
 
 

    Abstract— An iterative algorithm is proposed in this paper to 
estimate the singular value decomposition (SVD) of multiple-
input multiple-output (MIMO) channel from the received signal. 
The proposed algorithm is based on the constrained minimum 
mean-square error (MMSE) criterion. For different numbers of 
transmitter and receiver antennas, simulation results show that 
the iterative algorithm achieves good performance with respect 
to the SVD estimation of the MIMO channel matrix.  

 
Index Terms— MIMO systems, MIMO channels estimation, 

SVD estimation, constrained MMSE.  
   

I. INTRODUCTION 

 ultiple-input  multiple-output   (MIMO)  communication  
 systems increase capacity and improve the bandwidth 

efficiency in rich scattering environments  [1]. The 
performance of the MIMO system depends highly on the 
accuracy of channel state information. Although different 
techniques have been proposed to estimate the channel matrix 
 [2]- [4], using the singular value decomposition (SVD) of the 
channel matrix is an efficient approach to obtain the channel 
state information and design coding, decoding and detection 
algorithms in MIMO communication systems  [5]. Due to the 
nonlinearity issue, the procedure of obtaining the SVD from 
the estimated channel matrix may create more errors if the 
estimation of the channel matrix is not precise enough  [6].  In 
this paper, an iterative algorithm is proposed to estimate the 
SVD of the MIMO channel matrix directly from the received 
signal. The algorithm is developed based on the constrained 
minimum mean-square error (MMSE) criterion.  
The paper is organized as follows. The system model of a 
MIMO narrowband channel is described based on the SVD 
method in Section II. The iterative algorithm is developed in 
Section III. The performance of the proposed estimation 
algorithm is presented by computer simulations in Section IV 
and Section V contains conclusions.   
 

II. SYSTEM MODEL  

We consider a MIMO communication system consisting of N 
transmitter antennas and M receiver antennas with a Rayleigh 
flat fading channel. When T

N ksksk )](),...,([)( 10 −=s  is 
the transmitted signal vector, the received signal vector, 

T
M kxkxk )](),...,([)( 10 −=x ,  can be expressed as 

  
)()()( kkk nsx += H                         (1) 

where H  is the  NM ×  channel matrix, )(kn   is the 
1×M  additive white Gaussian noise (AWGN) vector with 

zero mean and autocorrelation matrix )()( 2 llR n δσ MI=n , 

while MI  is the MM ×  identity matrix. The SVD of the 
channel matrix, H , can be given as  
 

                              HVUH Σ=                                    (2) 
 
where U  and  V  are PM ×  and PN ×  unitary matrices, 
respectively. Note that P  is the rank of H  where 

),min( NMP ≤ .  ),,,diag 21 P( σσσ L=Σ  is a 
diagonal matrix containing the singular values of the channel 
matrix and H(.)  denotes transposed complex conjugate. 

Our aim is to estimateU , V  and Σ  matrices directly at the 
receiver based on a training sequence. The estimation 
procedure can be developed by minimizing the mean square 
error (MSE) criterion as follows.  

[ ]2)()( kkEJ sx HVUΣ−=
                 (3) 

 
Due to the unitary property of U  and V   matrices,  
minimization of the criterion in (3) should be attained under 
nonlinear constraints P

H IUU =  and P
H IVV = . 

Estimation of the U , V  and Σ  matrices under the nonlinear 
constraints is a very complicated procedure that seems less 
practical. In the next section, we will propose an iterative 
approach that leads to a linear constraint for estimating the 
SVD of H  based on the MMSE criterion.  
 

 
III. ITERATIVE SVD ESTIMATION 

 
The SVD of the channel matrix can be written as follows.  
 

H
2

H
1 UWVWVUH ==Σ= H                (4) 

 
where 
 

Σ= UW1                                     (5) 
 

Σ=VW2                                              (6) 
 

while the diagonal  elements of  ),,,diag 21 P( σσσ L=Σ  
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matrix are  positive values. Defining iu  and iv  as the ith 

columns of U   and  V  , respectively, we have 
 

    iiii uvw σ== H1                             (7) 
 

H
i

H
i vuw i

H
2i H σ==                               (8) 

 
where i1w  and i2w  are the ith columns of 1W   and  2W , 
respectively.   By using (7) and (8 ), one can write  
 

)()()()()()( 11 kkkkkk HH ZVHV +== sssxY      (9) 
 

)()()()()()( 22 kkkkkk HH ZWU H
2

H +== sssxY  
(10) 

 
where VnZ Hkkk )()()(1 s=  and =)(2 kZ  

Hkk )()( snU H . Assuming the training sequence is an 
independent and identically distributed (iid) signal such that  

