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a b s t r a c t

Choosing a desired policy for divestiture of dominant firms’ generation assets has been a challenging

task and open question for regulatory authority. To deal with this problem, in this paper, an analytical

method and agent-based computational economics (ACE) approach are used for ex-ante analysis of

divestiture policy in reducing market power. The analytical method is applied to solve a designed

concentration boundary problem, even for situations where the cost data of generators are unknown.

The concentration boundary problem is the problem of minimizing or maximizing market

concentration subject to operation constraints of the electricity market. It is proved here that the

market concentration corresponding to operation condition is certainly viable in an interval calculated

by the analytical method. For situations where the cost function of generators is available, the ACE is

used to model the electricity market. In ACE, each power producer’s profit-maximization problem is

solved by the computational approach of Q-learning. The power producer using the Q-learning method

learns from past experiences to implicitly identify the market power, and find desired response in

competing with the rivals. Both methods are applied in a multi-area power system and effects of

different divestiture policies on market behavior are analyzed.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Since liberalization of electricity markets around the world,
the market power has been still a major problem that demotes
competitiveness and reduces market efficiency. There is evidence
in the European and US electricity markets that the market power
is not the only reason but one of the main reasons for increasing
electricity prices (Matthes et al., 2005; Müsgens, 2004; Newbery,
2002; Borenstein et al., 2002). Indeed, peculiarities of electricity
market related to nature of electricity goods and market structure
have made this economic system more vulnerable to the market
power abuse.

Studies of restructured markets in England and Wales,
Germany, Italy, Belgium, Spain, and Texas and Colorado have
shown that the highly concentrated structure of these markets
has been a key factor in experiencing uncompetitive behaviors
(Domanico, 2007; Bower et al., 2001; London Economics, 2004;
Wolak, 2005; Zarnikau, 2005; Sweester, 1999). If a power supplier
owns significant generation assets and market share, he has more
incentive to raise price by reducing output of generating units or
increasing bidding prices. This case can be seen especially in
ll rights reserved.

.
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newly established competitive markets where monopolistic
markets are opened up for the competition. In this condition,
competition policies categorized in rule-based and structural
remedies are generally used to preclude the market power and to
increase the degree of competitiveness. Divestiture is a kind of
structural remedy that changes the market structure by splitting
up dominant owner’s generation assets to increase the number of
competitors and to enhance intensity of the competition. England
and Wales, Germany, Italy, California and Australia are samples of
the electricity markets where this structural remedy has been
employed. Both empirical research and economic theory con-
firmed that this competition policy can intensify the competi-
tiveness, reduce prices and increase social welfare (Hirschhausen
et al., 2007; Green, 1996; Day and Bunn, 2001; Borenstein and
Bushnell, 1999; Bushnell, 2003).

Choosing a desirable divestiture policy has been always a
complex problem for regulatory authorities and policy makers. In
order to suggest a practical solution to this problem, behavior of
the electricity market is simulated to analyze effects of different
divestiture policies before implementation. As an example, the
approach of linear supply function (SF) with symmetric owner-
ship structure is applied to analyze the effects of first order of
capacity divestiture policy on the behavior of England and Wales
market, which was proposed by the UK office of electricity
regulation (OFFER) in 1994 (Green, 1996). A computational
approach is developed (Day and Bunn, 2001) to study the
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efficiency of second order of capacity divestiture policy (OFFER in
1999). The authors conclude that this competition policy can
increase the intensity of competition, but the regulatory task for
monitoring and controlling uncompetitive behavior in short run
plays a vital role in reducing the market power abuse. The
behavior of California electricity market is simulated using
Cournot model for scenarios of partial and full divestiture of
Southern California Edison and San Diego gas and electric
companies (Borenstein and Bushnell, 1999). Despite positive
impacts of the divestiture policy on reduction of market power,
the simulation results have indicated the price responsiveness of
demand may have more effective influence in controlling the
market price in short term. The Cournot model is also applied
(Bushnell, 2003) to examine the potential impacts of further
divestiture in California. Applying the divestiture policy, cost of
the market power is reduced by about 40%.

