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Abstract Solving systems of nonlinear equations is perhaps one of the most difficult
problems in all numerical computation. Although numerous methods have been
developed to attack this class of numerical problems, one of the simplest and oldest
methods, Newton’s method is arguably the most commonly used. As is well known,
the convergence and performance characteristics of Newton’s method can be highly
sensitive to the initial guess of the solution supplied to the method. In this paper
a hybrid scheme is proposed, in which the Electromagnetic Meta-Heuristic method
(EM) is used to supply a good initial guess of the solution to the finite difference
version of the Newton-GMRES method (NG) for solving a system of nonlinear
equations. Numerical examples are given in order to compare the performance of
the hybrid of the EM and NG methods. Empirical results show that the proposed
method is an efficient approach for solving systems of nonlinear equations.
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1 Introduction

A nonlinear system of equations is defined as:

F(u) = 0, (1)

where F = ( f1, f2, . . . , fn)
T is a nonlinear map from a domain in �n, that contains

the solution u∗, into �n,and u ∈ �n.
Such systems often arise in applied areas of physics, biology, engineering, geo-

physics, chemistry and industry. Numerous examples from all branches of the
sciences are given in [1–3].

Research on systems of nonlinear equations has widely expanded over the last
few decades, and reviews can be found in Broyden [4], Martinez [5], and Hribar
[6]. As is well known, Newton’s method and its variations [7, 8] coupled with some
direct solution technique such as Gaussian elimination are powerful solvers for these
nonlinear systems in case one has a sufficiently good initial guess u0 and n is not
too large. When the Jacobian is large and sparse, inexact Newton methods [9–13] or
some kind of nonlinear block-iterative methods [14–16] may be used.

An Inexact Newton method is actually a two stage iterative method which has the
following general form:

Algorithm 1 Inexact Newton method
I. Choose an initial approximation u0.

II. for k = 1, 2, . . .until convergence do:
find xk satisfying

F ′(uk)xk = −F(uk) − rk (2)

||rk||2 ≤ ηk||F(uk)||2; (3)

update uk+1 = uk + xk.

In Eq. 2, rk = −F(uk) − F ′(uk)xk is the residual vector associated to xk. In Eq. 3,
the sequence [ηk] is used to control the level of accuracy needed on the computation
of the approximate solution xk.

The inner iteration is an iterative method for solving the Newton equations
F ′(uk)xk = −F(uk) approximately with the residual rk. The stopping relative residual
control ||rk||2 ≤ ηk||F(uk)||2 guarantees the local convergence of the method under
the usual assumptions for Newton’s method [9].

Recently with the development of Krylov subspace projection methods, this class
of methods such as Arnoli’s method [17] and the generalized minimum residual
method (GMRES) [18] is widely used as the inner iteration for inexact Newton
methods [10, 11]. This combined method is called inexact Newton-Krylov methods
or nonlinear Krylov subspace projection methods. The Krylov methods have the
virtue of requiring almost no matrix storage, resulting in a distinct advantage over
direct methods for solving the large Newton equations. In particular, the product of
a Jacobian and some fixed vector (F ′(u)x) is only utilized in a Krylov method for
solving F ′(uk)xk = −F(uk), and the product can be approximated by the quotient

F ′(uk) x ≈ F(uk + σ x) − F(uk)

σ
, (4)
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where σ is a scalar. So, the Jacobian need not be computed explicitly. In [10] Peter N.
Brown gave the local convergence results for inexact Newton-Krylov methods with
the difference approximations of the Jacobian.

For solving nonlinear system (1), we consider the finite difference version of the
Newton-GMRES method, which was given in [19], and can be described as follows:

Algorithm 2 Newton-GMRES method(NG)
I. Choose an initial approximation solution u0 of the nonlinear system; set k = 0;

choose a tolerance ε0.
II. Solve the linear system Ax = b , where A = F ′(uk) and b = −F(uk).

(1) Initializtion:
choose an initial approximation solution x̂0;
compute q0 = (F(uk + σ0 x̂0) − F(uk))/σ0; r̂0 = b − q0;
β̂ = ||r̂0||2 ; b̂ 1 = r̂0/β̂ ; q1 = b̂ 1 .

(2) Arnoldi process:
for j = 1 to m do:

(a) q j+1 = (F(uk + σ jb̂j) − F(u))/σ j; ω̂ = q j+1;
for i = 1 to j do:

ĥij = (b̂ i, ω̂) ; ω̂ = ω̂ − ĥijb̂ i ;
end for;
ĥi+1 j = ||ω̂||2 ; b̂ j+1 = ω̂/ĥi+1 j ;

(b) compute an estimation of ρ j = ||b − (F(uk + σ x̂ j) −
F(uk))/σ ||2;
If ρ j ≤ εk set m = j and go to (3);

end for.
(3) Update the solution x̂m:

compute d̂m as the solution of mind∈�m ‖β̂ e(m+1)
1 − ˜̂Hmd‖2 ;

compute x̂m = x̂0 + B̂m d̂m .

