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Abstract: The most probable optimum solution in the controlled islanding of power systems is when

it is torn into two pieces since such an approach would lead to larger islands when compared with

multisection tearing of the power system. Moreover, the restoration of such a bisectioned power

system would be easier than the restoration of a power system torn into many pieces. Spectral and

Multilevel Kernel k-means approaches to the islanding of power systems have previously been

reported by the authors. In this paper, a review of the potential applications of graph partitioning is

presented and the classical and the newer spectral and multilevel k-means approaches to solving these

problems for power system islanding are described. The computational burden of each approach is

presented for a large power system abstracted as a graph G(N,B),with an example of the IEEE 9 bus

bisectioned and the computational time requirements of actual bisectioning of the power system on

the IEEE 118 bus, the IEEE 300 bus and the 2746 bus Polish power system are compared with

previously reported computational requirements. The results presented may also be used in many other

fields such as VLSI design, parallel processing, circuit and layout design, transient stability studies,

optimal load flow, fault estimation, and dynamic security assessment. 

Key words: Power System, Bisectioning, Fiedler vector, spectral partitioning, multilevel kernel k-

means 

INTRODUCTION

Graph partitioning methods have been widely published in the literature and applied to many modern day

very large scale system problems such as parallel processing, sparsity preserving orderings for sparse matrix

factorizations, circuit placement, routing, system hierarchy, VLSI circuit testing, facility location, scattered

network, hierarchical design of VLSI circuits, data mining, dynamic load balancing, parallel test pattern

generation, power system islanding, power system fault section estimation in large scale power systems,

annotation of protein sequence, etc. 

Although many names are used for the algorithms used in each application, the most common grouping

of such applications is spectral and kernel approaches. Application of spectral methods are reported in many

areas such as VLSI, FPGA, multi- Chip modules, integrated circuits, macro cells and real-life pattern

recognition gene network analysis, social network analysis, and image segmentation.

Recently several researchers investigated graph partitioning algorithms that reduce the size of the graph

by collapsing nodes and branches, partition the smaller graph, and then uncoarsen it to construct a partition

for the original graph. The effectiveness of many different choices for all three phases: coarsening, partition

of the coarsest graph, and refinement were investigated by Karypis and Kumar (1998) who presented a new

coarsening heuristic called heavy-edge heuristic. In this heuristic the size of the partition of the coarse graph

is within a small factor of final partition. They also presented a much faster variation of the Kernighan-Lin

algorithm for refining during uncoarsening. They tested the proposed scheme on graphs arising from finite

element, linear programming, VLSI and transportation problems.

A graph partitioning method based on a Multilevel Kernel k-Means approach with a high speed

performance  in  partitioning  graphs  with  application  on  large-scale  partitioning  tasks  such  as image
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segmentation; social network analysis; and gene network analysis types of systems was reported by Dhillon

et al. (2005) and Dhillon et al. (2007). It was shown that a general weighted kernel k-means objective function
is mathematically equivalent to a weighted graph partitioning objective. 

In a survey of kernel and spectral methods for clustering by Filippone et al. (2008) it was pointed out that
although these methods are tested on several benchmarks, few applications to real world problems are found

for them due to the high computational cost and that extensive validation of kernel and spectral clustering
techniques on real world problems still remain as a big challenge 

Review of Reported Applications:

Several researchers have reported application of spectral and kernel graph partitioning methods in various
fields. In this section a brief review of reported applications of these techniques to real life problems is

presented. Cherng et al. (1999) presented a two-level bisectioning algorithm combining a hybrid clustering
technique with an iterative partitioning process for VLSI circuits. Later on, Cherng et al. (2003) presented a

multi-level bisectioning algorithm by integrating a clustering technique and an iterative improvement based
partitioning process for VLSI circuit design in order to minimize the number of interconnects between the

subsets of the circuit in order to reduce interconnect delays in deep submicron technology. For application to
partitioning internet-like topologies used in the field of large scale network simulation, a genetic algorithm

called BC-GA was proposed by Lin et al. (2008) based on boundary crossing inspired by the analysis of
characteristic of the Internet topology and its related solutions and tested on a large extent of graphs including

snapshots of the real AS-level Internet, the topologies produced by the Internet model generator and many
traditional benchmark graphs. 