Market concentration analysis and market simulation are two
important methods that have been used for ex-ante analysis of
structural changes in the electricity industry. The former is
usually applied as first step of analysis, especially in situations
where the cost data of generators are unknown (Borenstein and
Bushnell, 1999). In this way, the concentration measures indicate
the ex-ante global potential of the market power using informa-
tion related to the generation capacity of producers. The
consultancy firm ‘‘London Economics’’ evaluates the structure of
six European electricity markets based on available installed
capacity (London Economics, 2007). The average value of
Herfindahl–Hirschman Index (HHI) indicates that England and
Germany are the least concentrated markets among the studied
cases. The market share of firms and the values of HHI in England
and Wales were calculated on the basis of operational capacity of
their plants portfolio before 1996 and after two divestiture
policies applied in 1996 and 1999 (Bunn and Martoccia, 2005).

The ex-ante analysis using this method avoids operation
conditions such as load/generation capacity distribution in the
network, transmission limitation and market participants’ beha-
vior. Even though almost all of the concentration measures are
static and cannot take into account dynamic property related to
the operation conditions, as a first screen of the market power,
they can provide insight about the intensity of competitiveness.
Now an important question arises, which is in situations where
the cost data of generators are unknown, how the impacts of the
operation conditions on the market concentration can be taken
into account?

When the costs of generators and network information are
known, the market participants’ strategic behavior can be
modeled to simulate the electricity market. Game theory such
as Cournot and supply function equilibrium is a famous approach
that has been used by researchers to model the strategic behavior.
In spite of advantages of the game theory in the market
simulation, this method cannot capture some human peculiarities
such as learning and intelligence. Nowadays developed intelligent
methods have made possible modeling of more sophisticated
features in human decision making. Agent-based computational
economics (ACE) is indeed created by application of these
methodologies in modeling economic process as a dynamic
complex system. The existing literature indicates that the ACE is
a powerful tool for the ex-ante analysis of market power, and
consequently for policy makers in evaluating structural changes
and market policies. The suppliers and consumers’ behaviors
under the New Electricity Trading Arrangement in England and
Wales electricity market were studied based on reinforcement
learning (RL) method (Bunn and Oliveira, 2001). They tried to
model the interactions between the bilateral market and
balancing mechanism. The effects of agent’s behavior and market
structure on the market power are analyzed by finding the
equilibrium point using the Roth–Erev algorithm (Nicolaisen
et al., 2001). A simulation framework is designed using agent-
based modeling of electricity systems to test the Wholesale Power
Market Platform proposed by the US Federal Energy Regulatory
Commission (Sun and Tesfatsion, 2007). The supplier agent’s
bidding problem is modeled as a self-play problem using the
Q-Learning (QL) algorithm, and its performance is compared with
that of proposed model-based approach (Rahimiyan and Rajabi
Mashhadi, 2008). Also, the effect of the power suppliers’ market
power on their bidding strategies is evaluated under pay as bid
auction in the Iran electricity market. Using computer-based
agents, the behavior of California electricity market under
Automatic Mitigation Procedure proposed by the independent
system operator (ISO) as market power limitation rule has been
studied (Entriken and Wan, 2005). An agent-based simulator is
designed using the QL algorithm to evaluate the market behavior
in real condition in comparison with the competitive benchmark
under three different congestion management schemes, i.e. (1)
locational marginal pricing (LMP), (2) market splitting and (3)
flow-based market coupling (Krause and Andersson, 2006). An RL-
based approach is utilized (Nanduri and Das, 2007) to analyze the
market power in the day-ahead energy markets operated under
uniform price, discriminatory and second-price uniform auctions.

The aim of this research work is to evaluate the effects of
divestiture policy of dominant firms’ generation assets on
increase of market competitiveness. An analytical method,
as a first approach, is introduced to determine variation of the
market concentration with respect to different producers’ bidding
strategies. To accomplish this, a concentration boundary (CB)
problem is designed. The objective function of this problem is to
minimize or maximize the market concentration in such a way
that network constraints are satisfied. Using this method, an
interval for the utilized concentration measure is obtained. Thus,
the policy maker can evaluate the effect of divestiture policy on
the range of the market concentration, and select the desired
strategy to foster competition. This approach is especially useful
for the policy maker in situations where the cost function of
generators is unknown.