(4) GMRES restart:
compute an estimation of ρm = ||b − (F(uk + σ x̂m) − F(uk))/σ ||2 ;
If ρm > εk set x̂0 = x̂m and go to (1);

III. Compute uk+1 = uk + x̂m.

IV. If ||F(uk+1)||2 is small enough or k ≥ kmax then stop;
else set k = k + 1, choose a new tolerance εk and go to II.

The local convergence of this algorithm has been studied in [19]. The performance
and convergence characteristics of this algorithm are highly dependant on the initial
guesses with which it begins and it is very important to have a good starting value
u0. Several techniques exist to remedy the difficulties associated with choice of the
initial guess when solving nonlinear systems of equations. Most of these techniques
fall into two categories, Line search methods and trust region methods. For these
two categories, there are several theoretical results when combined with Newton-
type methods that make them robust and hence, attractive [20–22].

In this paper, we show how, by using the Electromagnetic Meta-Heuristic (EM)
method [23], one can obtain the sufficiently good initial guesses u0. The results of
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comparative study of the hybrid of the EM algorithm and NG method (called EM-
NG method) and trust region method based on smooth CGS algorithm (called QCGS
algorithm) [26] show that EM-NG method is effective and represents an efficient
approach for solving nonlinear systems of equations.

This paper is organized as follows. In Section 2 we give a brief description of
Electromagnetic Meta-Heuristic method [23]. In Section 3, we present a hybrid of
Newton-GMRES method and Electromagnetic Meta-Heuristic method. Numerical
experiments are given in Section 4. Finally, we give some concluding remarks in
Section 5.

2 Electromagnetic Meta-Heuristic Method

In this section we will briefly review the EM method of Birbil and Fang [23] and
discuss its main properties. Consider a special class of problems with bounded
variables in the form of

Min f (x)

s. t.x ∈
[
l̃, ũ

]
, (5)

where
[
l̃, ũ

]
=

{
x ∈ �n

∣∣∣ l̃k ≤ xk ≤ ũk, k = 1, 2, ..., n
}

.

In a multi-dimensional solution space where each point represents a solution, a
charge is associated with each point. This charge is related to the objective function
value associated with the solution point. As in evolutionary search algorithms, a
population, or set of solutions of size NS, is created, in which each solution point will
exert attraction or repulsion on other points, the magnitude of which is proportional
to the product of the charges and inversely proportional to the distance between the
points. The charge of the point i is calculated according to the relative efficiency of
the objective function values in the current population, i.e.,

qi = exp

(
−n

f (xi) − f (xbest)∑NS
i=1 ( f (xi) − f (xbest))

)
, i = 1, . . . , NS , (6)

where n is the dimension of the problem and xbest represents the point that has the
best objective function value among all the points at the current iteration. In this way,
the points that have better objective function values possess higher charges. Note
that, unlike electrical charges, no signs are attached to the charge of an individual
point in the Eq. 6; instead, the direction of a particular force between two points
will be determined after comparing their objective function values. The principle
behind of this algorithm is that inferior solution points will prevent a move in their
direction by repelling other points in the population, and that attractive points will
facilitate moves in their direction. This can be seen as a form of local search in
Euclidian space in a population-based framework. The main difference of these
existing methods is that the moves are governed by forces that obey the rules
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of electromagnetism. Birbil and Fang provide a generic pseudo-code for the EM
algorithm:

Algorithm 3 Electromagnetic Meta-Heuristic method (EM)
I. Initialize( )

II. While termination criteria are not satisfied do
Local( )
CalcF( )
Move( )

end while

The first procedure, Initialize, is used for sampling NS points randomly from the
feasible region and assigning them their initial function values. Each coordinate of
a point is assumed to be uniformly distributed between the corresponding upper
bound and lower bound. Local is a neighborhood search procedure, which can be
applied to one or many points for local refinements at each iteration. As mentioned
in [23], the selections of these two procedures do not affect the convergence result
of the EM method. The total force vector exerted on each point by all other points
is calculated in the CalcF procedure and total force F exerted on point i is computed
by the following equation:

Fi =
NS∑

j = 1
j 
= i

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x j − xi)
qi q j∥∥x j − xi

∥∥2 , if f (x j) < f (xi) (Attraction)

(xi − x j)
qi q j∥∥x j − xi

∥∥2 , if f (xi) ≤ f (x j) (Repulsion)

, i = 1, 2, ..., NS.

(7)

As explained in [23], between two points, the point that has a better objective
function value attracts the other one. Contrarily, the point with a worse objective
function value repels the other. So, xbest which has the minimum objective function
value, attracts all other points in the population. After evaluating the total force
vector Fi in CalcF procedure, the point i is moved in the direction of the force by
a random step in the Move procedure.

Finally, Birbil and Fang showed that when the number of iterations is large
enough, one of the points in the current population moves into the ε- neighborhood
of the global optimum. More details of EM algorithm can be found in [23].

In Section 3, we propose an efficient algorithm for solving the systems of nonlinear
equations in which the EM method is used to supply the good initial guesses to the
NG method.

3 A Hybrid Method of Newton-GMRES and EM Methods

In this section, we present a hybrid method for solving the systems of nonlinear
equations. The idea of the method is to transform the system of nonlinear equations
(1) to an unconstrained minimization problem and at each iteration of the EM
method to use the current best point as the initial guess for the NG Algorithm.
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For solving the system of the nonlinear equations (1), we consider the
minimization problem (5) with the objective function f (x) = ‖ F (x)‖2 and use
the following hybrid method which is named EM-NG method.