Another widely used area of application is power systems where graph partitioning could be used for many
different purposes. The usual problem is to separate the busses of a system into two or more groups to satisfy

a specified goal. For example, a group of generators is said to be coherent when they have identical dynamic
response to events originating outside that group. Minimal cutest technique is used by Wang and Vittal (2004)

to deal with islanding the actual system based on the grouping information. Wang et al. (2008) proposed an
adaptive clustering algorithm based on power system network topology, initial power flow and given

architecture to address power system transient stability studies. The sizes of the small cliques are derived using
multi-constraint and multi-objective graph partitioning theory where the nodes represent units of computation,
and the branches encode data dependencies. 

Graph Partitioning:
Graph partitioning is a well known NP-complete problem in mathematics where a graph is divided into

several pieces in such a way that the pieces are of about the same size with few connections between them.
In a more general form, the weighted graph partitioning problem where both nodes and branches may be

weighted, the problem may be stated as follows:
Given a graph G(N,B) with N nodes and B branches, and given an integer k >1, partition the graph into

k disjoint subsets of approximately equal weight such that the size of the branch cuts is minimized. The size
of a cut is the sum of the weights of the branches contained in it, while the weight of a subset is the sum of

the weights of the nodes in that subset. This partitioning problem may be solved by using graph-theoretic
heuristics.

In practical applications, nodes and branches of the graphs to be partitioned represent different objects and
this must be taken into consideration when developing the graph partitioning algorithm. In such cases, it would

be wise to consider graphs with weights and costs assigned to the elements as suggested by Aleksadrov et al.
(2006) who presented an algorithms for computing cutsets in planar graphs with costs and weights on the

nodes, where weights are used to estimate the sizes of the partitions and costs are used to estimate the size
of the cutset. They measured the quality of the partitioning by the total cost of the elements in the cutset and

the imbalance between the total weights of the parts.

Spectral Bisectioning:
In this section, the background of the spectral partitioning method is presented and then its performance

is presented by way of examples. The fundamental principles of Laplacian spectrum of graphs were initially
introduced by Mohar (1991). In the spectral graph partitioning approach the eigenvalues of the Laplacian matrix

of the graph are used for partitioning the graph as shown by Hagen et al. (1992). 
In bisectioning applications, the graphs may be partitioned into two parts using the second smallest

eigenvalues of the Laplacian matrix. The corresponding eigenvector is computed based on which the partitions
are found. 
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A graph's adjacency matrix and the degree matrix are needed to form the Laplacian matrix. The Laplacian

matrix of an undirected, unweighted graph G(N,B) where the graph is without any self loops or multiple

branches between any pair of nodes is an n by n symmetric matrix with one row and column for each node

defined by 

where   the   degree   matrix                                       well-known   adjacency   matrix.  The

Laplacian matrix is symmetric and positive semidefinite, and it may be extended to weighted graphs where

the weight of the branch is used in the adjacency matrix. If the eigenvalues of the Laplacian of a graph are

sorted by increasing value, the eigenvector corresponding to the second smallest eigenvalue of the Laplacian

matrix is called the Fiedler vector may be used in heuristics for various graph manipulations including spectral

graph partitioning. The second smallest eigenvalue of the Laplacian matrix is greater than 0 if and only if

G(N,B) is a connected graph. 

Here, a simple example is used to illustrate the effort required in bisectioning a graph using the graph

Laplacian. Consider the simple weighted graph shown in Figure 1. 

Fig. 1: The graph with 3 nodes and 3 branches

The Laplacian matrix Q for this graph is 

Then the eigenvalues should be computed as shown below:

Next the eigenvectors are computed as follows:
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The first eigenvector  

 

suppose:            then:

The second eigenvector 

Normalized
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        Normalized

The third eigenvector 

  

        Normalized

Therefore, the eigenvector matrix would be as follows:

The second column of this matrix, or the Fiedler vector, may be used to bisection the graph as shown in

Figure 2. 

Fig. 2: The sketch showing how the graph may be partitioned using the Fiedler vector

Therefore, the bisectioned graph is shown in Figure 3.
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Fig. 3: The bisectioned graph

The mathematical effort required to compute the eigenvalues and the eigenvectors is a major problem.in

large power systems with hundreds or even thousands of busses. As can be seen from the above simple

example, the bottleneck of the bisectioning algorithm presented above lies in the eigenvector calculation. The

time requirement of this approach is            . Notice  that  since only the sign of each component of the

Fiedler vector is needed in order to partition the graph, an exact answer is not really required. This could be

potentially useful in finding a faster solution. 