The ACE as a second approach is used to provide a computa-
tional framework for simulating the behavior of the electricity
market under operation condition. In this computational frame-
work, the market participants’ learning behavior is modeled using
the QL method. The market participant using the QL algorithm
learns how to respond in competing with rivals to maximize
the long-run profit. This makes it possible to study the effect of
divestiture policy on market competitiveness considering the
power suppliers’ strategic behavior in exercising the market
power. Both of the mentioned methods are applied for evaluating
different divestiture policies in a multi-area power system and
the obtained results are compared.

The structure of paper is organized as follows. In Section 2, the
proposed analytical method is developed. In Section 3, the agent-
based computational modeling of the electricity market is
designed. In Section 4, the effects of the divestiture policy of
generation assets on the market behavior are studied. In Section 5,
the obtained results are presented.
2. Analytical method

2.1. CB problem

The idea is to determine the range of variation of concentration
measure. As mentioned in the introduction, the degree of market
concentration is a symptom of system-wide market power. The
HHI is also the most popular concentration measure. For a specific
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market structure, the value of HHI corresponding to the operation
condition strongly depends on the power suppliers’ bidding
strategies. In other words, the electricity market may experience
different values of HHI for different scenarios of the power
suppliers’ bidding strategies. In principle when it is not possible to
model the market participants’ strategic behavior, determination
of minimum and maximum values of HHI can be a good solution
for the ex-ante analysis of market competitiveness. To accomplish
this, the CB problem is designed to determine the boundary
values of HHI for a specific market structure.

The range of HHI can be interpreted as an indicator of market
competitiveness. The HHI ranges from zero value in perfect
competition to 10,000 in monopolistic condition. Based on two
critical values of HHI, US Department of Justice and the Federal
Trade Commission (US DOJ/FTC, 1997) categorized the markets
into three groups; unconcentrated (HHHo1000), moderately
concentrated (1000oHHIo1800) and highly concentrated
(1800oHHI). According to this regulation and knowing the
determined interval of HHI, the policy maker can get useful
information concerning the district of competition in which the
market lies.
2.2. Mathematical formulation

In order to determine the boundary values of HHI, at first, we
should understand how dispatched power of generating units is
computed in the operation condition. This is done by solving the
market clearing problem formulated below. In the market
clearing problem, the objective function is to maximize social
welfare subject to load flow equality constraints and operational
limits.

max : :5GT Csf G�GT Bsf

s:t:
ð1Þ

eTðG�DÞ ¼ 0

0rGrGmax

�Pl
maxrPTDFðG�DÞrPl

max

ð2Þ

where Csf and Bsf are diagonal matrixes of the slope and the vector
of intercept of the offered supply functions, respectively, e is the
vector with all ones, D and G are, respectively, vectors of active
load and dispatched power and Gmax is the vector of generation
capacity limit; Pl

max and PTDF are vectors of maximum line flow
limits and matrix of power transfer distribution factors, respec-
tively. The PTDF is calculated based on the sensitivity analysis in
DC power flow model (Wood and Wollenberg, 1996).

Corresponding to each scenario of power suppliers’ bidding
strategies, the vector G as solution of the above optimization
problem is obtained. Thus, related to the bidding strategies, the
vector G and the power suppliers’ market shares can vary in a
feasible set of the market clearing problem. Clearly, the HHI can
also experience different values bounded by the feasible set of the
market clearing problem. This implies the boundary values of HHI
can be computed by solving the CB problem in which the function
of HHI is minimized or maximized subject to the constraints given
in the market clearing problem. The mathematical formulation of
the CB problem for computing the minimum and maximum
values of HHI is given as

min
G

kuðTGÞTðTGÞ where k¼
10;000
PNb

i ¼ 1 Di

� �2
s:t: ð3Þ
eTðG�DÞ ¼ 0

0rGrGmax

�Pl
maxrPTDFðG�DÞrPl

max

ð4Þ

where u can be set as 1 and �1 for computation of minimum and
maximum values of HHI, respectively, T is the transformation
matrix with dimension NSNG, NS and NG are the number of power
suppliers and generating units, respectively, Di is the active load
in bus i and Nb the number of buses.

The elements of matrix T are 0 or 1. The elements in row i of
matrix T whose values equal 1 represent the generating units that
the power supplier i owns. Thus, the vector G multiplied by
matrix T denotes how much power is generated by each power
supplier’s generating units. Clearly, if each supplier owns only one
generating unit, the matrix T is an identity matrix and T
multiplied by G equals the vector G. It should be noted that the
divestiture policy changes the structure of matrix T. Thus,
evaluation of divestiture policy needs the arrangement of
elements of this matrix.