Algorithm 4 EM_NG method
I. Initialize( )

II. While termination criteria are not satisfied do
Local( )
CalcF( )
Move( )

III. Apply the NG method to the nonlinear system (1) using the current best
solution as an initial guess. If the computed solution is not better than
the current best solution, apply the NG method to the nonlinear system
(1) using the second best solution as an initial guess and set Length =
Length × α with α > 1.

end while

In the EM-NG Algorithm, the procedures CalcF and Move are the same as
those of EM Algorithm [23]. The Local procedure which is a neighborhood search
procedure and its selection does not affect the convergence result of EM method, is
defined as follows:

Algorithm 5 Local(Length,α)
I. Length = Length × α

II. for i = 1 to NS do
for l = 1 to LSITER do

y = xi

for k = 1 to n do
z = y(k)

λ1 = U(0, 1)

λ2 = U(0, 1)

if λ1 > 0.5 then
yk = yk + λ2(Length)

else
yk = yk − λ2(Length)

end if
if abs(y(k)) > abs(z) then

y(k) = z
end if

end for
if f (y) < f (xi) then

xi = z
end if

end for
end for
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In Local procedure, in the neighborhood of each point solution xi we generate
a point solution with a norm smaller than that of xi, and replace xi with this new
point solution if it is better than xi. In this manner, the optimum solution with a
minimum norm will be obtained in the given interval. Here, the parameters, Length,
α, and LSITER that are passed to this procedure, represent the maximum feasible
step length, the multiplier and number of iterations for the neighborhood search,
respectively.

In step III of Algorithm 4, we apply the NG method to the nonlinear system
(1) using the current best solution as an initial guess. Using the fact that the NG
algorithm is locally convergent [19], we replace xbestwith the solution obtained by the
NG algorithm if it is better than xbest. For the other case, when the NG method does
not converge, and the solution obtained by this algorithm is not better than xbest, we
conclude that xbest is not close enough to the exact solution and another initial guess
must be chosen. In this case, we use the second best solution as an initial guess and
set Length = Length× α, where the multiplier α > 1 will be defined by the user (for
example α = 10), in order to change the very small step length and to furnish the
situation in which the Local procedure can give a substantial reduction of f (x) =
‖ F (x)‖2. Our experiments show that, in many problems, this choice and this change
prevent the norm of residuals from oscillation and stagnation (see Example 2).

In Section 4, the numerical results show that with the EM-NG algorithm, it is
possible, in a given interval to obtain the solution of the nonlinear systems with
desired accuracy and the cost of computation is comparable with those of QCGS
algorithm [26] and NG method when the latter converges.

4 Computational Results

In this section, we compare the performance of EM-NG method with that of Newton,
NG, Evolutionary Method for NSEs (called EMO method) [24], Effati [25] and
QCGS [26] methods. The algorithms were written in MATLAB and were tested for
the examples given in [26] and [27–32]. All the problems were run on a PC with
Pentium IV processor with 512 MB of RAM, and CPU 2.80 GHz. The algorithm
used for random-number generation is an implementation of the Mersenne Twister
algorithm described in [33]. In the NG Algorithm, as [19], we used the tolerance
εk = ηk ‖F(uk‖2, with ηk = (0.5)k for stopping the GMRES method. A maximal value
of m(mmax) is used. If m = mmax but ρm > εk, we restart GMRES once. A maximum
number of 60 iterations of stage II (kmax = 60) was allowed. In EM-NG Algorithm,
we used Algorithm 2 (the NG method) as a procedure (in step III) with the above
parameters and kmax = 15. In addition, the parameters NS = 3, 6, 12, Length =
max(ũk − l̃k)/2, δ = 0.5, LSITER = 2, and α = 10 are used. A maximum number of
15 iterations was allowed in EM-NG Algorithm. As a stopping criterion to determine
whether uk solves the nonlinear problem F(u) = 0, we used ‖F (uk)‖2 < ε ‖F (u0)‖2,
where ε will be defined for each problem.

Example 1 We consider the nonlinear system of equations

{
f1(u1, u2) = eu1 + u1u2 − 1 = 0,

f2(u1, u2) = sin(u1u2) + u1 + u2 − 1 = 0.
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Table 1 The results obtained for Example 1

Method Solution Function value

Newton’s method (0.026, 0.862) (0.0256, 0.0565)
Effati’s method (0.0096, 0.9976) (0.019223, 0.016776)
EMO method (0.00138, 1.0027) (0.00276, 0.0000637)
NG method (−0.000000000000195, 0.999999999999899) (−0.389-12, 0.490-12)
EM-NG method (0.000000000000000, 1.000000000000000) (0.0, 0.0)

which was described in [24]. In order to compare our results with those of other
methods, we collect in Table 1, the results presented in reference [24] (which were ob-
tained by the methods presented in Table 1 and the initial guess u0 = (0.09, 0.09)T),
the results of NG method with this initial guess, and the results of EM-NG method
with mmax = 2, NS = 3, ε=10E-10. For the latter method, the points of the population
were chosen randomly in the interval [0, 1]. As we observe, the best result which is
the exact solution is obtained by EM-NG method.

