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Abstract— An iterative algorithm is proposed in this paper to
estimate the singular value decomposition (SVD) of multiple-
input multiple-output (MIMO) channel from the received signal.
The proposed algorithm is based on the constrained minimum
mean-square error (MMSE) criterion. For different numbers of
transmitter and receiver antennas, simulation results show that
the iterative algorithm achieves good performance with respect
to the SVD estimation of the MIMO channel matrix.

Index Terms— MIMO systems, MIMO channels estimation,
SVD estimation, constrained MMSE.

I. INTRODUCTION

ultiple-input multiple-output (MIMQO) communication

systems increase capacity and improve the bandwidth
efficiency in rich scattering environments [1]. The
performance of the MIMO system depends highly on the
accuracy of channel state information. Although different
techniques have been proposed to estimate the channel matrix
[2]-[4], using the singular value decomposition (SVD) of the
channel matrix is an efficient approach to obtain the channel
state information and design coding, decoding and detection
algorithms in MIMO communication systems [5]. Due to the
nonlinearity issue, the procedure of obtaining the SVD from
the estimated channel matrix may create more errors if the
estimation of the channel matrix is not precise enough [6]. In
this paper, an iterative algorithm is proposed to estimate the
SVD of the MIMO channel matrix directly from the received
signal. The algorithm is developed based on the constrained
minimum mean-square error (MM SE) criterion.
The paper is organized as follows. The system model of a
MIMO narrowband channel is described based on the SVD
method in Section II. The iterative algorithm is developed in
Section Ill. The performance of the proposed estimation
agorithm is presented by computer simulations in Section |V
and Section V contains conclusions.

1. SYSTEM MODEL

We consider a MIMO communication system consisting of N
transmitter antennas and M receiver antennas with a Rayleigh

flat fading channel. When S(K) =[Sy (K),..., Sy 4 (K)]T is
the transmitted signal vector, the received signal vector,
X(k) =[Xg(K),...; Xy 1 (K)]T, can be expressed as

x(k) = Hs(k) + n(k) 0

where H isthe M x N channel matrix, n(k) is the

M x 1 additive white Gaussian noise (AWGN) vector with
zero mean and autocorrelation matrix R, (1) = a2l ,6(1),

while I, isthe M x M identity matrix. The SVD of the
channel matrix, H , can be given as

H =UXVH 2

where U and V areM x P and N x P unitary matrices,
respectively. Note that P is the rank of H where
P<min(M,N). ZX=diag(c,,0,,::,0,) is a
diagonal matrix containing the singular values of the channel
matrix and (.)H denotes transposed complex conjugate.

Our aim isto estimateU , V and X matrices directly at the
receiver based on a training sequence. The estimation

procedure can be developed by minimizing the mean square
error (MSE) criterion as follows.

3 = E[x() ~uzv Hs(k)f ] &)

Due to the unitary property of U and V  matrices,
minimization of the criterion in (3) should be attained under
nonlinear constraints UHU =1, and VHV =1,.
Estimation of the U , V and ¥ matrices under the nonlinear
congtraints is a very complicated procedure that seems less

practical. In the next section, we will propose an iterative
approach that leads to a linear constraint for estimating the

SVD of H based on the MM SE criterion.

1. ITERATIVE SVD ESTIMATION
The SVD of the channel matrix can be written as follows.

H=UZVH =WV H =UW2H 4

where
W1 =UX (5)
W, =V2 6)

whilethe diagonal elementsof X = diag(c,,0,,



matrix are positive values. Defining U; and V; astheith
columnsof U and V , respectively, we have

Wy = Hv; =ou; (7)
wi =ufH =o;v/ )

where W;; and W ,; aretheith columnsof W, and W,,
respectively. By using (7) and (8 ), one can write

Y, (k) = x(K)s(k)HV = Hs(k)s(k)*V + Z,(k) (9)

Y, (k) = U Hx(K)s(k)H =W s(k)s(k)H + Z,(k)

(10)
where Z,(k) =n(k)s(k)HV Z,(k)=
UHn(k)s(k)". Assuming the training sequence is an
independent and identically distributed (iid) signal such that
E[s(k)] =0, R, = E[s(k)s(k)" ] =021 and
E[s(k)n(l)#] =0 foral k and | ,itisstraightforward to
show that E[Z,(k)] =0, E[Z,(k)]=0,
E[Z,(K)" Z,(k)]=Mc2c?2l, and
E[Z,(kK)Z,(k)"]=No2c2l,. Without
generality we assume that o2 =1. Thus, from (9) and (10),
one can show that

and

loss of

W, = EY, (K)] (12)

W, = E[Y, (k)" (12)

To achieve our objective, the SVD of H is estimated in two
stepsin an iterative manner based on (11) and (12). In the first

step, from (11) the columns of W, matrix are estimated by
assumption that the V estimation is available and in the
second step, the columns of W, are estimated from (12)
based on the previous estimation of U .

