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The Lock-in Phenomenon in VIV using
A Modified Wake Oscillator Model for
both High and Low Mass-Damping
Ratio

In the present paper the behavior of an elastically mounted
A. Farshidianfar” cylinder in low and high mass-damping ratio is investigated.
Associate Professor it r,. high mass-damping ratio, a classical wake oscillator model
is used. At the first, by neglecting all damping and nonlinear
terms of this model, the possibility of using a linear model for
determination of the lock-in range and the dominant mode is
investigated. Then, without neglecting any terms, the nonlinear
H. Zanganeh' B odel is analyzed and the results are compared with
Graduate student experimental results. Due to change of the behavior of the
system in low mass-damping ratio and disability of classic
model in modeling of this change, a modified wake oscillator
model is presented and the results of this model, in both low and
high mass-damping ratio, are compared with experimental

results.
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1 Introduction

Vortex-induced vibration occurs when shedding vortices (a Von Karman vortex street) exert
oscillatory forces on a cylinder in the direction perpendicular to both flow and structure. The
structure starts to oscillate due to these forces if it is not fixed. For fixed-cylinders, the vortex-
shedding frequency is related to non-dimensional Strouhal number. The Strouhal number is
defined as S;=f,D/U, where f, is the predominant frequency of vortex shedding, U is the
steady velocity of flow, and D is the diameter of the cylinder. The Strouhal number is found
to be nearly constant with a value of 0.2 for a large range of Reynoldes numbers. This range is
often called subcritical range of 300-2x10° [1]. For flow past cylinders that are free to vibrate,
the phenomenon of synchronization or lock-in is observed. For low flow speeds, the vortex-
shedding frequency f, will be the same as that of a fixed cylinder. This frequency is fixed by
Strouhal number. As the flow speed is increased, the shedding frequency approaches the
vibration frequency of the cylinder f,. In this regime of flow speeds, the vortex-shedding
frequency no longer follows the Strouhal relationship. Rather, the shedding frequency
becomes “lock-in” to the oscillation frequency of the cylinder (i.e., fo=f, ). If the vortex-
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shedding frequency is close to the natural frequency of the cylinder f,, as is often the case, the
large body motions are observed within the lock-in regime (the structure undergoes near-
resonance vibration).

Vortex-Induced Vibrations are well-known phenomenon for engineers. Several kinds of

structures subjected to wind or water currents may experience VIV such as tall buildings,
chimneys, riser tubes bringing oil from seabed to the surface, airplane flaps (flutter), power
transmission lines (galloping), stacks and long-span bridge. See Refs. [2-6] for studies
focusing on the VIV of these structures. The length and higher flexibility of some of these
structures further aggravate the problem. In offshore applications, VIV of slender structures
such as pipelines, risers, tendons, and spar platforms challenge engineering designers. In these
cases it has to be taken into account in their design as a potential cause of fatigue damage.
Many empirical measurements have been done in VIV. Feng [7] in his experiment that was
conducted in air showed that during lock-in regime, the frequency of vortex shedding and
oscillation frequency of structure become equal. But in later works in low mass-damping
ratio, Williamson and Khalak [8, 9] found new branch of response, they observed that during
lock-in, the ratio of two frequencies wouldn’t remain equal to unit and these frequencies
match with each other near other values like 1.4. Their studies showed that the behavior of
frequencies changes in different mass-damping ratios.
Different semi-empirical models have been used for describing VIV and lock-in phenomena
such as wake oscillator model [10, 11, 12, 13], Sdof model that use a single ordinary
differential equation to describe the behavior of structural oscillator [14, 15, 16], force-
decomposition model that the lift force is decomposed into a fluid inertia force related to
structure displacement and a fluid damping force related to structure velocity [17, 18], and
variational approach [19, 20].

The coupling of fluctuating lift force and vibrating structure can be modeled by the simple
concept of a wake oscillator. Such a model becomes really useful when computational limits
arise for flow-field numerical simulations, particularly for 3-D domains with large aspect ratio
and at high Reynolds numbers. Moreover, phenomenological models based on wake
oscillators allow accessible analytical considerations and thus help the understanding of the
physics of VIV. In such models the wake dynamics follow a van der Pol equation. In fact it is
sufficient to have a self sustained oscillator with a limit cycle. The bluff body is then
considered as another oscillator excited by the wake variable [21]. Conversely the effect of
the solid motion on the wake is represented by a forcing on the van der Pol equation that can
be proportional to displacement, velocity or acceleration of bluff body. Facchinetti ef al. [22]
have shown that the most appropriate forcing is proportional to the acceleration of the bluff
body.