0)]([ =kE s , NI2])()([ s
HkkER σ== sss  and 

0ns =])()([ HlkE  for all k  and l  , it is straightforward to 

show that 0=)]([ 1 kE Z , 0=)]([ 2 kE Z ,   

PIZZ 22
11 )]()([ ns

H MkkE σσ=  and 

PIZZ 22
22 ])()([ ns

H NkkE σσ= . Without loss of 
generality we assume that 12 =sσ . Thus, from (9) and (10), 
one can show that 
 

)]([ 1 kE Y=1W                             (11) 
 

HkE )]([ 2Y=2W                           (12) 
 

To achieve our objective, the SVD of H  is estimated in two 
steps in an iterative manner based on (11) and (12). In the first 
step, from (11) the columns of 1W  matrix are estimated by 
assumption that the V  estimation is available and in the 
second step, the columns of 2W   are estimated from (12) 
based on the previous estimation of U .   
 
A. Step I  
The estimation criterion of 1W  based on the MMSE can be 
given as   

[ ] [ ]2
1

2
1 )()( FF kEkEJ YE −== 11 W          (13) 

 

where 
F

  .  denotes  Frobenius norm and  

)](,),([)( 1 kkk Pee111 L=E . If it is assumed that the 
1)-(lV̂  is the estimation of V  at the (l-1)th iteration, the 

 
 

 
 estimation criterion of  1W   at the lth iteration becomes   

 

⎥⎦
⎤

⎢⎣
⎡ −=⎥⎦

⎤
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⎡= − 2)1(

1
2)(

1
)(

1 )()()(
F

l
F

ll kkEkEJ YE 1W    (14) 
 

where 1)-(lV̂)()()()1(
1

Hl kkk sxY =− . Since  

0)]()([ 11 =kkE j
H

i zz   for ji ≠ , while )(1 kiz  is the ith  

column of )(1 kZ , the criterion of (14 ) can be modified as 
 
 

[ ] [ ]∑∑
=

−

=

−==
P

i

l
ii

P

i

l
i

l kkEkEJ
1

2)1(
11

1

2)(
1

)(
1 )()()( ywe  

(15)  
where i1w  and  )()1(

1 kl
i
−y  are the ith columns of 1W  and  

)()1(
1 kl−Y , respectively. From (9), )()1(

1 kl
i
−y  can be given as 

 
)1()1(

1 ˆ)()()( −− = l
i

Hl
i kkk vsxy                  (16) 

 
where )1(ˆ −l

iv  is the estimation of the ith column of V  at the 

(l-1)th iteration. Thus the minimizing of )(
1

lJ  can be achieved 

by minimizing the ⎥⎦
⎤

⎢⎣
⎡ 2)(

1 )(kE l
ie  for Pi ,,1L=  

separately. Moreover, )(
1

lJ  should be minimized under the 

constraint of 011 =j
H
i ww  for all ji ≠ .  Using the 

Lagrange multiplier method in order to satisfy the constraint, 
the criterion of estimating  i1w  at the lth iteration is given as 
 

}{minargˆ )(
1

)(
1

1

l
i

l
i

i

ζ
w

w =  

⎭⎬
⎫

⎩⎨
⎧ +⎥⎦

⎤
⎢⎣
⎡= i

Hl
i

l
i kE

i
1

)(
1

2)(
1

ˆ)(minarg
1

w
w

(l)
1i

HWe          λ  

  for Pi ,,1L=         (17)  
where =)(

1
l
iλ Tl

i
l ],,[ )(

11
)(

11 −λλ L  is the Lagrange multiplier 

vector and ]ˆ,,ˆ[ˆ )(
11

)(
11

l
i

l
−= ww L(l)

1iW  is an )1( −× iM  
matrix.  Thus, in order to satisfy the orthogonality property of 
the columns of 1W ,  the )(

1
l
iζ  is minimized under the 

following constraint. 
 

0ˆ
1 =i

H w(l)
1iW        for Pi ,,1L=                  (18) 

 
By taking the derivation of )(

1
l
iζ  with respect to i1w  and 

doing some manipulations, it can be shown  
 

)(
1

)1()(
1

ˆˆˆ l
i

l
i

l
i λ(l)

1iW−= −vPw        for Pi ,,1L=       (19) 
 



 
 

where ])()([ HkkE sxP = . By substituting )(
1ˆ l
iw  in (18) 

and applying the constraint, we have 
 

)1(1)(
1 ˆˆ)ˆˆ( −−= l

i
HHl

i vP(l)
1i

(l)
1i

(l)
1i WWWλ            (20) 

 

After substituting )(
1
l
iλ  from (20) in (19), the estimation of 

i1w   at the lth  iteration  becomes 
 

        ( ) )1(1)(
1 ˆˆ)ˆˆ(ˆˆ −−−= l

i
HH

M
l
i vPw (l)