A. Step |
The estimation criterion of W based on the MMSE can be
given as

s=ele o -efw, -viop]  ®

-1

E,(k)=[e; (k),---,e;p(K)]. If it is assumed that the
V (D s the estimation of V at the (I-1)th iteration, the

where denotes Frobenius norm  and

estimation criterion of W, at the Ith iteration becomes

30—l [E WL |- o -0l | aa

Y (k) = x(k)s(k)HV (-0 Since
E[zy (k)" z,;(k)]=0 for i= j,while Z;;(k) istheith

where

column of Z, (k) , the criterion of (14 ) can be modified as

10 = Z Eﬁeg) (k)‘z]: Ehwﬁ (k) =y (k)‘z]

P P
i=1 i=1

(15)

where W, and Y{ ™ (K) are the ith columns of W, and

YV (k) , respectively. From (9), Y™ (k) can begiven as

yi (k) =x(K)s(k)H I (16)

where ('™ is the estimation of the ith column of V' at the

(I-Dth iteration. Thus the minimizing of J." can be achieved
2 .
by minimizing the EUel(i')(k)‘ } for i=1---,P

separately. Moreover, Jl(') should be minimized under the
congtraint of Wy'w,; =0 for al i# j. Usng the
Lagrange multiplier method in order to satisfy the constraint,

the criterion of estimating W ; at thelthiteration is given as

~ (1 H |
Wy = argmin{¢{"}
1i

: [ 2 nHHy oH
~argmin € lef (0" |+ 40" w, |

fori=1---,P (17)
where A = [A .-, A1 17 is the Lagrange multiplier
vector and WO =W, w1 is an M x(i—1)
matrix. Thus, in order to satisfy the orthogonality property of
the columns of W,, the ¢ is minimized under the

following constraint.
V\71(iI)HW1i =0

fori=1,---,P (18)

By taking the derivation of ¢ l(i') with respect to W,; and
doing some manipulations, it can be shown
( & (-1 g a0
Wy =PU —w QAP

fori=1---,P (19)



where P = E[x(k)s(k)"]. By substituting W’ in (18)
and applying the constraint, we have

I T O Oy OF b -1
A = WP o

After substituting A8 from (20) in (19), the estimation of

W,; athelth iteration becomes

~ () _ g O nanr OMag Oy OF b -
Wy _(IM _Wli (Wli Wli ) l\N1i )Dvi

for i=1---,P (21)

Thus, the W, matrix can be estimated based on the
constrained MM SE criterion at the Ith iteration by computing
w{ from (21) for i=1,---,P. The estimation of the ith

column of U at the lth iteration, ("), can be obtained by

1
A~ ~ ~ H ~ -= .
a0 =wPWP W)Yz fori=1--,P (22

B. Step Il

Similar to step |, the V can be estimated by estimating W,
matrix. The MM SE criterion at the Ith iteration is given as

2 = [ [E0 ], |= e[ w0000 |
(23)

where and

ED (k) =[ef) (k),-,ef (K)]
YO (k)H =s(k)x(K)HU 0. since E[Z,(K)Z,(K)H]

isadiagonal matrix, the criterion of (23) can be given as

00 =2 |-

p
i=1

£l w00 -y 00
(24)

p
i=1

where W, istheith columnof W, and y%) (k)" istheith
columnof Y (k) that is defined as

y 5 (k)M =s(k)xk)Ha® (25)

Similarto J{" instep 1, J{" should be minimized under the
constraint of WHW,; =0 for al i j. Defining
AD =120 ,---, 28,17 as the Lagrange mulltiplier vector
and WO =[W - -Ww ], the estimation criterion of

W, atthelthiteration isgiven as

Al : |
W(Zi) =ayg mwm{gz(i)}
2i

)~ argmin{ gl o8 (o |+ 4470w |
for i=1---,P  (26)

By minimizing ¢}’ with respect to W ,; under the following
constraint

~ |H .
W w, =0  for i=1---,P @7)
one can show
W =PHa®M —WOAD  for i=1--,P (28)

A9 can be obtained by substituting W) in (27) and
applying the constraint.

I g 0P\ Oy a7 OH ~ (1
DR A IS

By replacing /1(2? from (29) in (28), the estimation of W,
at the Ith iteration becomes

~() v O g O\ Oy OF 10
Wi _(IN _W2i 2i W2i 1W2i )DHUi

for i=1---,P (30)
The estimation of W, at the Ith iteration can be obtained

based on the constrained MMSE criterion by using (30) to
estimate W,; for i=1---,P. Also from (30) the estimation

of theith column of V at the Ith iteration, \A/i(') , becomes

1
00 =W WY W) 2 for i=1 P (3D)
Meanwhile, the ith diagonal element of X at the Ith iteration
can be estimated by

1
O =WO W2 for i=1--,P (32

Note that due to the orthogonality property, W 1(i') HV\71(i') and

V\72(i') " V\72(i') are diagona matrices and computing the inverse
of them needed in (21) and (30) are straightforward.