The main focus of this paper is on the wake oscillator model, as a semi-empirical model,
used to predict the response of the cylinder to the forces from the flow. This wake oscillator
model coupled with a structure oscillator is found to describe most of the features of vortex-
induced vibration phenomenology, such as lock-in domain. Both linear and nonlinear models
are discussed in some detail, and the results of these models are compared with experimental
results. Finally, because the behavior of system in low and high mass-damping ratio is
different, a modified wake oscillator model is introduced and its results are compared with
experimental results.

2 VIV model

In this section, for analyzing VIV, first, the model of structural oscillator will be described
and then the dynamics of the wake oscillator will be explained.
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2.1. Structural oscillator

Let us consider a 1 dof system of a rigid cylinder of diameter D that is elastically mounted.
This cylinder is constrained in such a way that can oscillate transversely to a uniform flow of
free stream velocity U, Figure 1.

The in plane displacement of cylinder Y, transversely to fluid flow, can be described by a
linear oscillator

mY+rY+hY =S (D

Where (.) means derivatives with respect to dimensional time 7. the mass m consists of two
parts; the mass of the structure m, and the fluid-added mass m;, which models the inviscid
inertia effects of fluid [6], and reads

2 ms+mf
m=mg+ ms mf:ZnCmpD H:W

(2)
Where p is the fluid density, x is dimensionless mass ratio and C,,=/ is the added mass
coefficient [6]. In Eq. (1) the linear damping » models both viscous dissipations in support
and fluid-added damping 7, namely

B _ 2nS.U 5
r=1+7% TP = D ypD 3)

Where y is a stall parameter and is a function of oscillation frequency, related to the mean
sectional drag coefficient Cp, y=Cp/4xS,, [4, 5]. St is Strouhal number.

In Eq. (1) the stiffness coefficient 4 only relates to external effects. Seeking simplicity we
assume that y is constant [23]. Developing a two dimensional model, all parameters of mass,
damping and stiffness are defined per unit length. The fluid hydrodynamic effects on structure
consist of two parts, the basic fluid effects, my and rf, that directly influence structure
oscillation by Egs. (2) and (3), and the effects of vortices that is modeled as a forcing term S
[22],

1
S = EpU ’DC, 4)
where C; is fluctuating lift coefficient. Defining structural angular frequency 2 = %,

structure reduced damping & = r;/(2m{l;) and vortex-shedding frequency £2r = (2nS; U)/D,
Eq. (1) becomes

.. y . ) S
Y+(zms+!—lxzf)y+(zsy=E (5)
2.2. Wake oscillator

The fluctuating nature of the vortex street is modeled by a nonlinear oscillator satisfying the
van der Pol equation [24]

. . A
q+e!2f(q2—1)q+!2]§q =F=5Y (6)

The dimensionless wake variable ¢ that is related to the fluctuating lift coefficient, as for
most of the models in the literature is considered as the main variable, can be defined as
q(t) = (2C; (t))/Cyo . Where Cy(2) is instantaneous lift coefficient and Cyy is reference lift
coefficient of a stationary cylinder under vortex shedding. The right hand side forcing term of



8 Iranian Journal of Mechanical Engineering Vol. 10, No. 2, Sep. 2009

Eq. (6), F, models the effect of cylinder motion on the wake dynamics. Researchers use
different coupling models, such as displacement coupling, velocity coupling and acceleration

coupling, to define this forcing term. In present paper an acceleration coupling, F = %Y, will

be used [22]. 4 and ¢ are the parameters which can be derived from experimental data on the
wake dynamics, typically 4=12 and £=0.3 [22].