Example 2 (Generalized function of Rosenbrock) This example is given in [19]:
⎧⎪⎪⎨
⎪⎪⎩

f1(u1, u2, . . . , un) = −4ζ
(
u2 − u2

1

)
u1 − 2(1 − u1) = 0,

fi(u1, u2, . . . , un) = 2ζ(ui − ui−1) − 4
(
ui+1 − u2

i

)
ui

− 2(1 − ui−1) = 0,

fn(u1, u2, . . . , un) = 2ζ
(
un − u2

n−1

) = 0.

i = 2, 3, . . . , n − 1,

The Jacobian matrix F ′(u) is tridiagonal. The nonlinear system F(u) = 0 has the
unique solution u∗ = (1, 1, . . . , 1)T . We consider a system of size n = 5000 and we
take ζ = 10. We have considered two intervals [−4, 4] and [−8, 8] and three initial
approximate solutions u0, denoted by rand1, rand2 and rand3. For the NG method,
each component of the initial guess u0 was chosen randomly in these intervals. For
the EM-NG method, we considered the initial guess u0 as the first point of the
population and the other points of the population are also chosen randomly in these
intervals. The results obtained with mmax = 10 and ε=10E-8, are presented in Table 2.
For each initial guess u0, the final iteration number of EM-NG method It_EM, the

Table 2 Results obtained for Example 2 with NG and EM-NG methods and different initial intervals

Algorithm [l̃ j, ũ j] = [−4, 4] [l̃ j, ũ j] = [−8, 8]
It_EM NFE ‖F(u)‖2 CPU It_EM NFE ‖F(u)‖2 CPU

u0 = rand1 NG – 125 1.02E-4 2.94 – 1244 2.09 28.75
EM-NG(3) 3 126 2.02E-6 3.36 3 144 4.22E-4 3.69
EM-NG(6) 3 151 2.42E-5 4.10 3 146 5.34E-4 4.01
EM-NG(12) 3 225 6.99E-5 6.69 3 214 6.15E-4 6.52

u0 = rand2 NG – 171 4.18E-7 3.88 – 1237 2.02 28.88
EM-NG(3) 3 141 2.71E-5 3.80 7 678 3.43E-4 15.70
EM-NG(6) 3 156 1.00E-4 4.28 3 146 2.35E-4 3.99
EM-NG(12) 5 603 3.82E-5 16.00 5 503 5.81E-4 14.00

u0 = rand3 NG – 1260 2.09 27.91 – 1242 2.01 27.93
EM-NG(3) 3 134 3.56E-5 3.64 5 353 7.59E-5 8.71
EM-NG(6) 3 152 6.92E-5 4.16 5 400 5.58E-4 9.98
EM-NG(12) 5 588 5.87E-5 15.60 4 472 4.71E-4 12.65
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number of function evaluations NFE, the final norm ‖F(u)‖2, and CPU time needed
to obtain the solution are given for different values of NS = 3, 6, 12.

In this table EM-NG(s) denotes the EM-NG algorithm with NS = s. The results
show that, in all the cases, the EM-NG method could obtain the solution with desired
accuracy, but there are the cases in which the NG method did not converge and the
norm of residual after 60 iterations is more than 2. When the two methods converge
(the cases u0 = rand1, u0 = rand2, and [l̃ j, ũ j] = [− 4, 4]), the convergence behavior
of NG method and EM-NG(3) method are similar with respect to the number of
function evaluations NFE and CPU time. In addition, we observe that, in all the
cases, except u0 = rand2 and [l̃ j, ũ j] = [−8, 8], the results of EM-NG method with
NS = 3 (EM-NG(3)) is better than those of the others. So we can conclude that, for
this problem a population of size NS = 3 is sufficient for obtaining good results.

We also plot the values of ‖ F (u)‖2 as a function of the number of updating uk.
Figure 1 (right) shows the case in which the NG method is not able to reduce the
residuals and the norm of residuals oscillates. Figure 1 (left) shows that when the
procedure NG is not able to improve the solution and the norm of residuals oscillates,
the EM-NG method furnishes another initial guess (the second best solution of
population) for procedure NG and prevents the norm of residuals from oscillation.
Finally, the convergence cases are plotted in Fig. 2.

Example 3 (Bratu test [19]) The nonlinear problem is obtained after discretization
(by 5-point finite differencing) of the following nonlinear partial equation over the
unit square of �2 with Dirichlet boundary conditions:

−�u + α ux + λ eu = f.

Fig. 1 Plots for Example 2 with EM-NG method (left) and NG method (right) for [l̃ j, ũ j] = [−8, 8],
u0 = rand1 , and NS = 3
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Fig. 2 Plots for Example 2 with EM-NG method (left) and NG method (right) when[l̃ j, ũ j] = [−4, 4],
u0 = rand1, and NS = 3

The size of the nonlinear system is n = nxny, where nx + 2, ny + 2 are the numbers of
mesh points in each direction, including mesh points on the boundary. The function
f is chosen so that the solution of the discretized problem is known to be the constant
unity e = (1, 1, . . . , 1)T . For this problem, it is known that for λ ≥ 0, there is always
a unique solution, while this is not the case when λ < 0. As [19], in our experiments,
we took nx = ny = 50 (n = 2500), α = 100 and λ = −10. We have considered two
intervals [−2, 2] and [−6, 6] and each component of u0 and other points of population
are chosen randomly in these intervals. The results obtained with ε = 10E-11, mmax =
5, 10, 15, NS = 3, and three initial guesses rand1, rand2, rand3 are presented in
Table 3. In this table EM-NG(s) denotes the EM-NG algorithm with mmax = s. The
results show that, the two methods converge and the solution was obtained with
desired accuracy. The convergence rate of the NG method and EM-NG method with