The feasible set of the market clearing problem is exactly the
same as the feasible set of the CB problem. As a result, it is trivial
that the range of HHI determined by the proposed analytical
method certainly encompasses the value of HHI corresponding to
the operation condition.

2.3. Solving the CB problem

In order to solve the CB problem, the Lagrangian function can
be written as follows:

LðG;l;mG;min;mG;max;ml;min;ml;maxÞ

¼ kuðTGÞTðTGÞ�leTðG�DÞþmG;min
TG�mG;max

TðG�GmaxÞ

þml;min
TðPl

max
þPTDFðG�DÞÞ�ml;max

TðPTDFðG�DÞ�Pl
max
Þ ð5Þ

where lAR, mG,minARNG , mG,maxARNG , ml,minARNl and ml,maxARNl

are vectors of Lagrange multipliers corresponding to equality
constraint, and lower and upper bounds on generation and
transmission flow, respectively.

Computing the gradient of the Lagrangian function with
respect to the variables G, l, mG,min, mG,max, ml,min and ml,max, the
first-order necessary optimality conditions known as Karush–
Kuhn–Tucker (KKT) for the CB problem are obtained as follows:

rGLðG;l;mG;min;mG;max;ml;min;ml;maxÞ ¼ 0 ð6Þ

eTðG�DÞ ¼ 0 ð7Þ

�Gr0; 0rmG;min; mi;G;minGi ¼ 0 8i ð8Þ

G�Gmaxr0; 0rmG;max; mi;G;maxðGi�Gi;maxÞ ¼ 0 8i ð9Þ

�Pl
max
�PTDFðG�DÞr0; 0rml;min;

mi;l;minðPi;l
max
þPTDFiðG�DÞÞ ¼ 0 8i ð10Þ

PTDFðG�DÞ�Pl
maxr0; 0rml;max;

mi;l;maxðPTDFiðG�DÞ�Pi;l
max
Þ ¼ 0 8i ð11Þ

where PTDFi is the ith row of matrix PTDF.
As seen from Eqs. (3) and (4), vector G is the only variable

of the CB problem and all constraints are linearly dependent on
this. Thus, the feasible set of this optimization problem is a
convex set. The Hessian matrix of the objective function equals
the symmetric matrix 2kuTTT. It is demonstrated in linear algebra
theory that a symmetric matrix in the form TTT is always positive
semi-definite (Chen, 1999). If the value of u equals 1, the Hessian
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Fig. 1. Supply function and marginal cost of PSA’s generating unit.
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matrix 2kTTT, with k40, is also positive semi-definite, and
therefore the objective function of the CB problem is convex.
If u equals �1, obviously the Hessian matrix is negative semi-
definite on the feasible set, and consequently the objective
function is non-convex.

According to the basic theorem in convex optimization if the
objective function and the feasible set in an optimization problem
are convex, then any points that satisfy the KKT conditions are
also the global optimal solution (Chong and Zak, 2001). Therefore,
a vector Gn that meets the KKT conditions of the CB problem for
u=1 is the global optimal solution for computation of the
minimum value of HHI. The minimum value of HHI can be found
easily using quadratic programming method. In contrast, for
u=�1, determination of the maximum value of HHI requires
solving a non-convex objective function. In this condition,
stochastic optimization methods like genetic algorithm are well-
known techniques to handle non-convex problems.
3. Agent-based computational approach

3.1. Structure of ACE

In situations where the cost data of generating units and
network information are available, the ACE as a powerful tool in
modeling the behavior of the electricity market can be used. The
ACE is a computational study of economic processes modeled as
dynamic systems comprised of interacting agents (Tesfatsion and
Judd, 2006). In the ACE, in fact a bottom–up approach is employed
to model the economic systems in such a way that dynamic
interdependency of micro (agent’s behavior) and macro (overall
behavior of market) structures is established (Tesfatsion, 2002).