Kerninghan-Lin Bisectioning:

Kernighan and Lin (1970) proposed an iterative balanced minimum cutset bisectioning heuristic that starts

with an initial bisection. Then, in each iteration, a subset of nodes from each partition is sought whose

swapping would lead to bisections with a smaller branch cut set. This heuristic can yield local optimum

partitions if it starts with a good choice of initial bisection. You may start with a random selection of bisection,

too. The pseudocode for a single pass of the Kernighan-Lin algorithm is shown in Figure 4.

Algorithm Kernighan-Lin-Single-Pass

Repeat

Start with partition int_partition:

Best_partition:=init_partition

Repeat

Select N1'dN1 and N2'dN2,

Where |N1'|=|N2'|=k$1, the gain of swapping N1' and N2' is maximum,

And v0(N1'cN2') Yv is unlocked

Swap these subsets of nodes and lock them

If(this partition is better than best_partition) then

Best_partition:=this partition

Endif

Until the solution does not improve

end algorithm

Fig. 4: A single pass of the Kernighan-Lin Algorithm

Multilevel versions of the Kernighan-Lin algorithm have been used for partitioning large graphs. In these

algorithms, the graph is coarsened until it becomes so small that the processes for the problem at hand may

be applied fast. Then the partitions are aggregated. Multilevel versions of the spectral method which are based

on applying the spectral method at various levels have also been successfully used. In these methods, it is

required to compute the Fiedler vector. Holzrichter and Oliveira (1999) proposed a purely spectral approach

in which the calculation of the Fiedler vector is done using the Davidson algorithm. The problem at hand is

to be setup in the form of a graphical pre-conditioner to the Davidson algorithm.

Spectral algorithms are usually based on the Fiedler vector of the Laplacian. Determining the Fiedler vector
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of the Laplacian is the most computationally intensive part of graph partitioning. In many applications, an

approximation of the Fiedler vector is used to speed up the solution. 

Application of the Kernighan-lin Bisectioning:

Consider the weighted graph G with 6 nodes and 8 branches initially bisectioned into two subgraphs U

and W of the same size as shown in Figure 6. The cost matrix is as follows:

The cost of each node is defined as the sum of the costs of the branches that are incident with it and

incident with the nodes within the other partition, minus the sum of the branches that are incident with it and

incident with nodes within the same partition, namely:

 

For example, costs for nodes in the example shown in Figure 5 are computed as follows. For nodes in

partition U the node costs are:

Fig. 5: A graph with 6 nodes and 8 branches showing initial bisections
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For nodes in partition W the node costs are:

 

It is observed that whenever the cost of two nodes the have been placed in different partitions are larger,

it is better to swap them. Therefore, one may define an index such as cost reduction or gain "g", that is the

sum of the costs of two nodes that should be swapped, namely:

For the example above, the cost reduction or gain for all node are listed as follows:

One may  conclude  from  these  cost  reductions  that nodes 1 and 5 should be swapped since the cost

reduction between these nodes is maximal that it called                                                 . Next

we repaeat the procedure without considering nodes 1 and 5 as follows:
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Therefore, one  can write:

It is observed that cost reduction         is maximized, thus               and  these  two  nodes can be

candidates for swapping. Now after swapping these nodes with each other, repeat this procedure without

considering nodes 1,5 and nodes 2,4 nodes as follows:

  

Therefore, one can write:

Thus ,

Now  the  largest           can create the swapping with the largest cost reduction. For instance in this

example we can write:

        occurs for K=1
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This means that nodes 1 and 5 must be chosen to be swapped and the changed partitions are shows in

Figure 6.

Fig. 6: The bisectioned graph after swapping nodes 1 and 5. 

Now repeat all of this procedure again until the       become zero. For this example, we have:

Therefore, the cost reduction for all nodes are as follows:
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Thus, the maximum cost reduction would be                       and nodes 4 and 2 can be candidates

for swapping. Therefore, we repeat finding additional candidates for swapping without considering nodes 2 and

4 as follows:

  

The cost reductions in this iteration are as follows:

Therefore,                      indicating a  swapping of nodes 6 and 5. And repeating the above procedure

as follows we have:

Therefore, we can write 
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Thus                             

Now the largest          can create the swapping with the largest cost reduction. For instance, in this example

we can write 

occurs for k=3

This means that nodes 2,3,5 must be exchanged with nodes 4,6,1 respectively. Since this would result is

the previous bisection, it means that this is the best bisection with the least cut cost as shown in Figure 7. 