1i
(l)

1i
(l)

1i
(l)

1i WWWWI  
                       for  Pi ,,1L=       (21) 

 
Thus, the  1W   matrix can be estimated based on the 
constrained MMSE criterion at the lth iteration by computing  

)(
1ˆ l
iw  from (21) for Pi ,,1L= . The estimation of the ith 

column of U at the lth iteration, )(ˆ l
iu , can be obtained by 

 

2
1

)(
1

)(
1

)(
1

)( )ˆˆ(ˆˆ −= l
i

Hl
i

l
i

l
i wwwu      for Pi ,,1L=     (22) 

 
B. Step II  
 Similar to step I, the V can be estimated by estimating 2W  
matrix. The MMSE criterion at the lth  iteration is given as  
 

⎥⎦
⎤

⎢⎣
⎡ −=⎥⎦

⎤
⎢⎣
⎡=

2)(
2

2)(
2

)(
2 )()()(

F
Hl

F

ll kkEkEJ YE 2W  

(23) 
 

where )](,),([)()(
2 kkkl (l)

2P
(l)
21 ee L=E  and 

(l)Û)()()()(
2

HHl kkk xsY = . Since  ])()([ 22
HkkE ZZ  

is a diagonal matrix,   the criterion of (23) can be given as 
   

 ∑∑
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(24) 
 

where i2w  is the ith column of 2W  and  Hl
i k )()(

2y  is the ith 

column of Hl k )()(
2Y  that is defined as 

 
)()(

2 ˆ)()()( l
i

HHl
i kkk uxsy =                  (25) 

 
Similar to )(

1
lJ  in step I, )(

2
lJ  should be minimized under the 

constraint of 022 =j
H

i ww  for all ji ≠ . Defining 
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2iW , the estimation criterion of  

i2w  at the lth iteration is given as 
 

}{minargˆ )(
2

)(
2

2

l
i

l
i

i

ζ
w

w =                  

⎭
⎬
⎫

⎩
⎨
⎧ +⎥⎦

⎤
⎢⎣
⎡= i

HH
i

l
i

l
i kE

i
22

2)(
2

)(
2

ˆ)(minargˆ
2

ww
w

(l)
2iWe λ   

                                                          for  Pi ,,1L=         (26) 

By minimizing )(
2

l
iζ  with respect to i2w  under the following 

constraint 
 

0ˆ
2 =i

H w(l)
2iW        for  Pi ,,1L=                 (27) 

one can show  
 

)(
2

)()(
2

ˆˆˆ l
i

l
i

Hl
i λ(l)

2iW−= uPw     for  Pi ,,1L=        (28) 
 

)(
2
l
iλ  can be obtained by substituting )(

2ˆ l
iw  in (27) and 

applying the constraint.  
 

)(1)(
2 ˆˆ)ˆˆ( l

i
H

HHl
i uP(l)

2i
(l)

2i
(l)

2i WWW −=λ              (29) 
 

By replacing )(
2
l
iλ  from (29) in (28), the estimation of i2w   

at the lth iteration becomes 
 

( ) )(1)(
2 ˆˆ)ˆˆ(ˆˆ l

i
H

HH
N

l
i uPw (l)

2i
(l)

2i
(l)

2i
(l)

2i WWWWI −−=  
   for  Pi ,,1L=     (30) 

 

The estimation of 2W at the lth iteration can be obtained 
based on the constrained MMSE criterion by using (30) to 
estimate i2w  for Pi ,,1L= . Also from (30) the estimation 

of the ith column of V at the lth iteration, )(ˆ l
iv , becomes 

 

2
1
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2
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2

)( )ˆˆ(ˆˆ −= l
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Hl
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l
i wwwv      for  Pi ,,1L=         (31) 

 
Meanwhile, the  ith diagonal element of Σ  at the lth iteration 
can be estimated by 
 

2
1

)(
2

)(
2

)( )ˆˆ(ˆ l
i

Hl
i

l
i ww=σ       for  Pi ,,1L=        (32) 

 

Note that due to the orthogonality property,  (l)
1i

(l)
1i WW ˆˆ H

 and 
(l)

2i
(l)

2i WW ˆˆ H
 are diagonal matrices and computing the inverse 

of them needed in (21) and (30) are straightforward.  
 
 
C. Algorithm procedure  
After choosing the initial value of V , say (0)V ˆ , the iterative 

algorithm can be implemented by employing step I and step II 
for Pi ,,1L=  in order to estimate iu  and iv  at each 
iteration. The procedure of the iterative algorithm can be 
summarized as follows. 
 