Generally, the framework of the electricity market is created
through architecture of energy market, operating rules, market
structure and market agents (Stoft, 2002). In this study, the ACE
framework for modeling the competitive energy market is also
configured by the mentioned parts as follows:
(1)
 Architecture of energy market—hour-ahead energy market in
the pool-based wholesale electricity market is considered.
(2)
 Operating rules—in the market clearing mechanism, the
objective function is to maximize social welfare subject to
the load flow equality constraints and operational limits. The
energy market is settled by executing the congestion manage-
ment scheme based on the LMP method (Gan and Bourcier,
2002).
(3)
 Market structure—the demand is assumed to be inelastic. The
dispatched power flows through transmission lines with
limited capacity based on DC power flow model. The owner-
ship structure of generation assets is also considered.
(4)
 Market agents—the regulatory authority monitors the elec-
tricity market and keeps it under surveillance. The ISO
operates the electricity market to be healthy and secure. The
power distribution agents (PDAs) demand the required energy
to supply customers. The power supplier agents (PSAs) own
generating units. Each PSA is an intelligent agent who chooses
the best strategy in competition with rivals by learning from
past experiences. In the introduced ACE structure, each PSA’s
learning behavior is modeled using QL algorithm applied by
the authors (Rahimiyan and Rajabi Mashhadi, 2008).
In an artificial environment, the market is operated as follows.
In the hour-ahead electricity market, PSAs compete among
themselves by offering the supply function for each own
generating unit associated with the lower and upper bounds of
production as feasible production interval for an hour. The PSAs
can utilize the market power through financial and physical
withholding. Obviously, each agent may choose strategic bidding
by deviating the slope (csf) or intercept (bsf) of supply function
(SF) from its corresponding coefficients of marginal cost (financial
withholding) and the feasible production interval from the true
interval (physical withholding). In this paper, by neglecting
physical withholding, it is assumed that each agent bids zero
value and the maximum capacity of generating unit (gmax) as
lower and upper limits of generation for each hour, respectively.
The schematic diagram of strategic bidding is illustrated in Fig. 1.

The ISO receives the bids and forecasted demands from PSAs
and PDAs, respectively. Then, the ISO clears the market by solving
the market clearing problem as given in the previous section. At
the end of each trading hour, the PSAs are informed of the
dispatched power of own generating units and the LMP.
3.2. Computational modeling of PSA’s behavior

The bidding problem is a major issue from each PSA’s
viewpoint. Each PSA attempts to select a suitable bidding strategy
for own generating units in such a way that the accumulated
profit is maximized in the long run. In this situation, the ability for
learning is one of the important human’s attributes, and should be
noticed in modeling PSA’s behavior. Review of related researches
shows that the QL is a useful computational approach to solve
PSA’s profit maximization problem considering the aforemen-
tioned feature.

The QL is a model-free type of RL and was introduced by
Watkins (1989). Generally, the RL problem is the learning
problem for an agent interacting with an environment to achieve
the goals. In the RL, the environment is generally identified
through a set of states. An agent interacts with the environment
selecting an action among admissible action set. In the QL
algorithm for each admissible state–action pair (s,a), the value
function is defined as a Q-value. The Q(s,a) is indeed the long term
reward expected to be acquired over the future starting from the
state–action pair (s,a). In each state of environment, the agent
evaluates how good the taken action is considering the immediate
reward and maximum estimated Q-value for new states (Sutton
and Barto, 1998).

In the ACE structure, each agent using the QL method tries to
learn from experiences obtained by participating in the electricity
market repeatedly. The accumulated experiences are utilized to
identify implicitly the agent’s local market power, and as a result
to find better response in competing with the rivals. The QL-based
computational framework can not only take actual cost function
and asymmetric ownership structure but also model human’s
learning process in making decision. In this artificial environment,
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each agent can make decision independently and intelligently
based on the available incomplete information.