2.3. Coupling of wake and structural oscillator

Introducing the dimensionless time =Q,T and space coordinate y=Y/D, Egs. (5) and (6) lead
to the coupled fluid-structure dynamical system

y+dy+y=s i +e0(q* —1)q + 0%q = Ay 7
where 2 = 07/0¢ = S.U, is the dimensionless frequency of a self-sustained oscillation of

the wake, U, = 2nU/(2;D) being the reduced velocity, the damping coefficient A stands for
all damping terms acting on the cylinder

1=2:+10 (®)
U

and also s = S/(mf2D) , that by considering the definition of ¢ and S becomes

1
QPUZZDCLOCI 5 %
f 2 2
=X = N°q=Mn0 9
mzD 02 emSpu 1 q ®
SO
Cuo
M=—2_ (10)
8m2Siu
therefore Eq. (7) becomes
y+ Ay +y=M0%q G+en(q?—1)q+ 0% =Ay (11)

Overdots of these equations are derivatives with respect to dimensionless time ¢. In next
sections we will seek the simple linear and complicated nonlinear solutions for these
equations.

3. High mass-damping ratio
3.1. Linear model

In order to analyzing the mechanism underlying the evolution of the frequency of the coupled
system during the lock-in regime we will neglect some parts of Eq. (11). The only nonlinear
term of these equations is that of van der Pol oscillator, 2g?§. This term plays an important
role on setting the amplitude of limit cycle of coupled system, but we assume that its effect on
frequency is negligible. Similarly the negative damping term of van der Pol equation plays an
important role on a self-excited amplification of the wake variable, but we neglect its effect
too. Finally, the positive damping term of equation of motion of the cylinder, Ay, also plays a
role in the development of coupled dynamics, but not on the resulting frequency. Therefore
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because of typical range of values of the parameters € and A [22] it can be assumed that the
effect of these three terms in evolution of frequency is negligible. Neglecting these three
terms, Eq. (11) reduces to

y+y=M2%q i +0%q = Ay (12)

Here, the two linear undamped oscillators are coupled in the same way of Eq. (11) so the only
remaining control parameter is £ which is proportional to flow velocity 2 = S, U,..

3.1.1. Coupled mode flutter

The solution of Eq. (12) is straightforward. Assuming a harmonic motion with dimensionless
amplitude of y, and ¢, and angular frequency of w as y,q = (y,,qo)e'® the frequency
equation becomes

D(w) = w*+[(AM — 1)02%? —1]w? + 2% =0 (13)

We consider first the case that AM<I, as shown in Figure 2 for AM=0.5. In this case
depending on the value of (2, the system can neutrally be stable or unstable.

When N < —— \/_ orfl >—— - \/_ two neutrally stable modes exist, which are defined,

respectively, by their real frequencies such that

2w =1+1 -AM)Q* + ([1+ (1 — AM)0?]? — 4.(22)% (14)

these modes can be attributed to the wake dynamics, noted “W” in Figure 2 (a), or to structure
dynamics, noted “S”. By considering their mode shape Eq. (12) yields:

Yo _ M0 07 - w®
0 1- w?  Aw?

(15)

so that the mode with the frequency closer to the line wz=( in Figure 2 (a) is the wake mode
and the mode closer to the line wg=1 is the structure mode. In each mode, except at 2=0,
both components y and q exist, though one is clearly dominant.

In the range of m \/_<!2 <= \/_ two modes exist, but with complex conjugate

frequencies, such that

+
Wy = [1 T an? 0] (1 +itanb) (16)
where
1
1 (402 — (1+ (1 — AM)0?)?]2
0 = Earctan T+ (1= A2 (17)

This type of solution usually referred to as coupled mode flutter [5, 25], denoted by CMF in
Figure 2 (a), which displays the merging of the two frequencies of the neutral modes, leading
to a range of instability. One of these two modes is unstable (w;<0), the other being damped,
Figure 2 (b). Increasing (2, a decoupling occurs and two neutral modes reappear. The phase
between the lift ¢ and the displacement y, Figure 2 (c), switches from 0 to z in this range of
coupled-mode flutter. In this range no distinction can be made between a structure and a
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wake mode. A new regime arises, which a coupled mode with a phase shift allows a
nonconservative cycle to exist, which is the cause of instability. The range of coupled-mode
flutter may be considered as a range of lock-in because the frequency of the wake mode
strongly deviates from the relation w=(2, and follow a relation where the natural frequency of
the structure, w=1, plays a role. Moreover, in this region an unstable mode appears, which
will introduce dynamics different from that of the pure wake or structure mode.

