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Some Aspects of Discrete Hazard Rate Function
in Telescopic Families
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Abstract: In this paper some reliability concepts in the telescopic family of distributions
are compared. The telescopic family is named after the telescopic series in mathematics and
represents an interesting class of discrete life time distributions. The telescopic family is
introduced and also some conditions being equivalent to the IFR property are presented.
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1 Introduction

There are many situations where a continuous time is inappropriate for describing the
lifetime of devices and other systems. For example, the life time of many devices in
industry such as switches and mechanical tools, depend essentially on the number of
times that they are turned on and off or the number of shocks they receive. In such cases,
the time to failure is often more appropriately represented by the number of times they
are used before they fail, which is a discrete random variable. Salvia and Bollinger (1982)
have discussed the hazard functions of discrete distributions. In a large number of papers
such as Barlow et al. (1963), Barlow and Proschan (1981), Bracquemond and Gaudoin
(2003) and Lai and Xie (2006) the properties of discrete distributions are derived and
characterization results are given.

Particular interest is given to the geometric distribution as an often applied discrete life
distribution that corresponding to its continuous counterpart, the exponential distribu-
tion, has a constant failure rate. The telescopict family of discrete probability distributions
contains the geometric distribution as well as the discrete Weibull one and is therefore of
special significance for the discrete analysis of reliability.

In this paper, we show that many continuous distribution have a discrete analog that gen-
erally inherits many properties from their continuous relatives. The discrete distributions
are of interest as any continuous distribution can be looked upon as an approximation of
the discrete reality.

In mathematics, a telescopic series refers to a series whose sum can be found can be determined as
almost every term cancels either the preceding or the succeeding one.
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2 The Family of Telescopic Distributions

In this section, the telescopic family of discrete distributions is introduced following Rezaei
Roknabadi (2000, 2006).

Definition:
A discrete non-negative random variable X has a telescopic distribution and is denoted
by X ~ T(q, kg), if its probability mass function is of the form:

Fxliaren (@) = @@ — gD for 2 = 0,1,2, ... (1)

where 0 < ¢ < 1 and ky(z) is a strictly increasing function of x with ky(0) = 0 and
kg(x) — 00 as © — 0.

The sum Y fx|(q.ke)}(x) of the telescopic series equals one, implying that fx|{qr)3(x)
=0

is in fact a probability mass function. The geometric and the discrete Weibull families
of distributions belong to this class. It is interesting to note that each member of the
telescopic family of distributions that we consider has a continuous analog with similar
properties.

Let Y be a non-negative continuous random variable with distribution function:

Gy |{(aken(y) =1 —e W for y >0 @)

where a > 0 and 6 is the value of a parameter vector (which may contains «) and kg(y)
is as in (1). The density function of Y is:

9y {ake}(y) = ak)(y)e ™ W) for y >0 3)
where
, d
k&(y) = d_yk9<y) (4)

The class of distributions (2) denoted by EE(«, k) and called extended exponential family
contains many well known continuous life time distributions such as exponential, Rayleigh,
Weibull, Linear-exponential, Gomperts, Rue, Brittle-Fracture and Wear-out.

The discrete version of these continuous distributions are members of the telescopic family
of distributions defined by a probability mass function of the form (1) as shown in the
following Theorem 1.

Theorem 1:
Let Y be a continuous random variable distributed as (2), and let X = [Y] where [d]
means integer part of a, then X ~ T'(q, ky).
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Proof:
We have
x+1

frla) = Pxlfe}) = [ dGviasn®) = Gx(o + 1) = Gx(a)
_ qlce(x) _ qke(erl) — le{(q,kg)}(x) for r = 0,1,2,... (5)

with ¢ = e™. O

3 Reliability Concepts for the Telescopic Family

In this section, the similarities and differences of the reliability properties of the tele-
scopic distributions and their continuous analogs are listed. However, at first the general
properties of the telescopic family of distributions are given:

e Reliability function:

Ry {(ako)} () = Pxiiiarey({yly > 2}) = ¢*@  forz=0,1,2,... (6)

e Hazard rate function:

hxl{(ako)} (T) = Px, (ke ({2}) = 1 = @R @ for 2 = 0,1,2, .. (7)
where X, denotes the life time X on condition that there is no failure before life
time .

e Reversed hazard rate function:

o) —ko (+1)
rhxiter () = Poxitary (o) = T— . fore =012, (8)

where , X denotes the life time X on condition that it does not exceed the life time
x.

The corresponding reliability functions for the random variable Y are obtained straight-
forward:

e Reliability function:

Ry (take)(¥) = 1 — Gyjtary (y) = e W for y >0 (9)
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e Hazard rate function:

9y |{a, kg}(y)
1 — Gyiake(y)

Ry \{ake} (Y) = = aky(y) fory >0 (10)

o Reversed hazard rate function:

Iy lfakot ()  aky(y)e ke®)
ThYHa ke}( ) GY\{a k@}(y) - 1 — ko) for Yy > 0 (11)

Let kj(z) = ko(x+1)—ko(z), then X and Y are IFR, CFR or DFR (increasing, constant or
decreasing failure rate) if kj(¢) and kj(¢) are increasing, constant or decreasing functions
of ¢ respectively.

