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Abstract 
This study is about soot emission prediction of a turbo-
charged DI diesel engine in different opening ranges of 
waste-gate using artificial neural network. For training 
and testing the ANN model, different opening ranges of 
waste-gate were supplied using an adjustable spring to 
load the actuating rod of the waste-gate in which, 
increasing the opening range of the waste-gate 
decreases the inlet manifold pressure. The maximum 
inlet manifold pressures in test were 0.1 bar, 0.15 bar, 
0.2 bar, 0.23 bar, 0.26 bar, 0.35 bar and 0.52 bar over 
atmosphere and experiments were conducted under the 
ECE-R49, 13 mode standard test. Using six ranges of 
the experimental data for training, an ANN model based 
on standard back-propagation algorithm for the engine 
was developed. Inputs for the ANN are inlet manifold 
pressure, inlet manifold temperature, mass flow rate of 
inlet air, fuel consumption, torque and engine speed. 
Output is density of soot in the exhaust manifold. The 
accuracy of the ANN was tested by comparing the 
predictions with seventh range of experimental results. 
Root mean squared-error (RMSE), fraction of variance 
( ) and mean absolute percentage error (MAPE) were 
found to be 3.4 , 0.998 and 8.1% respectively. 
 
Keywords: Artificial neural network, DI Diesel engine, 
waste-gated turbocharger, soot emission. 
 
Introduction 
Diesel engines are able to operate at higher compression 
ratios than conventional gasoline engines and also they 
are lean burn. These reasons lead to better fuel economy 
than conventional gasoline engines. So they are widely 
used in transporting systems. Despite these advantages, 
diesel engines suffer from environmental drawbacks 
such as high level of exhaust , soot and particulate 
matter [1]. Because of harmful influence of these 
exhaust emissions on environment, there have been 
widespread attempts to reduce the exhaust emissions of 
diesel engines and consequently the influence of these 
emissions on environment. 
The inlet manifold air state has great effect on soot 
emission. Temperature has the greatest effect of any 
parameter on the sooting process by increasing all of the 
reaction rates involved in soot formation and oxidation 
[2]. High temperatures at the time of injection reduce air 
entrainment and increase the soot formation, while high 
temperatures at the end of the combustion enhance the 
burn-out of soot [2]. 
L.M. Pickett and D.L. Siebers [3], have studied a 
measurement of soot distributions in fuel jets injected 
into high-temperature, high-pressure diesel-like 

operating conditions were made in an optically 
accessible constant-volume combustion vessel. Their 
results show that peak soot level in a fuel jet increases 
with increasing ambient gas temperature, with the 
increase scaling linearly with temperature. Also they 
found, overall, the trends observed in diesel fuel jet soot 
closely correlate with the cross-sectional average 
equivalence ratio at the lift-off length, with soot levels 
decreasing as the equivalence ratio decreases [3]. So, for 
these reasons, any variation in the inlet manifold 
pressure which changes the in-cylinder gas temperature 
and pressure can affect the soot formation and soot 
oxidation in a diesel engine. 
Artificial neural-network (ANN) models allow the 
modeling of physical phenomena in complex systems 
without requiring explicit mathematical representations. 
The use of ANNs for modeling the operation of internal 
combustion engines is a more recent progress. This 
approach was used to predict the performance and 
exhaust emissions of diesel engines [4-8] and the effects 
of valve-timing in a spark ignition engine on the engine 
performance and fuel economy [9]. Compressor’s 
characteristic performance map was also investigated 
using ANNs [10]. 
In this study, the effects of opening range of waste gate 
(O.R.W.G.) on density of exhaust soot emission of a 
turbo-charged DI diesel engine is modeled by using an 
ANN. This approach was applied because testing the 
engine in our previous study [11] is a time consuming 
and expensive process. So we used ANN modeling as 
an alternative of the engine. In that study the maximum 
inlet manifold pressures which were supplied by 
changing the opening range of waste-gate were 0.1 bar, 
0.23 bar, 0.26 bar and 0.52 bar over atmosphere and 
experiments were conducted under the ECE-R49, 13 
mode standard test. Because we needed more data for 
modeling, we added three more ranges of inlet manifold 
pressures. The additional maximum inlet pressures are 
0.15 bar, 0.2 bar and 0.35 bar. 
 
