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Abstract   Finding the equilibrium path by non-linear structural analysis is one of the most 
important subjects in structural engineering. In this way, Incremental-Iterative methods are extremely 
used. This paper introduces several factors in incremental steps. In addition, it suggests some control 
criteria for the iterative part of the non-linear analysis. These techniques are based on the geometric of 
equilibrium path. Finally, some examples illustrate the capabilities of suggested approaches. 
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ايـن   بـرای . اسـت ها در مهندسی سـازه   ترين هدف  از مهم   يکی ، تحليل غيرخطی  بايافتن مسير ايستايی       چکيده

هـای گونـاگونی را بـرای گـام نمـوی             اين مقاله، عامل  . است شدهتکراری بسياری استفاده    ـ های نموی   ، روش کار
. شـود   کارهای کنترلی پيشنهاد مـی     ههمچنين، برای قسمت تکراری تحليل غيرخطی، شماری از را        . کند معرفی می 
  نشان دادن توانـايی راه     برای عددی   ةپايان، چندين نمون   در. اند   مسير ايستايی بنا شده    ةاساس هندس  ها بر   اين روش 

 .شود عرضه میکارهای پيشنهادی 
 
 

1. INTRODUCTION 
 
Incremental-iterative methods are able to perform 
non-linear analysis for structural problems. These 
approaches can trace the equilibrium path by 
predictor and corrector steps. Most of the iterative 
techniques follow the classical Newton-Raphson 
procedure with some modifications. In this 
method, load factor remains constant during 
iterations. This makes the analysis divergent when 
it faces the limit points on the equilibrium path. In 
order to solve the mentioned problem, other 
criteria have been examined, such as displacement 
[1], work [2,3], residual energy [4], orthogonality 
[5] and so on. In this way, the comparison of 
various techniques could reveal the advantages and 
disadvantages of presented approaches [6,7]. 
     One of the most applicable techniques is the 
Arc-Length Method. In 1979, Riks introduced the 
constant arc-length which could pass the limit and 

turning points [8]. Subsequently, Crisfield modified 
Riks' approach and established the cylindrical arc-
length method [9,10]. Afterwards, Fujii and Ramm 
investigated the path switching for bifurcation 
points in equilibrium paths [11]. For more 
simplification, the linearization techniques (e.g. 
orthogonality [5]) can be applied. 
      On the other hand, the incremental part plays an 
important role in analysis convergence. Selecting 
suitable parameters in predictor steps, could make 
an excessive impression on the rate of convergence, 
specially in highly non-linear problems [12,13]. 
For example, a proper extrapolation in the 
incremental part can avoid divergence [14,15]. 
Incremental-iterative techniques, as a solution of 
non-linear problems, are also able to combine with 
Neural Networks, Boundary Element Method and 
Normal Flow Algorithm [16-18]. 
      This paper aims to suggest some geometrical 
parameters to modify the corrector part of 
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incremental-iterative solution. Furthermore, several 
incremental factors are examined to obtain the 
compatibility between suggested techniques and 
incremental parameters. Section 2 describes the 
incremental-iterative procedure. Afterwards, various 
formulations for the corrector load factor are 
suggested in Section 3. The state of predictor step 
is shown in Section 4. Finally, a number of 
numerical examples are provided to evaluate the 
suggested methods. 
 
 
 

2. THE INCREMENTAL-ITERATIVE 
METHOD 

 
In this section, the structure of incremental-
iterative analysis will be reviewed. As it is 
observed in Figure 1, the n th increment starts at 
equilibrium point )1n( − . 
     First iterative point can be achieved by 
linearization: 
 

Pn
1

n
1u1nK λΔ=Δ−  (1) 

 
Where, 1nK −  is the tangent stiffness matrix at 

)1n( − , uΔ  represents the incremental displacement, 
λΔ  shows the incremental load factor and P  is the 

external load vector. Superscripts and subscripts 

indicate the number of increment and iteration, 
respectively. After each increment, iterative 
process begins. At this stage, n

iδλ  and n
iuδ , 

corrector load and displacement factors, are 
calculated and improve the incremental factors: 
 

n
i

n
i

n
1i δλ+λΔ=+λΔ  (2) 

 
n
iun

iun
1iu δ+Δ=+Δ  (3) 