Figure 7 - The final bisection with the least cut cost

Fig. 7: The final bisection with the least cut cost

Bisectioning of Power Systems as a Means of Controlled Islanding:

Modern power systems experience a variety of stresses which may cause them to lose stability or lead to

a catastrophic failure. In the absence of intelligent supervisory action, a power system may be driven into an

emergency state which could either cause system collapse by natural islanding or total system blackout. One

possible action in an emergency state is controlled power system islanding. Many methods have been proposed

for this purpose. However these methods are slow, whereas islanding must be done rapidly for it to be an

effective countermeasure.

As modern power systems are highly interconnected and are operating under stress due to deregulation

and restructuring, a fault in a part of an interconnected power system may lead it towards instability or

complete blackout as shown by Vittal et al. (2005). This would happen  more often than in the past as

reported by Venkatasubramanian et al. (2005), and Anderson et al. (2005) with the reliability situation even

worse in the developing countries as indicated by Al-Odienat, (2006), or Sanaye-Pasand and Dadashzadeh,

(2004) since the power systems there suffer from a larger gap between demand and generation; inadequate

transmission capacity; and large distances between load centers and generation units. 

Controlled power system islanding can improve restoration of the power system since it creates an

equilibrium between load and generation. Several types of approaches have been presented in power systems

in India without which catastrophic events could have caused serious power system blackouts as reported by

Rajamani et al. (1999). The controlled islanding approach based on active and reactive power balancing control

installed in the metropolitan area in Tokyo prevented a blackout in 1999 after an airplane ran into with a 275-

kV transmission tie line as reported by Agematsu et al. (2001). 
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The spectral partitioning was applied to power system islanding by Li et al. (2005). Power system

controlled islanding based on the multilevel kernel k-means was proposed for the intentional islanding of large

scale power systems by Peiravi and Ildarabadi, (2009) who also made a compasrison with the spectral

partitioning. Many issues such as generation/load imbalance in each island to be formed, dynamic response

of the system, load shedding, generation tripping which may occur if there is a severe generation inadequacy

after the island is formed, transmission system capacity constraints, consideration of priority ranking of various

loads, and computational efficiency of the approach should be considered. It is felt that fast bisectioning of

the power system could result in the best solution to this problem.

Spectral Bisectioning for Power System Islanding:

Although minimal generation/load imbalance is a very important factor in islanding since it affects the

amount of under-frequency load shedding required in the island after its formation, and makes it easier to

restore the island, other issues should also be considered. Spectral bisectioning of the power system may be

performed as follows as proposed by Rehtanz, (2003): 

1- Compute the power flow of the power system network

2- Convert the power system network into a graph G(N,B) with n nodes and b branches.

2-1 Each bus of the power network is a node of the graph G.

2-2 Each transmission line of the power system is a branch of G.

S2-3 Assign the weight of each branch of G as the absolute value of real power flow of the corresponding

transmission line.

3- Compute the Laplacian matrix Q of Graph G(N,B) as follows:

3-1 Compute the adjacency matrix A and diagonal degree matrix D of graph G(N,B).

3-2 The Laplacian matrix Q=D-A

4- Compute the second smallest eigenvalue       of the Laplacian matrix Q.

5- Compute the real eigenvector associated with       call it     , 

6- Map      into a heuristic partition vector of the graph G(N,B).

6-1 Sort entries of     to obtain the sorted vector v of node indices.

6-2 Place all nodes in partition U.

6-3 For i=1 to n-1

Move from partition U to partition W

Calculate the cut set size of the (U, W) partition.

7 Find the optimal              partition that has the minimum cut set size among the above n-1 different

partitions.

The flowchart of the spectral power system bisectioning algorithm is shown in Figure 8.

An example of spectral power systems bisectioning is presented below to illustrate the effort required in

bisectioning a power system using the graph Laplacian. 

Spectral Bisectioning the IEEE 9 Bus Test Power System: 

Consider the simple weighted graph shown in Figure 9 which shows the graph of the IEEE 9 bus power

system with active power flow through the branches, and with the node numbers shown on the graph.