Experiments 
As Fig. (1) shows, the experiments were performed on a 
four cylinder, turbocharged DI diesel engine. The main 
specifications of the diesel engine are given in table (1). 
The experiments in previous study were repeated for 
four maximum inlet manifold pressures which were 
supplied by four opening ranges of waste-gate under the 
ECE-R49, 13 mode standard test. In this study cause we 
needed more data for training the ANN model we added 
three more maximum inlet manifold pressures. The 
additional maximum inlet manifold pressures are 0.15 
bar (W.G.O.R. No.5), 0.2 bar (W.G.O.R. No.6) and 0.35 
bar (W.G.O.R. No.7). Torque was exerted to the engine 
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by a Froude hydraulic dynamometer, and the engine 
speed was recorded using a magneto-electrical speed 
sensor. The temperature of inlet and exhaust manifold 
temperature were recorded utilizing K-type 
thermocouples while the pressure of inlet and exhaust 
manifold were measured using Bourdon pressure gage. 

The soot emission was measured using the AVL-415 
soot analyzer. The measurements accuracies were listed 
in table (2). You can see schematic of the experimental 
setup in Fig. 1. 
 

 

 
Fig.1. Schematic of the experimental setup 

 
Table 1: OM314 engine specifications 

Engine and turbocharger Specification 
Engine type 4 stroke diesel engine 

Number of cylinder 4 
Combustion chamber Direct injection 
Bore _ stroke (mm) 97  128 

Piston displacement (cc) 3784 
Compression ratio 17:1 

Maximum power (hp) 85 
Maximum torque (N.m) 235 
Maximum speed (rpm) 2800 
Turbocharger turbine Radial type 

Turbocharger compressor Centrifugal type 
 

Table 2: Accuracies of the measurement 
Measurement Accuracy 

Torque ±0.5 N.m 
Speed ±1 rpm 
Soot ±1 mg/m3 

Pressure ±1 mm Hg 
Temperature ±0.1 _C 

 
 
Brake specific soot calculation 
ECE-R49 test comprises the multi-mode steady state 
tests which each mode has a special load and speed with 
its special weighting factor [12]. At each mode, soot 
emission and engine power were recorded. Brake 
specific soot emission was calculated by equation (1) 
[12]: 

 

(1)

Where, corrected brake power is obtained using 
Equation (2): 

 
(2) 

According to page 270 of Ref. [10]  is the correction 
factor which is given by Equation (3): 
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(3) 

The mass flow rate of soot is given by equation (4): 
360010 3 ⋅⋅⋅= −

esootsoot Qm ρ&  (4) 
 is the volumetric flow rate of exhaust gas and is 

obtained as follows: 
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The pressure of exhaust gas was measured by a pressure 
gage, so the exhaust gas density was obtained as: 
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Air mass flow rate is given by Equation (7): 

airorificloda hAcm ρρ ⋅∆⋅×⋅⋅= 81.92&

 
(7) 

Where  is difference in elevation of orifice. 
Fuel mass flow rate is: 

f
f

f t
m ρ

61050 −×
=& (8) 

Where  is diesel-fuel density which was equal to 830 
kg/m3 and  is the required time for consumption of 50 
cc of fuel. 
 
 

 
Table 3: Waste gate opening range No. 5 

Mode 
No. 

Torque 
(N.m) 

Speed 
(rpm) 

 
   (kW) Eq. ratio 

 

   (Pa) 
 

 
 

( ) 
 

(bar) 
 

 
1 5 700 13 1.09 0.3996 0.15385 73.87 80 1415.4 3.3 0.05744 0.0162 24.5 
2 23.5 1830 15 1.095 4.9315 0.23958 166.4 140 1423.0 2 0.00718 0.0477 29.4 
3 58.5 1830 16 1.099 12.318 0.30002 173.6 170 1556.2 3.2 0.00515 0.0577 31 
4 117.5 1830 17 1.1 24.775 0.43547 174.3 219 1665.0 5.2 0.00468 0.0792 32.2 
5 176 1830 18 1.104 37.231 0.57230 175.4 283 1939.4 19.7 0.01351 0.101 33.8 
6 235 1830 18 1.102 49.631 0.75028 168.8 362 2738.3 187.8 0.33259 0.132 36 
7 5 700 17 1.099 0.4028 0.10310 83.9 190 1759.4 4.8 0.12251 0.02 29 
8 194 2800 18 1.101 62.65 0.80510 226.6 415 5120.0 187.5 0.14985 0.15 40.5 
9 145.5 2800 20 1.108 47.266 0.61932 231.1 363 4629.0 121.97 0.02420 0.122 39 
10 97 2800 20 1.108 31.515 0.50218 227 302 4086.0 82 0.02159 0.111 37.0 
11 48.5 2800 21 1.112 15.809 0.371470 226.4 241 3545.1 32 0.01495 0.0831 35.5 
12 19.5 2800 22 1.113 6.3641 0.28682 229.7 205 3187.3 22.7 0.02482 0.0654 34.7 
13 5 700 20 1.108 0.4061 0.125360 72.06 112 1687.3 3 0.05432 0.0124 24.8 

 
Table 4: Waste gate opening range No. 6 

Mode 
No. 