 
In order to compute n

iuδ , the following linear 
problem should be solved: 
 

n
ir

n
iun

iK =δ  (4) 
 
where, n

ir  is the decreased residual force, and can 
be obtained by 
 

Pn
i

n
ir

~n
ir δλ+=  (5) 

 
In this equation, n

ir
~  represents a residual force 

vector. By substituting Equation 5 into (4), n
iuδ  

can be computed as follows: 
 

n
iun

i
n

iun
iu ′δδλ+′′δ=δ  (6) 

 
 
 

 
 

Figure 1. The structure of incremental-iterative method. 
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Here, n
iu ′′δ  and n

iu′δ  have been produced by the 
residual force and external load, respectively: 
 

n
ir

~n
iun

iK =′′δ  (7) 
 

Pn
iun

iK =′δ  (8) 
 
Equations 7 and 8 have no answers when the n th 
increment is located so close to a critical point. In 
order to overcome this problem, a coefficient 
should be considered beside the increment factor. 
     As it is observed, another equation is needed to 
estimate n

iδλ  and complete the non-linear analysis 
process. It is needless to say that using a proper 
equation can have a great effect on the rate of 
convergence. There are many methods based on 
various assumptions to obtain a formula for n

iδλ . 
Most of these approaches have been extracted from 
the geometry of the load-displacement diagram. In 
1981, Crisfield introduced one of the most reliable 
techniques in computation of the corrector load 
factor. He assumed that the length of n

1iu +Δ  is 
constant for all iterations in each increment and it 
equals to the initial value nL  [9]: 
 

n
1u

Tn
1u2)nL( ΔΔ=  (9) 

 

2)nL(n
1iu

Tn
1iu =+Δ+Δ  (10) 

 
After substituting Equations 3 and 6 into (10), n

iδλ  
can be computed by solving Equation 11: 
 

0c)n
i(b2)n

i(a =+δλ+δλ  (11) 
 

n
iu

Tn
iua ′δ′δ=  (12) 

 
n

iuT)n
iun

iu(2b ′δ′′δ+Δ=  (13) 
 

2)nL()n
iun

iu(T)n
iun

iu(c −′′δ+Δ′′δ+Δ=  (14) 
 
The mentioned approach is called The Cylindrical 
Arc-Length Method [9]. Because of simplicity in 
computer programming and adequate reliability, 

this technique is excessively used in non-linear 
analyses. 
 
 
 

3. ESTIMATION OF THE CORRECTOR 
LOAD FACTOR 

 
There are many methods to procure a suitable 
formula for n

iδλ . This section suggests some 
techniques which can be applied for highly non-
linear problems. 
 
3.1. Linearization of Arc-Length Method   
The cylindrical arc-length method leads to a second 
order Equation 10. It can cause some problems 
when one of two answers is selected. To avoid this, 
Equation 10 is replaced by the following equation: 
 

2)nL()n
iun

1u(
Tn

iu =δ+ΔΔ  (15) 
 
Where, nL  is obtained by using Equation 9. 
Considering Equation 6, n

iδλ  is available by a linear 
equation: 
 

n
iu

Tn
iu

)n
iun

1u(
Tn

iu2)nL(n
i

′δΔ

′′δ+ΔΔ−
=δλ  (16) 

 
3.2. Orthogonality of n

1uΔ  and n
iuδ    One of the 

assumptions, that can lead to a simple formula for 
a corrector load factor, is to make an orthogonal 
condition between n

1uΔ  and n
iuδ : 

 

0n
iu

Tn
1u =δΔ  (17) 

 
By applying Equation 6, the value of n

iδλ  will be in 
hand: 
 

n
iu

Tn
1u

n
iu

Tn
1un

i
′δΔ

′′δΔ
−=δλ  (18) 

 
3.3. Minimizing Residual Length   Another 
parameter, which can be useful in non-linear 
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analysis, is the residual length shown by n
iS  in 

each iteration. It is defined by summation of n
iuδ  

and n
ir : 

 
n
ir

n
iun

iS +δ=  (19) 
 
Minimizing the value of the residual length is one 
of the techniques that results in a suitable formula 
for n

iδλ : 
 

0)n
iS

Tn
iS( =

λ∂
∂  (20) 

 
By substituting Equations 5, 6 and 19 into (20), the 
corrector load factor will be obtained: 
 

)Pn
iu(T)Pn

iu(

)Pn
iu(T)n

ir
~n

iu(n
i +′δ+′δ

+′δ+′′δ
−=δλ  (21) 

 
It is noteworthy that the load and the displacement 
have been divided by the length of the relative 
vectors at the first Predicator Step. Consequently, 
Equation 20 is dimensionless. 
 