The only parameter that influences the range of lock-in and the amplitude of the frequency
deviation is the combined parameter of AM. In Figure 3 we vary its value from0.25 to 0.75.
The extent of lock-in is found to increase steadily, mainly in its upper bound. The growth
rate and damping of the modes, as well as the phase, are very similar to the case where
AM=0.5.

3.1.2. Selection of the dominant mode

It can be stated that the motion in y and ¢ that emerge from any perturbation of the system is
dominated by the unstable mode. Its oscillating frequency is given by the real part in Eq. (16)

1
N 2

= (——— 18

“r (1+tan28> (18)

Outside the lock-in range we found that two neutral modes coexist. In the simplest model
used in this paper these modes are neutrally stable because all damping terms, positive or
negative, have been neglected. In practice, due to unstable nature of wake, ¢>0, and because
of the damping of the motion of the structure, >0, each mode is either damped or unstable,
and the motion will be dominated by the unstable mode. This can be investigated by taking
into account the two damping terms, so that Eq. (7) becomes

y+ Ay +y=MN3q G —e0q+0%q = Ay (19)
where its frequency equation is
D(w, &, ) = (1 +ilw — w?)(2? —ielw — w?) + AMQ?w? =0 (20)
The effect of parameters 4 and ¢ on the modes of the system can be assessed by considering
the variation of the eigenfrequencies @ with these parameters. Though they are of finite
magnitude, typically A=0.1 and £=0.3, a simple first order expansion can be considered [26]
W= wy + ew, + Awy (21)
where m satisfies the frequency equation without 4 and &, so that
D(wy,0,0) =0 (22)
The expansion of Eq. (20) reads

aD aD aD aD
D(wg + ewg + Awy, €,1) = D(w,,0,0) + EWe 5~ + /'Iau%+ £os + Aﬁ =0 (23)

This implies that the sought variations @, and w, satisfy, respectively
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op ap
v=-35 @ =—3p @9
Jw dw

All derivatives being taken at the reference state (wy, 0, 0). These derivatives can be easily
derived from Eq. (20), so that the effect of two parameters 4 and ¢ on the frequency w is, at
the first order A, ¢,
1-— N? —wj
l (25)

(1)2
W= wy + i€ .Qw(z)4—0 — iAW 5~
2(wf — 02) 2(wf — 02)

By considering the sign of the imaginary part of the frequency when wy is either the
frequency of the wake mode or that of the structure mode, it appears that both parameters
have a destabilizing effect on the wake mode and a damping effect on the structure mode.
This is illustrated in Figure 4 where the effects of both parameters are shown independently,
on the frequency and on the growth rate, using Eq. (25). In both cases the most unstable mode
has the frequency of the wake mode outside the range of lock-in.

The resulting frequency of oscillation that can therefore be expected from such a system is
shown in Figure 5, where only the dominant mode is shown. For small values of AM, lock-in
is a small deviation of the evolution of the frequency of the original wake mode, in a limited
range of reduced velocity U,. For large values of AM, a large range of U, is affected even
outside the range of coupled mode flutter.

3.2. Nonlinear model

In the previous section, based on the linear model the damping and nonlinear terms have been
neglected, but in this section these terms won’t be neglected. Therefore the effect of the
nonlinear term of van der Pol equation,ef2q?q, will be considered in analysis. So that, the
system of Eq. (11) will be analyzed in its complete form.

Seeking simplicity, first by a harmonic linearization method (see appendix), the van der Pol
equation will be linearized again, but without neglecting any term. Using this method Eq. (11)

becomes
2

J+ Ay +y = M0%q éj+eﬂ<%0—1>q+!22q=Aj} (26)

Assuming the solution of the result system as
y = yoe'* q = qoe’ @~ (27)
and substituting in Eq. (26) will give

(1—w2)+i/1w=M.(22@e‘i‘P
, Yo
2 2 . qo _ 2y0 ip
¢ —w?)+iefw I_l = —Aw*“—e (29)

o

(28)

Considering the Egs. (28) and (29) and by using the relations of the phase ¢ and a simple
algebra of complex numbers we will have
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90
&f (T - 1) 1w
== (30)
2 JA—wd)? + (w)?
(22 —w?)? + [5.(2( - 1)]
2 2 2,2
AMO*w
(02 — w?)? + [gn (q—" - 1)] = (31)
4 JO = 092 + (Aw)?