Table 3 Results obtained for example 3 with NG and EM-NG methods and different initial intervals

Algorithm [l̃ j, ũ j] = [−2, 2] [l̃ j, ũ j] = [−6, 6]
It_EM NFE ‖F(u)‖2 CPU It_EM NFE ‖F(u)‖2 CPU

u0 = rand1 NG – 251 3.50E-7 7.12 – 229 4.09E-6 6.39
EM-NG(5) 3 267 1.11E-6 7.65 3 259 8.45E-7 7.57
EM-NG(10) 2 259 1.67E-6 7.29 2 249 2.54E-6 7.01
EM-NG(15) 1 259 4.98E-7 7.24 1 237 5.38E-6 6.61

u0 = rand2 NG – 273 1.19E-6 7.63 – 277 9.14E-6 7.74
EM-NG(5) 3 264 9.87E-7 7.72 3 270 6.84E-6 7.66
EM-NG(10) 2 244 3.09E-6 6.85 2 249 9.15E-6 7.01
EM-NG(15) 1 235 3.68E-6 6.59 1 239 1.50E-5 6.70

u0 = rand3 NG – 251 4.71E-6 7.10 – 273 4.26E-6 7.06
EM-NG(5) 3 268 3.74E-7 7.73 3 266 5.49E-6 7.57
EM-NG(10) 2 248 3.04E-6 7.01 2 274 1.75E-6 7.72
EM-NG(15) 1 242 2.59E-6 6.83 1 259 2.29E-6 7.31
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different values of mmax, in term of CPU time and the number of function evaluations
are close. The results of this example and Example 2 show that if the NG method
converges, then the EM-NG method converges too, and its convergence rate is close
to that of NG method. In addition, we observe that, by increasing the parameter
mmax, the number of function evaluations and CPU time decrease a little, except in
the case of u0 = rand3, [l̃ j, ũ j] = [− 6, 6], and mmax = 10. Our experiments showed
that the choice mmax = 10 furnishes the good results.

4.1 A Set of Problems

In this section, we present the results of a comparative study of three methods,
NG, EM-NG methods, and trust region method based on smooth CGS algorithm
(called QCGS algorithm) [26], for large sparse systems of nonlinear equations. All
test results were obtained by means of 20 problems given in Appendix. All problems
were considered with 100 variables, except problem 19 which has 99 variables and
problem 20 with 10 variables. The QCGS algorithm contains several parameters. As
[26], we have used the values

β1 = 0.05 β2 = 0.75, γ 1 = 2 γ 2 = 106, ρ1 = 0.1, ρ2 = 0.9

τ 0 = 10−3, ω0 = 0.4, � = 103, ε = 10−16 , k = 1000, l = 20

in all numerical experiments. The elements of Jacobian matrix are computed by
the formula

J ji =
[

f j(x + δ ei) − f j(x)
]

δ
, (8)

where ei is the ith column of the unit matrix and δ = 10E-8. If the Jacobian matrix is
sparse, only the nonzero elements are computed by the formula (8).

In the EM-NG and NG methods, for computing the vector q j in stage II (step (2),
(a)), we also used the Jacobian matrix. The parameter mmax = 10 is used for NG and
EM-NG methods. The stopping criterion ‖F(uk)‖2 < ε ‖F(u0)‖2 with ε = 10E-8 was
used for three methods. The parameter kmax = 100 and kmax = 15 were used for NG
and EM-NG methods, respectively. Finally, a maximum number of 50 iterations was
allowed in the EM-NG Algorithm.

First, we have applied the three methods to these problems with an initial guess
x0 given for each problem in the Appendix and the initial guess u0, for which each
component is chosen randomly in the interval [−2, 2]. The results obtained are
presented in Table 4. The rows of this table correspond to the individual problems;
the columns contain the number of function evaluations (NFE) of EM-NG, QCGS,
and NG methods. The symbol ‘ * ’ indicates that the method did not converge
after allowable iterations. In the last line, Nsuc denotes the number of successfully
solved problems by each method. As expected, in many cases, the results of the three
methods obtained with the good initial guess x0 is better, in term of the number of
function evaluations, than those obtained with random initial guess u0. The last line
shows that the EM-NG method is better, measured in the number of successfully
solved problems, than the QCGS and NG methods, but in the case of convergence it
does not give an advantage to the other methods.
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Table 4 The results of three
methods for 20 test problems
with initial guesses x0 and u0

Prob Given x0 u0 ∈ [−2, 2]
NFE NFE

EM-NG QCGS NG EM-NG QCGS NG

P1 141 67 * * * *
P2 53 314 43 * * *
P3 29 19 19 78 73 151
P4 39 34 29 44 58 37
P5 71 65 61 904 * *
P6 115 178 93 140 57 473
P7 199 99 151 362 91 265
P8 123 194 265 148 298 1137
P9 74 82 64 1233 * *
P10 35 123 25 738 * *
P11 109 46 46 116 49 100
P12 79 89 58 * * *
P13 43 37 33 * * *
P14 59 37 43 60 67 49
P15 735 65 805 320 33 537
P16 39 25 29 * * *
P17 32 312 34 36 149 28
P18 35 * 25 576 * *
P19 907 * 117 1492 * 465
P20 334 * 883 390 123 *