3.4. Minimizing the Residual Area   The residual 

area (or the residual energy) is an applicable 
parameter in estimation of the corrector load factor 
during non-linear analysis. This factor is a product 
of decreased residual force and corrector 
displacement factor. Minimizing the residual area 
(the area abcd in Figure 2) can be a proper criterion 
for iterative part of the analysis: 
 

0)n
iu

Tn
ir( =δ

λ∂
∂  (22) 

 
By applying Equations 5 and 6, n

iδλ  is achieved: 
 

n
iuTP2

n
iu

Tn
ir

~n
iuTPn

i ′δ

′δ+′′δ
−=δλ  (23) 

 
3.5. Minimizing Residual Perimeter   Another 
practical parameter is the residual perimeter. In 
fact, this factor is the perimeter of the residual area 
in Figure 2. Similar to the previous approach, 
minimizing the perimeter leads to a suitable 
formula for the corrector load factor: 
 

0)n
ir

Tn
ir2n

iu
Tn

iu2( =+δδ
λ∂
∂  (24) 

 
Similar to Section 3.3, Equation 24 is 

 
 
 

 
 

Figure 2. Residual load-displacement diagram. 
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dimensionless. By considering Equations 5 and 
6, n

iδλ  will be obtained: 
 

PTPn
iu

Tn
iu

P
Tn

ir
~n

iu
Tn

iun
i

+′δ′δ

+′δ′′δ
−=δλ  (25) 

 
 
 

4. PREDICATOR STEP 
 
When the equilibrium point )1n( −  is definite, the 
load incremental factor ( n

1λΔ ) should be estimated 
at the beginning of the next step. There is no need 
to mention that the increment is directly related to 
the convergence of the analysis. In other words, if 
the value of increment were inordinately chosen 
large or small, the problem would become divergent 
or the rate of convergence would decrease. 
      Other incremental parameters can be utilized 
instead of the load increment. One of them is the 
length of the equilibrium path and called the length 
incremental factor ( nL ). The value of nL  is 
dependent on previous length increment ( 1nL − ) [19]: 
 

2
1

1nJ
DJ

1nLnL
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
−±=  (26) 

 
Where, DJ  and 1nJ −  are the number of selected 
iterations by the analyzer and the number of 
iterations in the preceding steps, respectively. 
Therefore, the load incremental factor at predicator 
step can be achieved by substituting Equation 26 
into the following equation: 
 

PTPn
1uTP2n

1u
Tn

1u

nLn
i

+′Δ+′Δ′Δ

±=δλ  (27) 

 
Where, n

1u′Δ  is obtained by solving a linear equation: 
 

Pn
1u1nK =′Δ−  (28) 

 
The first value of length incremental factor ( 1L ) 
depends on the value of load increment at the initial 

point ( 1
1λΔ ): 

 

PTP2)1
1(1

1uTP1
121

1u
T1

1u2)1L( λΔ+ΔλΔ+ΔΔ=  (29) 
 
In addition, the constant arc-length and cylindrical 
arc-length incremental factors (named the 
perimeter and displacement increments, 
respectively) have been applied by researchers. If 

1
1

T1
1 uP2 ΔλΔ  in Equation 29 and n

1
T uP2 ′Δ  in 

Equation 27 were omitted, the procedure of 
perimeter increment would be achieved. Similarly, 
by neglecting PPT  and PP)( T21

1λΔ , displacement 
incremental factor will be in hand. Another 
parameter, which is used in non-linear analysis, is 
the work (area) incremental factor. 
 