The Laplacian matrix for the above graph is as follows:

where      is weight of the branch that connects the two nodes     and     (note that           ). Therefore,
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the Laplacian matrix is given as follows:

Fig. 8: The flowchart of spectral power system bisectioning algorithm
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Fig. 9: The graph of the IEEE 9 bus power system with 9 nodes and 9 branches

The eigenvalues of Q are as follow:

1 2 3 4 5 6 7 8 9ë ë ë ë ë ë ë ë ë

0 20 27 87.6 106 130 206 245 454

The eigenvector of the Laplacian matrix Q are computed and shown below.

The second eigenvector       or the Fiedler vector is 
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The Fiedler vector may be used to bipartition the graph as shown in Figure 10. 

Fig. 10: The sketch showing how the graph may be partitioned using the Fiedler vector

The number  of  elements  of  the  second  eigenvetor corresponds to the number of nodes in the graph.

Consider U and W as graph partitions and              as  the  set  of  nodes  belonging to these partitions,

respectively. Select the nodes that correspond to the largest and smallest values in the Fielder vector and call

them        and      . In this example,               ,              , and                             , 

                         . Then node 2 is the first element of the U partition and node 3 is the first element

of the W partition. The rest of the nodes will be checked as follows to see which partition they belong to.

Thus,  every other  node  is  checked  and  the  absolute  value of the difference between the value of the

corresponding  element  in  the  eigenvector  and that  of                        , and                       is

checked. If the value that is relative to  is                         less than that relative to

then that node belong to the U partition. Otherwise it belongs to the W partition. Therefore, for this example,

and
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and

and

and

And

And

Thus, the original graph is partitioned into two parts as follows:

Partition 1: {3,5,6}

Partition 2: {1,2,4,7,8,9}

Figure 11 shows the bisectioned form of the IEEE9 bus power system based on the above calculations with

the minimum cut set cost. 

Fig. 13: The bisectioned IEEE 9 bus power system with minimum branch cutest cost

Power System Partitioning Based on Multilevel Kernel k-Means:

Spectral partitioning and kernel k-means are two seemingly different methods for partitioning graphs.

However, they are very similar mathematically and this helps us design a fast kernel-based multilevel graph

partitioning algorithm that is better in terms of speed, memory storage and quality as shown by Dhillon et al.

(2007)]. Peiravi and Ildarabadi (2009) proposed to apply the Multilevel Kernel k-Means method to the

intentional power system islanding problem. Since in this approach there is no need to calculate the eigenvalues

and eigenvectors, it is much faster than the spectral method.
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Bisectioning of the Power System using Multilevel Kernel k-Means:

Since a good reduction in computational time can be achieved using the Multilevel Kernel k-Means

method, it is applied it to the bisectioning of power systems. To do so, the power system must first be

abstracted into a graph as follows:

• Compute the power flow of the power system network.

• Convert the power system network into a graph G.

• Each bus of the power network is a node of the graph G.

• Each transmission line of the one-line power system diagram is a branch of graph G.

• The weight of each branch of graph G is assigned according to the absolute value of real power flow of the

corresponding transmission line.

The created graph of the power system is considered as an input for Multilevel Kernel k-Means approach.

Figures 12a and b show the proposed algorithm for intentional islanding of power systems using multilevel

kernel k-means adopted from an earlier method called Metis as reported by Karypis and Kumar (1999).

Fig. 12a: The first part of the flowchart of finding the optimum form of intentional islanding of the power

system by multilevel Kernel K-means
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Fig. 12b: The second part (continuation) of the flowchart of finding the optimum form of intentional

islanding of the power system by multilevel Kernel K-means

Post Islanding Measures:

The usual thing to worry about after island formation is the frequency changes that may pursue due to

load/generation imbalance within the island. If there is excessive load in an island, there will be a decline in

the frequency which should be controlled by load shedding. Otherwise, the frequency decline may cause the

underfrequency protective relays of the generating units to trip leading to a worsening of the situation. In

islands in which there is excessive generation, there will be an increase in frequency which must be dealt with

by generation shedding. This expected form of behavior should be included in the objective function of the

controlled islanding algorithm so that in addition to a reduction in load/generation imbalance in the islands to

be formed, the partitioned solution results in minimum rate of change of frequency after island formation in

all islands formed. The inclusion of this idea in the objective function may be done by dividing the sum of

the power flows in the cut sets by the sum of the positive node weights in the island which is proportional

to the total inertia of the machines in that island.
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Computational Requirements:

The computational requirements of applying various graph partitioning schemes to power system islanding

are presented here based on the findings of previous researchers. The computational burden of the approach

determines whether or not the proposed algorithm has a potential for real time application. Since controlled

islanding of power systems in the face of severe interruptions is a major power system emergency operation

issue, its real time applicability is highly desirable. 