In the ACE structure, in order to find each PSA’s bidding
strategy for each hour, the computational algorithm of the QL is
presented as follows:
(1)
 State identification—the state of environment for the current
step is the publicly available LMP of previous step obtained by
solving the market clearing problem.
(2)
 Action selection—after obtaining the current state (st), the
PSA uses its Q-value lookup table, which saves the Q-values
(Q(s,a)) for each state–action pair. The action selection
through the QL algorithm is done by choosing the action
with maximum Q-value in the current state. To trade off
between exploitation and exploration, the PSA can utilize
from the e-greedy strategy. It means that the PSA selects the
action that has the maximum Q-value with high probability
(1�e) and an arbitrary action from all admissible actions with
small probability e, independent of the Q-values.
(3)
 Q-value update—at the end of each step and after being
notified of the new LMP and dispatched power of own
generating units, the PSA calculates its total benefit as a
reward rt +1 and then updates its Q-value according to
Qtþ1ðst ; atÞ ¼ Qtðst ; atÞþa DQ ðst ; atÞ ð12Þ

DQ ðst ; atÞ ¼ rtþ1þg max
a0

Q ðstþ1; a
0Þ�Qtðst ; atÞ ð13Þ

where a, the agent’s learning rate, can be interpreted as the extent
by which estimated Q-values are updated by new data; g is the
discounted factor, which measures how much the expected future
reward is important.
3500

4000

4500
HHImax

HHIequ

HHImin
4. Evaluation of divestiture policy

In this section, both methods are applied to evaluate effects of
several divestiture policies on a multi-area power system
illustrated in Fig. 2. In the studied electricity market, four PSAs
compete with each other. The data of the ownership structure are
2

1

3

4

2000 MW 700 MW

500 MW 500 MW

Fig. 2. Multi-area power system.

Fig. 3. Structure of the matrix T
given in Table 1 (see the Appendix). The vector [2300,4000,3000,
1800] MW shows the value of load for the areas.

We analyze the competitiveness of the electricity market
under initial structure (first option) in which no divestiture is
executed plus two divestiture policies. In the second option, PSA 2
sells generating units 5 and 6 to new PSA 5. In the third option, in
addition to the previous structural change, generating unit 12 is
also separated from PSA 4 by new PSA 6, and so there are six PSAs.
The three mentioned divestiture options are assessed using the
proposed analytical method and the ACE approach.
4.1. Analysis of concentration boundaries

In this subsection, the analytical method is employed to
evaluate effects of the mentioned policies on concentration
boundaries. The analytical method determines the maximum
and minimum values of HHI for each option. Consequently, we
can understand how much a divestiture policy may move down
the boundary values of HHI before implementation.

In the analytical method, the effect of each divestiture policy
on the boundary values of HHI is taken into account through the
change of structure of matrix T in the CB problem. The structure of
matrix T is presented in Fig. 3 for three divestiture options. The
values of HHImax and HHImin for three options are shown in Fig. 4.
According to this figure, the determined interval for HHI lies
above the threshold value 1800, and hence the electricity market
based on DOJ/FTC’s regulation is highly concentrated under three
divestiture options. It should be noticed that the second and third
options have moved down the values of HHImax and HHImin in
such a way that the value of HHImin has approached the threshold
value 1800, i.e. upper boundary of moderately concentrated
condition.
for three divestiture options.

1 2 3
1000

1500

2000

2500

3000

Divestiture options

H
H

I

Fig. 4. Values of HHImin, HHImax and HHIequ for three divestiture options.
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In accordance with the given ownership structure of the first
option, PSAs 2 and 4 own 46.5% and 15.7% of generation capacity,
respectively. Thus, it is expectable that the second option has
significant effect on the reduction of values of HHImax and HHImin.
However application of the third divestiture cannot cause any
noticeable decrease in the boundary values of the market
concentration more than the second option.
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Fig. 6. Value of the LMP of area 4 in the first option.
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4.2. Behavioral analysis

In this subsection, the ACE as complex adaptive modeling of
the electricity market is used to analyze the market behavior
under three divestiture policies. The behavior of electricity market
is simulated for 1500 iterations. The value of HHI corresponding
to the market equilibrium (HHIequ) can be obtained. As seen from
Fig. 4, HHIequ is limited by the boundary values of HHI for all
options. This confirms the usefulness of the proposed analytical
method for ex-ante analysis of the market power.