From the above functions the “mean time to failure” (MTTF) of the random variables X
and Y are immediately obtained:

EX|{(g, ko)}] = > gtV (12)
ElY|{a, k)] = / e=0ko(w) gy (13)

0

where g = e~ .

The mean residual life (MRL) functions of the random variables X and Y are as follows:

MRLxgrn () = E[X:|{(g,ke)} Zq’“e (1) ho( (14)

MRLy ok (y) = / otk =ho W gt (15)

Y

The reversed mean residual life (RMR) function of Y is following Nanda et. al. (2003)
defined as follows:

(1 — ekt

C—

RMRyjtaky(y) = Ely— Y{a, ko}] = (16)

1— e_ake (v)

Goliforushani and Asadi (2008) took up the concept of the reversed mean residual life and
applied it to a discrete random variable X on the condition that its life time is shorter
than z. We define the reversed mean residual life of a telescopic random variable X on
the condition that its life time does not exceed x. Thus, we obtain:
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RM Rx|((qxo () = Elr — .X|{(g.ko)}] = Z— (17)

Finally, Roy and Gupta (1999) defined the second failure rate (SFR) function for discrete

life time random variables as rx(z) = In %. Based on this proposal, we define the
second failure rate function for X as follows:

TX{(ako)}(2) = (’fe(fv 1) - ke(!t)) Ing. (18)
Evidently, the second failure rate function rxg(qx,)3(z) of X|{(¢,ks)} has similar mono-
tonicity property as hxi|{(qr,)} (%), since Ing and kj(x — 1) = —[kg(z — 1) — k()] are
negative.

4 Increasing Failure Rate (IFR) Class in the Telescopic Family

Barlow et al. (1963) presented four equivalent conditions for a discrete random variable
having an IFR distribution. The equivalent relations for the IFR property for the tele-
scopic family are derived here based on the following theorem.

Theorem 2:
A telescopic distribution belongs to the IFR-class, if one of the following conditions hold:

(i) kj(x) = ko(z + 1) — ko(z) is an increasing function of x.

ko (i+a)

(ii) For every z the sequence {q — qk9(x)}izo Lo 18 decreasing.

(iii) For all jy, jo, k1, k2 € {0,1,2,...}, such that j; < jo and ky < ka,
ko(j1 — k1) + ko(j2 — k2) < ko(j2 — k1) + ko(J1 — k2)

which is equivalent to the condition of a Polya sequence of order 2 for the reliability
function.

(iv) The sequence {kg(x)}.>0 is convex. In other words for all xy,z9,23 € {0,1,2,...}
such that x; < x9 < x3, we have the following inequalities:

ko(wa) — k(1) _ Fo(rs) — ko(71) < ko(xs) — ko(x2)

To — X1 - T3 — T T3 — T2

Remark 1: Since the hazard rate function depends only on ky(z), we can derive the
conditions of IFR, DFR or CFR by solely considering the function ky(x) as can be seen
from Theorem 1. The conditions for the DFR property can be obtained analogously.
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In the following theorem, a further condition that is equivalent to the IFR property for
telescopic distributions is derived:

Theorem 3:
Let

TQ(ZL‘) = l

> <2k9(a: +1) — k(@) — ko(z + 2)) (19)

then the following statements about hx(z) for telescopic distributions holds:

(i) X is IFR (DFR) iff Ty(z) > (<)0, for all z > 0.
(ii) X is CFRiff Ty(xz) =0, for all z > 0.

Proof:
Tp(z) > 0 implies that,
So(w) = MEFD — gh@rtholer?) 20)

X x 2 x X X x X
= (gh® — gholatD)? _ (<qk9( ) gho@t)y _ (gRo(@+D) _ ghol +2)))qke( )

> 0.

In accordance with the forms of hx(x), Rx(x) and fx(x) being telescopic distributions,
Sp(x) > 0 implies:

flz+1)
hx(x) >1— ——-—= 21
x> 1- 108 (21)
On the other hand, we have:
fle+1) (1 —hx(z)) hx(z+1) (22)
(=) hx ()
Thus, in view of (21), we have for all z > 0:
Hence, the random variable X has an IFR distribution. When Ty(z) < 0, there is a similar
condition for the DFR property, while Ty(z) = 0 is equivalent to 1 — hx(z) = £ Sf(;“)l) for
all x > 0 implying that hx(x) constant. O

Remark 2: In Theorem 3, Ty(z) = 0, leads to geometric distribution. Since, kg(x) =
xky(1) for z = 0,1,2,... on using induction. Supposing ky(1) = a, the probability mass
function of telescopic distribution is :

fla) = ghFo@ — gholtl) — o (1 g,

which is the geometric distribution with parameter 1 — ¢®.
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5 Summary

In this paper, some reliability properties for the distributions of the discrete telescopic
family are derived and compared with those of the continuous analog. Furthermore,
equivalent conditions for the IFR property in case of telescopic distributions are obtained.
So far, discrete life time distributions play only a marginal role in reliability analysis.
However, real world life time is either observed in discrete time points or it is measured
by discrete quantities. Therefore, the focus of reliability analysis should turn to the
more realistic discrete life time distributions with finite support that so far are hardly
investigated in academic reliability theory, despite the fact that in real world everything
is finite. Actually, many properties, for example, the loss of memory property as exhibited
by the exponential and geometric distribution which are most frequently assumed in the
life time analysis, have no analogous counterpart in the case of a finite support.
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