Nsuc 20 17 19 15 10 10

Next, we have tested each problem with 100 initial guesses. Each component of
each initial guess is chosen randomly in the interval [−2, 2] and NS = 3 has been
taken for all tests in EM-NG method. The results are given in Table 5. For each

Table 5 The results of three
methods for 20 test problems
with 100 random initial
guesses u0

Prob EM-NG QCGS NG

mNFE perc mNFE perc mNFE perc

P1 671 33 254 9 826 1
P2 1499 1 3240 0 598 0
P3 78 100 61 98 85 89
P4 40 100 41 100 33 98
P5 852 15 4296 0 793 0
P6 80 100 57 97 85 62
P7 102 100 85 94 115 87
P8 132 100 137 100 161 69
P9 596 30 82 5 73 3
P10 287 29 3129 0 601 0
P11 93 100 46 100 4 100
P12 75 45 3065 0 520 0
P13 44 40 37 16 801 0
P14 60 100 55 100 55 100
P15 280 100 33 100 457 100
P16 656 13 4305 0 797 0
P17 33 100 82 100 28 28
P18 87 96 3179 0 262 28
P19 172 90 4314 0 185 99
P20 386 100 111 35 111 85
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Table 6 EM-NG method with
larger NS

Prob NS = 25 NS = 50 NS = 100

NFE perc NFE perc NFE perc

P1 773 41 978 77 1388 79
P2 1473 26 1763 45 4123 80
P5 616 60 665 100 1003 100
P9 773 43 978 93 1388 95
P10 336 87 568 95 565 98
P12 157 63 251 73 460 81
P13 132 46 232 61 436 73
P16 326 36 617 100 460 100
P18 172 99 257 100 448 100
P19 318 93 505 95 885 97

method we reported the minimum number of function evaluations needed for solving
the problem and obtained in 100 randomly generated guesses (mNFE) and the
number of successes of the method in these tests (perc). Here, a “success” means
that the convergence to the exact solution of the system of equations. Table 5 shows
that, for all problems, EM-NG method is much better, in term of the number of
successes, than QCGS and NG methods.

Finally, we have again applied the EM-NG method with larger NS, NS =
25, 50, 100, to the problems for which the number of successes of EM-NG method
is less than 100 (Problems 1, 2, 5, 9, 10, 12, 13, 16, 18, 19). The results are given in
Table 6. As we observe, by increasing NS (the size of population in the EM-NG
method), the number of successes of EM-NG method increases. Table 6 shows that
with NS = 100 (which is equal to the dimension of problems), for 16 problems, the
percentage of successes of EM-NG method is over 95%. From these results, we can
conclude that the EM-NG method is an efficient approach for solving the systems of
nonlinear equations.

5 Conclusion

We have proposed a hybrid of Newton-GMRES and Electromagnetism meta-
heuristic method for solving a system of nonlinear equations. In the proposed
method, the Electromagnetic Meta-Heuristic method (EM) is used to supply the
good initial guesses of the solution to the finite difference version of the Newton-
GMRES method (NG) for solving the system of nonlinear equations. We observed
that the EM-NG method is able to obtain the solution with desired accuracy in
a reasonable number of iterations. The experiments showed that in the case of
convergence of the NG method, the convergence behavior of the EM-NG method
and NG method are similar with respect to the number of function evaluations NFE
and CPU time. The advantage of the EM-NG algorithm is that when the procedure
NG is not able to improve the solution and the norm of residuals oscillates, step
III of the algorithm furnishes another initial guess (the second best solution of
population) for procedure NG and prevents the norm of residuals from oscillation
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and stagnation. The experiments show that, the EM-NG method is much better,
measured in number of successfully solved problems, than the QCGS and NG
methods. In addition, we observe that, the percentage of success of EM-NG methods
increases when NS (the size of population in the EM-NG method) increases. Conse-
quently, the EM-NG method is an efficient approach for solving systems of nonlinear
equations.
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Appendix

Our test problems consist of searching for a solution to the system of nonlinear
equations

fk(x) = 0, 1 ≤ k ≤ n.

For each problem an initial guess x̄l, 1 ≤ l ≤ n, is given. We use the functions div
(integer division) and mod (remainder after integer division). These problems are
given in [26–32].

Problem 1 Countercurrent Reactor Problem 1 [27]:

α = 0.5
fk(x) = α − (1 − α)xk+2 − xk(1 + 4xk+1) k = 1,

fk(x) = −(2 − α)xk+2 − xk(1 + 4xk−1) k = 2,

fk(x) = αxk−2 − (1 − α)xk+2 − xk(1 + 4xk+1) mod(k, 2) = 1, 2 < k < n − 1
fk(x) = α xk−2 − (2 − α) xk+2 − xk(1 + 4xk−1) mod(k, 2) = 1, 2 < k < n − 1
fk(x) = α xk−2 − xk(1 + 4xk+1) k = n − 1,

fk(x) = α xk−2 − (2 − α) − xk(1 + 4xk−1) k = n,

x̄l = 0.1, mod(l, 8) = 1,

x̄l = 0.2, mod(l, 8) = 2, or mod (l, 8) = 0,

x̄l = 0.3, mod(l, 8) = 3, or mod (l, 8) = 7,

x̄l = 0.4, mod(l, 8) = 4, or mod (l, 8) = 6,

x̄l = 0.5, mod(l, 8) = 5.