 
 

5. NUMERICAL EXAMPLES 
 
In this section, some examples are given to evaluate 
the advantages and disadvantages of the suggested 
methods. The behavior of the provided structures is 
highly non-linear (including snap-through and 
snap-back behaviors) and the analyses have been 
performed by several incremental factors. By 
doing this, the effects of incremental parameters on 
the iterative process can be seen. In the following, 
four space trusses and a shallow arch are analyzed 
by the cylindrical arc-length and five suggested 
methods. In these examples, the effect of material 
non-linearity is not considered and this paper 
focuses on geometrically non-linear structures. 
Each example contains the shape and properties of 
the structure, load-displacement diagram and a 
table. Tables give the number of iteration for each 
method which is related to the incremental factor. 
The sign of "—" in tables shows that the approach 
becomes divergent. In addition, the diagrams of 
load-displacement are based on cylindrical arc-
length with displacement increment. 
 
5.1. The Space Truss    Many 2D and 3D trusses 
are investigated in literatures [20,21]. Figure 3 
illustrates one of the simplest structures including 
limit points [22]. This structure has 4 members and 
3 degrees of freedom. The properties of the space 
truss are dimensionless and assumed as follows: 
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1A = , 100E = , 100H = , 375.2=γ , 100P = , 
2.01

1 =λΔ , 2JD = , 10Jmax =  and permitted error 
4

C 10−=ε . 
      The equilibrium path of the structure includes 
two limit points (Figure 4). Table 1 reveals that all 
the suggested techniques have the same iteration 
number in comparison with the cylindrical arc-

length method for each increment factor. As Table 1 
shows, load parameter makes the analysis divergent. 
 
5.2. The Truss Arch   As it can be seen, Figure 5 
shows a truss arch with 24 members and 21 
degrees of freedom [23,18]. 
     In this figure, the values of A , E , H , L , S  and 
W  are equal to 317 mm2, 3 × 103 N/mm2, 62.16 mm, 

 
 
 

 
 

Figure 3. The space truss. 
 
 
                                   λP/AE 

 
 

Figure 4. The load-displacement diagram for the space truss. 
 
 
 

TABLE 1. The Number of Iterations in the Analysis of the Space Truss. 
 

Incremental Factors 
Method 

Load Displacement Length Perimeter Area 

All Methods — 54 34 44 36 
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433 mm, 250 mm  and 20 mm, respectively. At the 
beginning of analysis, P  is assumed N150 , 1

1λΔ  is 
5.0 , DJ  equals 5 , maxJ  is 15  and Cε  is equal to 410− . 

     Figure 6 illustrates the load-displacement diagram 
containing two limit points. Table 2 presents the 
number of iteration for each approach with several 
incremental parameters. As it is shown, the 
displacement factor has almost the least iteration 
during analysis. Again, the load parameter does 
not obtain the correct equilibrium path. In this 
example, Minimizing Residual Length and 
Minimizing Residual Perimeter converge to the 
equilibrium point for most of the incremental 
factors, although the number of iteration has 
increased. 
 
5.3. The Truss Dome   The space truss in Figure 7 
has 264 members and 219 degrees of freedom [24]. 
This structure includes many degrees of freedom. 
Some characteristics of this truss are: A = 450 mm2, 
E = 2.1 × 105 N/mm2, H = 4580 mm, P = 15 × 103 N, 

15.01
1 =λΔ , 5JD = , 20Jmax =  and 4

C 10−=ε . 
     The load-displacement diagram, similar to 
previous examples, contains two limit points 
(Figure 8). The number of iterations for each 
method is provided in Table 3. As it can be 
observed, the displacement factor leads to answer 
for all mentioned techniques, especially for 
Cylindrical Arc-Length and Minimizing Residual 
Area which reach the minimum iteration. 
     Four suggested methods converge to the 
equilibrium path with three different incremental 
factors in similar way. 
 
5.4. The Shallow Truss Dome   The structure in 
Figure 9 has 168 members and 147 degrees of 
freedom [25,18]. Some characteristics of the shallow 
truss dome are assumed as follows: A = 100 mm2, 
E = 103 N/mm2, H = 1790.22 mm, P = 1000 N, 

25.01
1 =λΔ , 6JD = , 20Jmax =  and 4

C 10−=ε . 
      Figure 10 illustrates the diagram of the load-
displacement. This structure buckles two times 
during analysis. Table 4 presents the number of 
iteration for each approach with several incremental 
factors. Except Minimizing Residual Area method, 
all techniques trace the equilibrium path with 
displacement, length and perimeter increments. 
Cylindrical Arc-Length and Orthogonality of n

1uΔ  

and n
iuδ  reach the equilibrium path with minimum 

iteration. Conversely, Linearization of Arc-Length 
needs the maximum iteration. 
 