The average values of LMP for three divestiture options are
presented in Fig. 5. It is shown that the second option has reduced
considerably the average value of LMP in areas 1 and 2, while, the
average value of LMP in area 4 has not changed by this competi-
tion policy. In order to solve this issue, it would be beneficial to
divest PSA 4’s generation assets. As seen from Fig. 5, application of
third option has not only reduced the LMP in areas 1–3, but also
diminished the LMP in area 4. This results from the concept of
local market power, which may be used to divide the electricity
market into some geographic markets. To clarify this event, the
value of LMP in area 4 is presented during market simulation in
Figs. 6–8. Before any divestiture policy performed, PSA 4 abuses
the local market power created by transfer limitation of the lines
connecting area 4 to the network. In this situation, PSA 4 tries to
create congestion in the aforementioned lines, and raises the LMP
to the ceiling price, i.e. 100 $/MWh (see Fig. 6). As obvious in
Fig. 7, the divestiture of PSA 2’s generation assets in the second
option cannot reduce PSA 4’s market power and the LMP in area 4,
although application of third option has increased the level of
competition in area 4 and reduced the value of LMP according to
Fig. 8.

Quantitative analysis of power flow through the lines con-
necting area 4 to the network can give useful information about
1 2 3 4
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Fig. 5. Average value of the LMP corresponding to the market equilibrium for

three divestiture options.

Fig. 7. Value of the LMP of area 4 in the second option.
how the divestiture options have influenced on the exercise of
market power in this area. According to the data obtained during
simulation, the empirical complementary cumulative distribution
function (CCDF) of power flow of the lines is presented in Figs. 9
and 10 for three divestiture options. The empirical CCDF shows
how often the value of power flow of a line is above a particular
level. The probability of congestion of each line is defined as the
probability that the transmitted power equals its limitation, and is
easily obtained from the empirical CCDF. As seen from Figs. 9 and
10, in the first option, the probabilities of congestion for the lines
connecting area 2 to 4 and area 3 to 4 are 0.45 and 0.85,
respectively. This means that the transmission congestion has
fragmented the studied market into two geographic markets in
most iterations such that PSA 4 has exercised the local market
power to increase the LMP in area 4. Both figures indicate that the
usage of second divestiture policy has moved the empirical CCDF
upward in comparison with the initial state. Even in the second
option, the probability of congestion of the lines connecting
area 2 to 4 has increased to 0.9. In other words, increase of the
competition level in area 2 enhances the probability of loadability
and congestion of the lines, and cannot reduce PSA 4’s local
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market power. This implies that the increase of competition level
in area 4 can be a useful strategy to relieve the transmission
congestion. Comparison of the empirical CCDF of power flow of
lines for three options clearly illustrates that their probability of
loadability and congestion has reduced in the third divestiture
option.

The simulation results in Fig. 4 clarify that the analytical
method cannot indicate the aforementioned advantage of third
option in comparison with the second option since the analytical
method evaluates the global market power and cannot take into
account effects of the local market power. Consequently, in order
to select an effective divestiture policy, both global and local
market power should be evaluated. Focusing on this notion, in
addition to a dominant firm with high market share, a firm with
medium market share and also high local market power may be a
desired alternative for divestiture.
5. Conclusions

Since the establishment of competitive energy markets,
choosing suitable competition policies has been a main problem
that policy makers have encountered. In this paper, an analytical
method is proposed for an ex-ante evaluation of divestiture policy
of power suppliers’ generation assets. The important advantage of
the proposed method is that it can be used even for situations
where data of cost function of generating units are not available.
Another strong point is that the value of HHI corresponding to
operation condition is certainly viable in the interval determined
by this method. However, since the method assesses the global
market power, effects of local market power may not be taken in
evaluating the effectiveness of some divestiture policies.

To cover this shortcoming, for situations where the cost data of
generating units are known, the agent-based computational
economics approach is used to model the power supplier’s
strategic behavior. The computational modeling of the electricity
market can reveal effects of exercising the local market power.
The simulation results show that the transmission constraints can
create geographic markets where it is possible for some firms
with even medium or small market share to raise prices. Thus, in
addition to large firms, firms with considerable local market
power can also be noticed to apply desired divestiture policy.
Appendix

See Table 1
Table 1
Data of generation units and ownership structure.

Area PSA Generating unit Capacity (MW) Cost functions

a b c

1 1 1 500 0 10 0.004

2 500 0 15 0.006

3 1000 0 50 0.008

2 2 4 2500 0 12 0.005

5 2000 0 15.5 0.006

6 2000 0 15.5 0.007

7 1500 0 21.5 0.008

3 3 8 1500 0 16 0.006

9 1500 0 14 0.005

10 1500 0 13 0.004

4 4 11 700 0 16 0.006

12 2000 0 31 0.009
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