Problem 2 Extended Powell Badly Scaled Function [28]:

fk(x) = 10000 xkxk+1 − 1, mod(k, 2) = 1,

fk(x) = exp(− xk−1) + exp(− xk) − 1.0001, mod(k, 2) = 0,

x̄l = 0, mod(l, 2) = 1,

x̄l = 1, mod(l, 2) = 0.
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Problem 3 Trigonometric System [29]:

i = div(k − 1, 5),

fk(x) = 5 − (i + 1) (1 − cos xk) − sin xk − ∑5i+5
j=5i+1 cos x j,

x̄l = 1/n, l ≥ 1.

Problem 4 Trigonometric-Exponential System, Trigexp 1 [29]:

fk(x) = 3x3
k + 2xk+1 − 5 + sin(xk − xk+1) sin(xk + xk+1), k = 1,

fk(x) = 3x3
k + 2xk+1 − 5 + sin(xk − xk+1) sin(xk + xk+1) + 4xk

−xk−1 exp(xk−1 − xk) − 3, 1 < k < n,

fk(x) = 4xk − xk−1 exp(xk−1 − xk) − 3, k = n,

x̄l = 0, l ≥ 1.

Problem 5 Singular Broyden Problem [30]:

fk(x) = ((3 − 2xk) xk − 2xk+1 + 1)2, k = 1,

fk(x) = ((3 − 2xk) xk − xk−1 − 2xk+1 + 1)2, 1 < k < n,

fk(x) = ((3 − 2xk) xk − xk−1 + 1)2, k = n,

x̄l = −1, l ≥ 1.

Problem 6 Tridiagonal System [31]:

fk(x) = 4
(
xk − x2

k+1

)
, k = 1,

fk(x) = 8xk
(
x2

k − xk−1
) − 2(1 − xk) + 4

(
xk − x2

k+1

)
, 1 < k < n,

fk(x) = 8xk
(
x2

k − xk−1
) − 2(1 − xk), k = n,

x̄l = 12 l ≥ 1.

Problem 7 Five-Diagonal System [31]:

fk(x) = 4
(
xk − x2

k+1

) + xk+1 − x2
k+2, k = 1,

fk(x) = 8xk
(
x2

k − xk−1
) − 2(1 − xk) + 4

(
xk − x2

k+1

)
+ xk+1 − x2

k+2, k = 2,

fk(x) = 8xk
(
x2

k − xk−1
) − 2(1 − xk) + 4

(
xk − x2

k+1

)
+ x2

k−1 − xk−2 + xk+1 − x2
k+2, 2 < k < n − 1,

fk(x) = 8xk
(
x2

k − xk−1
) − 2(1 − xk) + 4

(
xk − x2

k+1

)
+ x2

k−1 − xk−2, k = n − 1,

fk(x) = 8xk
(
x2

k − xk−1
) − 2(1 − xk) + x2

k−1 − xk−2, k = n,

x̄l = −2, l ≥ 1.
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Problem 8 Seven-Diagonal System [31]:

fk(x)=4
(
xk−x2

k+1

)+xk+1−x2
k+2+xk+2−x2

k+3, k=1,

fk(x)=8xk
(
x2

k−xk−1
)−2(1−xk)+4

(
xk−x2

k+1

)+x2
k−1+xk+1−x2

k+2

+xk+2−x2
k+3, k=2,

fk(x)=8xk
(
x2

k−xk−1
)−2(1−xk)+4

(
xk−x2

k+1

)+x2
k−1− xk−2+xk+1

−x2
k+2+x2

k−2+xk+2−x2
k+3, k=3,

fk(x)=8xk
(
x2

k−xk−1
)−2(1−xk)+4

(
xk−x2

k+1

)+x2
k−1−xk−2+xk+1

−x2
k+2+x2

k−2+xk+2−xk−3−x2
k+3, 3<k<n−2,

fk(x)=8xk
(
x2

k−xk−1
)−2(1−xk)+4

(
xk−x2

k+1

)+x2
k−1−xk−2+xk+1

−x2
k+2+x2

k−2+xk+2−xk−3, k=n−2

fk(x)=8xk
(
x2

k−xk−1
)−2(1−xk)+4

(
xk−x2

k+1

)+x2
k−1−xk−2+xk+1

+x2
k−2−xk−3, k=n−1,

fk(x)=8xk
(
x2

k−xk−1
)−2(1−xk)+x2

k−1−xk−2+x2
k−2−xk−3, k=n,

x̄l = −3, l ≥ 1.

Problem 9 Structured Jacobian Problem [30]:

fk(x) = −2 x2
k + 3xk − 2xk+1 + 3xn−4 − xn−3

− xn−2 + 0.5xn−1 − xn + 1, k = 1,

fk(x) = −2 x2
k + 3xk − xk−1 − 2xk+1 + 3xn−4

− xn−3 − xn−2 + 0.5xn−1 − xn + 1, 1 < k < n,

fk(x) = −2 x2
k + 3xk − xk−1 + 3xn−4 − xn−3

− xn−2 + 0.5xn−1 − xn + 1, k = n,

x̄l = −1, l ≥ 1.