5.5. The Shallow Arch   The structure shown in 
Figure 11 has a complicated behavior [6]. The arch 
is located on a circle arc and divided into 10 
elements. The values of A , I , E , H , L  and W  
are dimensionless and equal to 410 , 810 , 200 , 
500 , 5000  and 200 , respectively. At the beginning 
of analysis, P  is 1000 , 1

1λΔ  is assumed 4.0 , DJ  
equals 5 , maxJ  is 15  and Cε  is equal to 410− . 
     The equilibrium path of the structure includes 
two turning points and two limit points. Figure 12 
displays the diagrams of load-displacement. Table 5 
presents the number of iteration for each technique 
with several incremental parameters. As it can be 
seen, the Orthogonality of n

1uΔ  and n
iuδ  and 

Minimizing Residual Area are become divergent 
for all incremental factors. On the other hand, 
Cylindrical Arc-Length with length incremental 
factor results in the minimum iteration. 
Linearization of Arc-Length, Minimizing Residual 
Length and Minimizing Residual Perimeter act 
similarly. It is noteworthy that these methods are 
convergence for a load incremental factor. 
 
 
 

6. CONCLUSION 
 
The modification of the incremental-iterative 
method is an important subject in non-linear 
analysis. To this aim, many efforts were made to 
find a fast and reliable solution for different 
problems. This paper aims to prove that various 
techniques can be used for iterative part of the non-
linear analysis. In addition, the compatibility 
between incremental factors and iterative methods 
was discussed by investigating highly non-linear 
problems. In some cases, a number of provided 
techniques became divergent which means they 
need revising. Conversely, other approaches traced 
the equilibrium path successfully for all numerical 
examples. In most of the analyses, displacement 
and perimeter increments led to the reliable 
answers. On the other hand, the load and area 
incremental factors make the non-linear analysis 
divergent. 
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Figure 5. The truss arch. 
 
 
 
                              (λP/AE)*10-4 

 
 

Figure 6. The load-displacement diagram for the truss arch. 
 
 
 

TABLE 2. The Number of Iterations in the Analysis of the Truss Arch. 
 

Incremental Factors 
Method 

Load Displacement Length Perimeter Area 

Cylindrical Arc-Length 
Linearization of Arc-Length 

Orthogonality of n
1uΔ  and n

iuδ  

Minimizing the Residual Length 
Minimizing the Residual Area 
Minimizing the Residual Perimeter 

— 
— 
— 
— 
— 
— 

61 
61 
61 

153 
66 

145 

— 
— 
— 
96 
— 
96 

69 
74 
69 

100 
92 

100 

— 
— 
— 

102 
— 

108 
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Figure 7. The truss dome. 
 
 
 
                            (λP/AE)*10-5 

 
 

Figure 8. The load-displacement diagram for the truss dome. 
 
 
 

TABLE 3. The Number of Iterations in the Analysis of the Truss Dome. 
 

Incremental Factors 
Method 

Load Displacement Length Perimeter Area 

Cylindrical Arc-Length 
Linearization of Arc-Length 

Orthogonality of n
1uΔ  and n

iuδ  

Minimizing the  Residual Length 
Minimizing the Residual Area 
Minimizing the Residual Perimeter 

— 
— 
— 
— 
— 
— 

52 
74 
69 
75 
52 
79 

— 
65 
93 
69 
— 
69 

— 
64 
93 
69 
— 
69 

— 
— 
— 
— 
— 
— 
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Figure 9. The shallow truss dome. 
 
 
 
                                          (λP/AE)*10-3 

 
 

Figure 10. The load-displacement diagram for the shallow truss dome. 
 
 
 

TABLE 4. The Number of Iterations in the Analysis of the Shallow Truss Dome. 
 

Incremental Factors 
Method 

Load Displacement Length Perimeter Area 

Cylindrical Arc-Length 
Linearization of Arc-Length 

Orthogonality of n
1uΔ  and n

iuδ  

Minimizing the Residual Length 
Minimizing the Residual Area 
Minimizing the Residual Perimeter 

— 
— 
— 
— 
— 
— 

99 
244 
101 
116 
— 

116 

140 
195 
147 
183 
— 

183 

152 
193 
141 
177 
— 

176 

— 
— 
— 
— 
— 
— 
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