Substituting Eq. (31) in Eq. (30) and finding the van der Pol term in terms of the other
parameters and substituting in Eq. (31) yields

NS

(AMAN?w3)? (AMN?w?)?

@ =D =22+ G ~ (= W) + )?

(32)

So that the frequency equation is
—w® + (22 = 22+ AMO? + 2)o* + (A2 — AM — 2)2? — 1)w? + 0?2 =0 (33)

In Figure 6 the frequency response of both linear and nonlinear systems are shown with
respect to reduced velocity. Because in Eq. (33) the frequency w is arranged with respect to (2,
for displaying the result with respect to reduced velocity U,, we assume that S,=0.2 [22]. As
seen in Figure 6 (a), as the fluid velocity U, is increased, a speed is reached at which vortex-
shedding frequency becomes close to the natural frequency of the structure, and the two
frequencies synchronize. This phenomenon called lock-in and has agreement with the classic
definition of lock-in for moderate mass-damping ratio. The comparison of this results with the
results of the linear model and the experimental results of Feng [7], for u=194.55 and A=0.1
[21], shows that although the linear model properly predicts the beginning of the lock-in
domain but fails to predict the exact extent of lock-in range and shows a shorter range of lock-
in. Also it illustrates that the results of the nonlinear model are quite consistent with the
experimental data. We may therefore state that, although the linear model of the coupled-
mode flutter can be used to understand the lock-in effect in several of its characteristics, such
as phase evolution, but it is the nonlinear model that gives a better description for the lock-in
phenomenon. Therefore it is essential that the effect of damping be considered during analysis
of such systems.
Figure 7 shows the comparison of the frequency response of Eq. (8) with experimental results
of Brankovic and Bearman [27] for m =0.82 and &=1.5x10". For low mass-damping ratios
the value of /1 is calculated based on Eq. (8), by assuming y=0.8 [22]. The mass ratio m_ is
defined as

= 4mg (34)

mpD?1

where / is the length of the cylinder and in case of Brankovic and Bearman [27] /=584 mm.
Combining Egs. (2), (8) and (34) yields

4 (35)
l=—p—C
m ﬂ'u m
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It appears that these two cases with different mass ratios yield quite different results. At high
mass ratio, this classical nonlinear model is able to describe the phenomenon of persistent
lock-in, but this model fails in predicting the behavior of the system in low mass ratio.

4. Low mass-damping ratio

The classical wake oscillator model in the previous sections, is able to capture the behavior of
the system at high mass-damping ratio but cannot predict its behavior at low mass-damping
ratio. In this section a modified wake oscillator model able to predict the behavior of the
system at both low and high mass-damping ratios will be presented.

4.1. VIV model

It is believed that a model trying to accurately predict VIV must be able to describe the
oscillations in which small oscillations fed energy into system and large oscillations remove it
[28]. Also VIV is an inherently nonlinear and self regulated phenomenon [5]. These
characteristics must be considered in every VIV model.

In other engineering fields such as electrical engineering [29], biological and chemical
structures [30] and laser dynamics [31] systems with similar characteristics can be found. For
example, in the case of electrical engineering, the interaction of microwave oscillators is often
referred to. Two important characteristics of these oscillators are negative resistance (which
cause the amplitude of the oscillations to grow) and gain saturation (which limits the
amplitude of the oscillation) [32]. In such systems the interaction of oscillators is modeled by
two coupled van der Pol equations [33].

These observations can guide one to use two coupled van der Pol equations to model the VIV
phenomenon, too. It means that not only the wake dynamics but also the structural oscillations
can be modeled by van der Pol equation. The description of the structural oscillations by a van
der Pol equation was used in before works of Teufel et al. [34]. They modeled two
aerodynamically excited pendula by two coupled van der Pol equations. Although their model
wasn’t a wake oscillator model but it showed the possibility of using a van der Pol equation
for structural oscillations.

As mentioned in previous sections, two equations of the system can be coupled via three
different coupling terms, including acceleration, velocity and displacement coupling. In the
present work, the velocity coupling is used for the modified model.

According to these assumptions, the equations of the system can be expressed as:

{37 +eA(y? =Dy +y =M0*q (36)
G+ en(q?—1)g + N%q = Ay

Where the parameters 4 and ¢ have the same values as their previous values, 4=12 and €=0.3,
and the other parameters of these dimensionless equations are unchanged.

