(W,1! (k)H Wl (k))-I W,#) (k)H)

+ /4'(x °(k)s(1(k)H va)(k -1)- w °~(k - 1)))

i(k)-

X() (N k - 1) -

+ (A((k)xs)(k) H i (k) - w(''?(k - 1)))
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Fig. 2. The norsmalized MSE of the adaptive estimation algorithm versus the
numnber oftraining symbols.

cx()(k) =(wv (2) (k)H WV ( I) (k-)) 2

()(k) =(w (/i (k-)H w 2i k)2 W2 k

}
}

IV. COMPUTER SIMULATIONS

A MIMO-OFDM system with L=64 for different N andM is
considered in the simulations when the channel impulse
response, H(k), has an exponential delay spread profile with
duration of Lc = 16 that is equal to the cyclic prefix interval.
The elements of the H(k) are mutually independent
complex Gaussian random variables with zero-mean. To
evaluated the performance of the estimation algorithm, the
normalized mean-square error (NMSE) criterion is employed.

L E[ -H()HY11]
NMSE (H) =L IHo (24)

L ,~EII z

where Hf') is the estimation of H°) and denotes

Frobenius norm. Note that the MIMO channel HO') is
estimated based on its SVD estimation from the following
relation.
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Fig. 3. The normalized MSE of the adaptive estimation algorithm versus
SNR

One hundred independent channel impulse response matrices
are generated for evaluating the performance of the algorithm.
For each subcarrier, a 16QAM training sequence of
independent and identically distributed signal vector, sf') (k),
is sent such that Rs =E[s(f)(k)s()(k)H]= IN for all
1 = 1,**. ,L . Also each subchannel autocorrelation matrix of
zero-mean additive white Gaussian noise vector,
Rn, =E[n(6)(k)n6)(k)H]=ao21I, is chosen in order to

achieve the following SNR when o2 = a2 for l = 1,.*. ,L

E Eb HMO)s(Z) (k) 12]
SNR (26)L

YEEn(')(k)12]
1=1

Fig. 2 shows the performance of the proposed adaptive method
for different values ofN andM when SNR=3OdB. As can be
seen, the NMSE is decreased rapidly when the size of the
training sequence is less than one hundred symbols. Also, by
comparing "N=2, M=4" with "N=4, M=2" and "N=6, M=2"
with "N=6, M=2" cases, we see that the performance of the
algorithm is degraded more by increasing N.
The NMSE of the estimated subcanier channel matrices versus
SNR for N=M=2,4 and 8 has been shown in Fig. 3. As can be
seen the performance improvement of the estimated algorithm
is insignificant for SNR>15dB. To evaluate the unitary
property of the estimated SVD, we perform A(Z) matrix as
follows.

HM) = U(l)j(I)y(I)H (25)
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Fig. 4. The D perfonmance criterion e of the adaptive estimation algorithm
versus number of training symbols at SNR=30dB.

When there is no error in the SVD estimation ofH °), the A(')
becomes a diagonal matrix. To measure the performance of the
unitary property we use the following criterion

1E=E||hoA|FI6Q 12]| (28)
L = E[|IIA(') 112

where <(i) is a vector that contains diagonal elements of A()
matrix, 5(l) =[A(') 75(. p Fig. 4 shows the D
performance criterion for N=M=2,4 and 8 versus the number of
training symbols at SNR=3OdB. The performance
improvement is significant before one hundred training
symbols. The D performance criterion versus SNR for
N=M=2,4 and 8 shows in Fig. 5 when one thousand symbols
are used for training. We can see that increasing the number of
transmitting and receiving antennas degrades the performance
significantly. Also, the increase in performance is not
substantial for SNR>15dB. In the computer simulations, the
training sequence vectors are selected in a random manner such
that E[sM(k)s(l)(j)H ] =O for all k .j. It should be noted
that the convergence of the estimation algorithm can be
improved by selecting an orthogonal training sequence.

V. CONCLUSIONS

The SVD is an efficient method to exploit the capability of
MIMO systems. However, obtaining the SVD from the

Fig. 5. The D performance criterion of the adaptive estimation algorithm
versus SNR.

estimated channel matrix may produce enormous error due to
nonlinearity issues. An adaptive SVD estimation algorithm has
been derived in this paper for MIMO-OFDM systems. The
SVD is estimated directly from the received signal for each
subcarrier MIMO channel in the OFDM system. The adaptive
algorithm estimates the SVD based on the linear constraint
LMS method such that the constraint satisfies the unitary
property of the SVD matrices. The performance of the
proposed adaptive algorithm has been evaluated by computer
simulations for different transmitting and receiving antennas.
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