Problem 10 Extended Rosenbrock Function [26]:

fk(x) = 10( xk+1 − x2
k), mod(l, 2) = 1,

fk(x) = 1 − xk−1, mod(l, 2) = 0,

x̄l = −1.2, mod(l, 2) = 1,

x̄l = 1, mod (l, 2) = 0,

Problem 11 Extended Powell Singular Function [26]:

fk(x) = xk + 10 xk+1, mod(l, 4) = 1,

fk(x) = √
5(xk+1 − xk+2), mod(l, 4) = 2,

fk(x) = (xk−1 − 2xk)
2, mod(l, 4) = 3,

fk(x) = √
10(xk−3 − xk)

2, mod(l, 4) = 0,

x̄l = 3, mod (l, 4) = 1,

x̄l = −1, mod (l, 4) = 2,

x̄l = 0, mod (l, 4) = 3,

x̄l = 1, mod (l, 4) = 0,
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Problem 12 Extended Cragg and Levy Function [26]:

fk(x) = (exp(xk) − xk+1)
2, mod(l, 4) = 1,

fk(x) = 10(xk − xk+1)
3, mod(l, 4) = 2,

fk(x) = tan2(xk − xk+1), mod(l, 4) = 3,

fk(x) = xk − 1, mod(l, 4) = 0,

x̄l = 1, mod(l, 4) = 1,

x̄l = 2, mod(l, 4) 
= 1,

Problem 13 Broyden Tridiagonal Function [26]:

fk(x) = xk(0.5xk − 3) + 2xk+1 − 1, k = 1,

fk(x) = xk(0.5xk − 3) + xk−1 + 2xk+1 − 1, 1 < k < n,

fk(x) = xk(0.5xk − 3) − 1 + xk−1, k = n,

x̄l = −1, l ≥ 1.

Problem 14 Broyden Banded Problem [28]:

k1 = max(1, k − 5), k2 = min(n, k + 1),

fk(x) = (2 + 5x2
k) xk + 1 + ∑k2

i= k1
xi( 1 + xi),

x̄l = −1, l ≥ 1.

Problem 15 Discrete Boundary-Value Problem [28]:

h = 1/(n + 1),

fk(x) = 2xk + h2( xk + 1 + hk)3/2 − xk+1, k = 1,

fk(x) = 2xk + h2( xk + 1 + hk)3/2 − xk−1 − xk+1, 1 < k < n,

fk(x) = 2xk + h2( xk + 1 + hk)3/2 − xk−1, k = n,

x̄l = lh(lh − 1), l ≥ 1.

Problem 16 Broyden Tridiagonal Problem [28]:

fk(x) = (3 − 2xk) xk − 2xk+1 + 1, k = 1,

fk(x) = (3 − 2xk) xk − xk−1 − 2xk+1 + 1, 1 < k < n,

fk(x) = (3 − 2xk) xk − xk−1 + 1, k = n,

x̄l = −1, l ≥ 1.

Problem 17 Modified Rosenbrock [32]:

fk(x) = 1

1 + exp(−xk)
− 0.73, mod(k, 2) = 1,

fk(x) = 10(xk − x2
k−1), mod(k, 2) = 0,

x̄l = −1.8, mod(l, 2) = 1,

x̄l = −1, mod(l, 2) = 0,
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Problem 18 Augmented Rosenbrock [32]:

fk(x) = 10(xk+1 − x2
k), mod(l, 4) = 1,

fk(x) = 1 − xk−1, mod(l, 4) = 2,

fk(x) = 1.25xk − 0.25x3
k, mod(l, 4) = 3,

fk(x) = xk, mod(l, 4) = 0,

x̄l = 3, mod (l, 4) = 1,

x̄l = −1, mod (l, 4) = 2,

x̄l = 0, mod (l, 4) = 3,

x̄l = 1, mod (l, 4) = 0,

Problem 19 Diagonal of three variables premultiplied by a quasi-orthogonal
matrix [32]:

fk(x) = 0.6 xk + 1.6 x3
k+1 − 7.2 x2

k+1 + 9.6xk − 4.8, mod(l, 3) = 1,

fk(x) = 0.48 xk−1 − 0.72 x3
k + 3.24 x2

k − 4.32xk

− xk+1 + 0.2x3
k+1 + 2.16 mod(l, 3) = 2,

fk(x) = 1.25xk − 0.25x3
k, mod(l, 3) = 0,

x̄l = 50, mod (l, 3) = 1,

x̄l = .5, mod (l, 3) = 2,

x̄l = −1, mod (l, 3) = 0.

Problem 20 Quadratics and nonlinear equation [32]:

Qk ∈ �(n−1)×(n−1), k = 1, 2, 3, . . . , n − 1, and b k ∈ �n−1, k = 1, 2, 3, . . . , n − 1

have random elements between −1 and 1. We define

fk(x) = 1

2
xT Qkx + b T

k x, for k = 1, 2, 3, . . . , n − 1,

and fn(x) = atan(x1 + x2 + · · · + xn)

x̄l = 1, mod(l, 4) = 1,

x̄l = 10, mod(l, 4) = 2,

x̄l = 100, mod(l, 4) = 3,

x̄l = 1000, mod(l, 4) = 0.
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