4.2. Frequency response
By a harmonic linearization method, as we did for Eq. (11), the equation (36) will be
linearized so that
i Y6 . i} as . .
y+A£(Z—1>y+y=M.(22q q+£.(2(z—1>q+.(22q=Ay (37)

By assuming p=nr/4 [22] and using similar process, as we did in section 2.3, the equation of
angular frequency of @ will be
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—w® + (2?2 —p? + 2)w* + AMQ?w3 + (Q2(p? — 2) — Dw? —AMQ?w + 0N?> =0 (38)

2
where p = SA(%O — 1). The value of y, is depended on the 2. So, for each (2 the value of yy is

evaluated by solving equation (36) numerically, by a 4™ order Rang-Kutta method for initial
condition of ¢(0)=2.

Figures 8 (a) and (b) show the frequency response of the modified model for absolute value of
. They show that the modified model has a good agreement with the experiment results. As
seen, during lock-in, the frequency departs from unity and this behavior differs from what
seen in figure 6 (a). This departure, experimentally, was shown in recent works [8, 9, 35 36].
As [9] believe, this new behavior is the result of imposing a low mass ratio.

Other branches of frequency response can occur under different conditions. For example,
figure 9 shows the comparison of frequency response of the modified model and experimental
results from a straked cylinder with m =0.83, 1=0.584 m and £=2.5x10"* [27]. The strakes are
3-start with a pitch of five diameters and a height equal to 10% of the bare cylinder diameter.
The mass ratio is defined as effective mass of the cylinder/displaced mass of water. Also, the
reduced velocity U, is calculated based on the diameter of bare cylinder.

Figure 10 shows the frequency response of the modified model at high values of the mass-
damping ratio and Feng’s experimental results [7] for comparison. As seen in Figure 10, the
new model also can precisely predict the behavior of system in high mass-damping ratio too.

5. Conclusion

Vortex-induced vibration (VIV) can severely limit the operation of structures and may even
lead to catastrophic failure. The behavior of structures during VIV is different in low and high
mass-damping ratio. In first part of this paper, a classic wake oscillator model has been
analyzed. By neglecting all damping and nonlinear terms, it has been shown that this linear
model can be used for finding the lock-in range. But if we want to understand the real
behavior of structure we should analyze the nonlinear model. So in continue, without
neglecting any terms, the nonlinear model has been analyzed and the results have been
compared with experimental results. This analysis showed that the classic wake oscillator
model can precisely predict the behavior of system in high mass-damping ratio. Since the
behavior of system in low mass-damping ratio is different and the classic model couldn’t
predict this change, in next part of paper, a modified wake oscillator model has been proposed
to investigate, analytically, vortex induced vibrations (VIV). The comparison of the results of
the modified model with experimental results showed that this model can be used for both
low and high mass-damping ratio. So this modified model can be used in designing of wide
range of structures subjected to wind, air-flow and water such as bridges, tall buildings and
offshore structures.
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Nomenclature

A :forcing term of wake oscillator

AM : compound mass parameter

Cy - fluctuating lift coefficient

Cyo: reference lift coefficient

C,, : added mass coefficient

CMF : coupled mode flutter

D : diameter of the cylinder

f» : natural frequency of the cylinder

fo : vibration frequency of the cylinder

/v : predominant frequency of vortex-shedding

M : mass parameter

m : total structure mass

my : fluid-added mass

my : structure mass

q : wake dimensionless variable

qo : dimensionless amplitude of wake oscillator

r : total damping of dimensional equation of structure

ry: fluid-added damping

rs : viscous dissipations in structure supports

S: structure

S': dimensional forcing term of structure equation

s : dimensionless forcing term of structure equation
;. Struohal number

T : dimensional time

¢t : dimensionless time

U : fluid flow velocity

U, : fluid reduced velocity

Y : dimensional displacement of cylinder

y : dimensionless displacement of cylinder

vo : dimensionless amplitude of cylinder oscillations

W : wake

) : the ratio of vortex-shedding frequency and natural frequency of structure

Q) angular frequency of vortex-shedding

Qs : natural frequency of structure

o : frequency response of system

oy : imaginary part of frequency response of system

wp : real part of frequency response of system

w, : system frequency response when the damping term of wake equation is considered

w; : system frequency response when the damping term of solid equation is considered
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y : stall parameter

¢ : parameter of van der Pol equation

A : total dimensionless damping of structure equation
[ : mass ratio

¢ : reduced damping of structure

p : fluid density

@ : phase between lift ¢ and displacement

Appendix
Harmonic linearization method

This model not only can analyze weakly nonlinear problems but also can be used for strongly
nonlinear problems. By solving a simple nonlinear equation, this model will be described in
below.