1) Determination of  ])()([ HkkE sxP =  

For Pi ,,1L=  {  
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The iterative algorithm for estimating iu  and iv   can be 

terminated when at the l ′ th iteration the following condition 
is satisfied 

iF
ε≤− ′′ 2ˆˆ 1)-l(

i
)l(

i HH                   (33) 

 
where iε  is a small positive value and  )l(

iH ′ˆ  is defined as 
 

Hl
i

l
i

l
i

)()()( ˆˆˆ ′′′′ = vu σ)l(
iH                           (34) 

 

III.  SIMULATIONS    

A MIMO communication system that consists of N  
transmitter antennas and M   receiver antennas with a 
channel matrix, H ,  has been considered for simulations in 
order to evaluate the performance of the proposed iterative 
SVD estimation algorithm. The channel matrix has been 
modeled for 4,2== MN and 8 in system simulations. At 
each model, five hundred channel matrices have been 
generated randomly such that the elements of each H  are 
mutually  independent complex Gaussian random variables 
with zero-mean and variance one. A sequence of independent 
and identically distributed (iid) 16QAM training signal vector, 

)(ks , is sent from  transmitter antennas such that NR I=s . 

The power of the noise vector, )(kn , with zero-mean and 

MI2])()([ n
HkkER σ== nnn  is adjusted  in order to 

achieve the  SNR defined  as follows:     
 

=SNR
]|)([|
]|)([|

2

2

kE
kE

n 
H s

                         (35) 

 
 

We use the normalized mean-square error (NMSE) as the 
estimator performance criterion that is defined as 
 

NMSE [ ]2

2ˆ
)ˆ(

F

F

E

E

H

H-H
H

⎥⎦
⎤

⎢⎣
⎡

=                (36) 

where Ĥ  is the estimation of H . Note that the MIMO 
channel H  is estimated based on its SVD estimation from 
following relation. 
 

HVUH ˆˆˆˆ Σ=                                   (37) 
 
The performance of the iterative MIMO channel SVD 
estimation algorithm based on the normalized MSE criterion 
defined in (36) for N=M=2,4 and 8 channel types are shown 
in Fig. 1, Fig. 2 and Fig. 3, respectively. In these figures, the 
performance is shown for two different training sequence 
lengths containing L=100 and 500 symbol vectors when the 
number of iterations, NI=1,2 and 4. As can be seen, the 
performance of the estimator improves significantly in the 
second iteration in comparison with the first iteration. Also, 
the NMSE of the channel estimation decreases by increasing 
the training sequence length. However, as the figures show, 
increasing the number of the transmitter and receiver antennas 
reduces the estimator performance.  
Figure 4 shows the performance of the estimation algorithm 
based on the number of iterations, NI. The performance 
improvement is insignificant after the fourth iteration.  The 
impact of training sequence length, L, on the performance of 
the estimation algorithm is evaluated in Fig. 5 for N=M=2, 4 
and 8 at SNR=30dB. Although increasing the length of the 
training sequence up to five hundred symbol vectors increases 
the performance of estimator substantially, the trend does not 
remain for training sequence length beyond five hundred 
symbol vectors. Meanwhile, it should be noted that the 
estimated U  and V  matrices always satisfy the unitary 
property when the number of transmitted symbol vectors is 
more than the maximum number of transmitter/receiver 
antennas.  
 
 

V.  CONCLUSIONS  
  

An iterative algorithm has been developed in this paper to 
estimate the SVD of the MIMO channels. The algorithm has 
been derived based on the constrained minimum mean square 
error (MMSE) criterion. Computer simulations have shown 
the algorithm achieves a good performance after the first 
iteration when the channel matrix has been estimated based on 
the SVD estimation. Also, the estimation algorithm satisfies 
the unitary property of the SVD matrices perfectly when the 
number of the transmitted symbol vectors is more than the 
number of the transmitter or receiver antennas, whichever has 
more antennas. 
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Fig. 1. The normalized MSE of the channel matrix estimation, H, using the 
iterative SVD estimation algorithm versus SNR for different number of 
iterations (NI) and training length (L) when N=M=2. 
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Fig. 2. The normalized MSE of the channel matrix estimation, H, using the 
iterative SVD estimation algorithm versus SNR for different number of 
iterations (NI) and training length (L) when N=M=4. 
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Fig. 3. The normalized MSE of the channel matrix estimation, H, using the 
iterative SVD estimation algorithm versus SNR for different number of 
iterations (NI) and training length (L) when N=M=8.  
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Fig. 4: The normalized MSE of the channel matrix estimation, H, using the 
iterative SVD estimation algorithm as a function of the number of iterations 
for N=M=2,4and 8 at SNR=30dB with training lengths, L=100 and 500 
symbol vectors.  
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Fig. 5: The normalized MSE of the channel matrix estimation, H, using the 
iterative SVD estimation algorithm based on different training lengths for 
N=M=2,4 and 8 at SNR=30dB when the number of iterations NI=4. 
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