C. Algorithm procedure

After choosing the initial value of V , say \7 O | the iterative
algorithm can be implemented by employing step | and step 11
for i=1---,P in order to estimate U; and V; a each

iteration. The procedure of the iterative agorithm can be
summarized as follows.

1) Determination of P = E[X(k)s(k)" ]
Fori=1---,P {



ForI=L2,--~{
2) Step I

~ () _ g O an O Oy OF o -0
Wy _(IM - Wli 1i Wli ) 1W1i )Dvi

1
O (O WA (LA ()R
uy’ =wy (wy wy’) 2
3) Step I1:
~ () _ v O g Oy Oy O ~ ()
Woi _(IN_WZi 2i W2i lWZi )DHui

1
00 WY WY WY)

}
3

The iterative algorithm for estimating U; and V; can be

terminated when at the |"th iteration the following condition
is satisfied
~ ~ 2
1) (-1

(33)
F

where g; isasmall positive value and I-A|im is defined as

~ A1 ~ (] nH
Hi(lﬁ — ui(l)o.i(l)vi(l) (34)

IIl.  SIMULATIONS

A MIMO communication system that consists of N
transmitter antennas and M receiver antennas with a

channel matrix, H , has been considered for simulations in
order to evauate the performance of the proposed iterative
SVD estimation agorithm. The channel matrix has been

modeled for N = M = 2,4and 8 in system simulations. At
each model, five hundred channel matrices have been
generated randomly such that the elements of each H are
mutually independent complex Gaussian random variables
with zero-mean and variance one. A sequence of independent
and identically distributed (iid) 16QAM training signal vector,
S(k), issent from transmitter antennas such that R, = 1.

The power of the noise vector, N(K), with zero-mean and

R, = E[n(k)n(k)"]=0c?l,, is adjusted in order to
achievethe SNR defined asfollows:
2
oNR = E[IHs() ] )

ElIn(k) ]

We use the normalized mean-square error (NMSE) as the
estimator performance criterion that is defined as

E[ H - Hm
NMSE (H) = o (36)
EfH]
where H is the estimation of H . Note that the MIMO
channel H is estimated based on its SVD estimation from

following relation.

A An A

H=UZVH

The performance of the iterative MIMO channe SVD
estimation algorithm based on the normalized MSE criterion
defined in (36) for N=M=2,4 and 8 channel types are shown
in Fig. 1, Fig. 2 and Fig. 3, respectively. In these figures, the
performance is shown for two different training sequence
lengths containing L=100 and 500 symbol vectors when the
number of iterations, NI=1,2 and 4. As can be seen, the
performance of the estimator improves significantly in the
second iteration in comparison with the first iteration. Also,
the NMSE of the channel estimation decreases by increasing
the training sequence length. However, as the figures show,
increasing the number of the transmitter and receiver antennas
reduces the estimator performance.

Figure 4 shows the performance of the estimation algorithm
based on the number of iterations, NI. The performance
improvement is insignificant after the fourth iteration. The
impact of training sequence length, L, on the performance of
the estimation algorithm is evaluated in Fig. 5 for N=M=2, 4
and 8 at SNR=30dB. Although increasing the length of the
training sequence up to five hundred symbol vectors increases
the performance of estimator substantialy, the trend does not
remain for training sequence length beyond five hundred
symbol vectors. Meanwhile, it should be noted that the
estimated U and V matrices aways satisfy the unitary
property when the number of transmitted symbol vectors is
more than the maximum number of transmitter/receiver
antennas.

(37)

V. CONCLUSIONS

An iterative algorithm has been developed in this paper to
estimate the SVD of the MIMO channels. The algorithm has
been derived based on the constrained minimum mean square
error (MMSE) criterion. Computer simulations have shown
the agorithm achieves a good performance after the first
iteration when the channel matrix has been estimated based on
the SVD estimation. Also, the estimation algorithm satisfies
the unitary property of the SVD matrices perfectly when the
number of the transmitted symbol vectors is more than the
number of the transmitter or receiver antennas, whichever has
more antennas.
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Fig. 1. The normalized MSE of the channel matrix estimation, H, using the
iterative SVD estimation agorithm versus SNR for different number of

iterations (NI) and training length (L) when N=M=2.
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Fig. 2. The normalized MSE of the channel matrix estimation, H, using the
iterative SVD estimation agorithm versus SNR for different number of

iterations (NI) and training length (L) when N=M=4.
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Fig. 3. The normalized MSE of the channel matrix estimation, H, using the
iterative SVD estimation agorithm versus SNR for different number of

iterations (NI) and training length (L) when N=M=8.
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4: The normalized MSE of the channel matrix estimation, H, using the

iterative SVD estimation algorithm as a function of the number of iterations
for N=M=24and 8 at SNR=30dB with training lengths, L=100 and 500

symbol vectors.
0 . T T T T T T T T
\ —— N=M=2, SNR=30dB, NI=4
| —— N=M=4, SNR=30dB, NIi=4
\ — — N=M=8, SNR=30dB, NI=4 | |

Fig.

o

=

w -

[}

=

=4

-30 I Il I I I Il 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Training Length (symbol)
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