The computational bottleneck of the application of the spectral approach to the intentional islanding of

large scale power systems is the amount of mathematical effort required to compute the eigenvalues and the

eigenvectors of the Laplacian matrix. In large scale power system islanding where a real time solution is

needed and thousands of busses are involved, the computational requirements become burdensome. However,

this could be eased a little since only the sign of each component of the Feidler vector is needed in order to

partition the power system's equivalent graph and an exact answer is not really required. In applications where

the Laplacian matrix is dense, there exist routines such as eig in Matlab that require          . However, in

power system applications in which the graph is sparse with relatively few connections compared to a complete

graph, this would not be computationally wise. In such cases, it is more suitable to resort to the Lanczos

algorithm which is an iterative algorithm. 

The computational requirements of computing distances in the kernel k-means approach to bisectioning

power systems is            operations for each iteration. In modern day large scale power systems where 

sparsity holds, each iteration will only be of the             z denotes the number of nonzero entries in 

the matrix that is proportional to the number of transmission lines in the power system. Since in the multilevel

kernel k-means approach to power system bisectioning, we need not compute the eigenvectors at all and this

drastically reduces the computational burden of the problem making it           . This is much less than that

required for the best possible implementation of the spectral approach.

Peiravi and Ildarabadi (2009) presented a case study performed on the application of spectral vs. multilevel

kernel k-means to the intentional islanding of three sample power systems namely the IEEE 118 bus, the IEEE

300 bus and the 2746 bus Polish power system showing an increasing trend in computational time, but a much

less computational time for the multilevel kernel k-means approach as compared with the spectral approach

and a much lower rate of increase in computational time versus system size which shows the computational

advantage obtained in solving the intentional islanding of large scale power systems. The multilevel kernel k-

means approach resulted in very impressive computational time reduction when compared with the spectral

approach in the 2746 bus Polish power system. More work needs to be carried out to make a better

comparison since the code used for the Multilevel Kernel k-Means approach indirectly uses C++ and is

somewhat faster than the code that was written for the spectral approach in Matlab. The simulations reported

were carried out on an IBM PC computer with a 2.8GHz Celeron processor using Matlab for the spectral

approach and existing Graclus Software, version 1.2 for the Multilevel Kernel k-Means approach. These

computational times are compared with the reported time complexities in Table 1 and shown in Figure 13.

Conclusions:

In this paper, the spectral and multilevel kernel k-means approaches to bisectioning power systems for

islanding for avoiding power system blackouts were compared. When a fault is sensed that requires islanding,

relay and breaker operation for islanding needs to be done within a few cycles. This implies that all islanding

computations should be performed in much less than 500ms. Therefore, islanding must be done fast for it to

be affective. The various intentional islanding methods presented previously are slow and are not suitable for

real time application to large scale interconnected power systems. The time requirements of the various

schemes were compared with real implementation results indicating that the reported time requirements for both

the spectral and the weighted kernel k-means approach follow the same time requirement as expected as can

be seen from the results having a similar slope. Even more important is the fact that the weighted kernel k-

means implementation shows the best performance.
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Table 1: A comparison of computational requirements of spectral vs. Kernel k-means bisectioning of three sample power system s studied

Computational Complexity IEEE 118 bus IEEE 300 bus 2746 bus Polish

Number of Nodes n 118 300 2746

Number of Branches b 186 417 3514

Spectral Computational 1643032 27000000 20706256936

Requirements

Spectral Computational 578.77 2008.29 38453.33

Requirements for

sparse applications

Kernel K-means 13924 90000 7540516

Computational

Requirements for dense

graphs per iteration

Kernel K-means 21984 125100 9649444

Computational

Requirements for sparse

graphs per iteration

Peiravi and Ildarabadi 0.312 12.639 234.563

 (2009) Spectral

Peiravi and Ildarabadi 0.083 0.654 2.587

(2009) Weighted Kernel 

k-means

Fig. 13: A comparison of expected computational time requirements and implemented time requirements for

spectral and multilevel kernel k-means bisectioning of power systems
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