Consider the below Duffing's equation:

¥+x=ex3, x(0) =0 (39)

The physical insight leads us to the response of x = Acos(wt), that satisfy the initial

condition. therefore
3

€
x —ex3 = Acoswt -€A3 cos® wt = A cos wt — e (3 cos wt + cos 3wt)
3€A3l €A3

=Acoswt X |1 — 2 — ——cos3wt (40)

4

Neglecting the third harmonic terms give

3e4d 3e43
x—ex3=Acoswt><[1— 64 ]=x[1— 64

| (41)

So that the Eq. (39) becomes

. 3eAd
X+|1-— 2 x=0 (42)

Therefore by assuming response of the system as x = Acos(wt) we will have

3eA3
w?=1-

3eA3
x=Acos|1— 2 t (43)

This response is as the response that obtain from other methods like The methods of Poincare
and Lindstedt or methods of Krylov and Bogoliubov.
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Figure 1 Model of coupled structure and wake oscillator for 2-D vortex-induced vibration.
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Figure 2 Effect of the dimensionless flow velocity 2 on ()
for AM=0.5: (a) frequency, (b) growth rate (c) phase between the lift ¢ and the displacement y. -, unstable mode;
., wake mode of uncoupled solution when AM=0. In (a), S
denotes a structure mode, W denotes a wake mode and CMF is a coupled-mode flutter solution.

-, damped mode; -.-, limit of the lock-in range; ..

Vol. 10, No. 2, Sep. 2009

des of the coupled system defined by Eq. (12),
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Figure 3 Influence of the combined mass parameter AM on the characteristics of lock-in: (a) frequency, (b)
growth rate, (c) phase between the lift ¢ and the displacement y. In each plot the results for three values of 4AM
are shown, 0.25, 0.50 and 0.75. -, unstable mode; -, damped mode; -.-, ..., wake mode of the uncoupled solution

when AM=0.
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Figure 4 Selection of the dominant mode by the effect of damping on the growth rate of the modes of the
coupled system, AM=0.50, using Eq. (25). (a) and (b) effect of the negative damping of the wake equation,
£=0.3 and A=0; (c) and (d) effect of the damping of the cylinder, e=0 and 1=0.1, respectively. In (a) and (c) the
frequency of the most unstable mode is shown in bold lines, correspondingly to the highest growth rate in (b)
and (d), respectively.
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Figure 5 Effect of the flow velocity Q on the frequency of the dominant mode of the coupled system. (a)
AM=0.05, the frequency deviates from Strouhal law only near Q=1, by coupled mode flutter. AM=0.75 the
frequency deviates from Strouhal law in a large range of coupled mode flutter, and also is affected outside this
range. -, frequency; ..., uncoupled solution; W, wake mode; CMF, coupled mode flutter.
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Figure 6 Comparison of frequency response of classic wake oscillator model with the result of the linear model
and the experimental result of Feng [7].
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Figure 7 Frequency response of the classical model for low mass-damping ratio (u=1.1615, é=1.5x10™). —the
classical wake oscillator model; o, Brankovi¢ and Bearman’s experimental results_[27].
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Figure 8 Frequency respose of the modified model for low mass-damping ratio. (a) —, modified model; o,
experimental data of Williamson and Khakak [9] for m=3.3, [=0.38] m and &=0.0026 (w=1.773). (b) —,
modified model; o, experimental data of Brankovic and Bearman [27] for m'=0.82, 1=0.584 m and &=1.5x10"

(u=1.1615).
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Figure 9 Frequency respose of the modified model for low mass-damping ratio. — modified model; o,

experimental data of Brankovic and Bearman [27] for m'=0.83, 1=0.584 m and &=2.5x10"* (u=1.1661).
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Figure 10 Frequency respose of the modified model for high mass-damping ratio. —, modified model; o,
experimental data of Feng [7] (u=194.55 and A=0.1 [21]).
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