Torque 
(N.m) 

Speed 
(rpm) 

 
   (kW) Eq. ratio 

 

   (Pa) 
 

 
 

( ) 
 

(bar) 
 

 
1 5 700 12 1.087 0.3985 0.16562 67.30 79 1399.4 3.4 0.05393 0.015 22.4 
2 23.5 1830 15 1.095 4.9326 0.20890 184.8 132 1366.5 2 0.00780 0.055 29.5 
3 58.5 1830 16 1.098 12.304 0.27468 186.5 162 1499.7 3.7 0.00630 0.065 31 
4 117.5 1830 17 1.099 24.751 0.403480 187.2 209 1623.8 5.5 0.00521 0.098 33 
5 176 1830 18 1.104 37.224 0.52963 190.6 269 1892.9 17 0.01232 0.13 35.8 
6 235 1830 17 1.099 49.511 0.69394 181.4 336 2608.0 165.6 0.30243 0.18 37.9 
7 5 700 18 1.102 0.4040 0.12480 80.80 190 1759.4 2 0.04908 0.02 29.8 
8 194 2800 16 1.099 62.495 0.71288 251.3 391 5002.0 177 0.15093 0.2 43 
9 145.5 2800 18 1.103 47.059 0.57465 243.7 343 4483.0 133 0.02704 0.16 40.4 
10 97 2800 19 1.104 31.414 0.45785 239.2 284 3946.1 88.5 0.02385 0.14 38.3 
11 48.5 2800 21 1.110 15.783 0.32025 244.6 223 3389.8 28 0.01363 0.11 37.5 
12 19.5 2800 21 1.111 6.3530 0.24926 246.5 189 3069.3 19.4 0.02199 0.081 35.2 
13 5 700 21 1.110 0.4069 0.12538 74.40 103 1628.6 3 0.05478 0.013 25.6 

 
Table 5: Waste gate opening range No. 7 

Mode 
No. 

Torque 
(N.m) 

Speed 
(rpm) 

 
 

  (kW) Eq. ratio  

 
  (Pa) 

 
 

 
( ) 

 
(bar) 

 
 

1 5 700 11 1.085 0.3976 0.12131 84.9 85 1244.8 2.9 0.05915 0.0037 17 
2 23.5 1830 13 1.09 4.9094 0.20556 197.7 131 1286.1 0.35 0.00147 0.070 27.5 
3 58.5 1830 14 1.092 12.238 0.25520 199 157 1422.7 3.9 0.00703 0.10 29.5 
4 117.5 1830 14 1.093 24.62 0.36653 205 204 1502.6 5.4 0.00556 0.15 34 
5 176 1830 16 1.096 36.982 0.46323 215 247 1761.9 12.6 0.00991 0.21 39 
6 235 1830 18 1.104 49.713 0.58299 222 294 2462.6 69 0.14225 0.26 44.5 
7 5 700 16 1.098 0.40238 0.11893 78.8 123 1448.7 2.9 0.05983 0.019 26.8 
8 194 2800 16 1.099 62.503 0.57751 320.89 349 4852.9 162.4 0.16438 0.35 53.9 
9 145.5 2800 19 1.105 47.132 0.42999 319.1 296 4354.8 147.6 0.03591 0.3 50.1 
10 97 2800 20 1.109 31.532 0.33132 317.8 256 3821.7 100.9 0.03391 0.25 48.5 
11 48.5 2800 21 1.11 15.784 0.25976 297 199 3271.4 37.8 0.02118 0.19 43.8 
12 19.5 2800 20 1.108 6.337 0.21728 283.2 172 2860.2 25 0.03143 0.17 40.8 
13 5 700 21 1.11 0.4067 0.11360 83.6 111 1570.5 3 0.06292 0.019 29 
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The neural-network model 
A neural network is a general mathematical computing 
paradigm that models the operations of biological neural 
systems. The nonlinear nature of neural networks, the 
ability of neural networks to learn from their 
environments in supervised as well as unsupervised 
ways, the universal approximation property of neural 
networks make them highly suited for solving complex 
problems[13]. 
 

 
Fig.2. McCulloch and Pitts’ neuron model 

 
Neural networks consist of neurons. As shown in Fig.2, 
each neuron consists of two parts: the net function and 
the activation inputs  are combined 
inside the neuron. 
In this figure, a weighted linear combination is adopted: 

 
(10) 

 are parameters known as synaptic 
weights. The quantity θ is called the bias (or threshold) 
and is used to model the threshold. In the literature, 
other types of network input combination methods have 
been proposed [13-14]. 
The output of the neuron, denoted by  in this figure, is 
related to the network input  via a linear or nonlinear 
transformation called the activation function: 
 

 (11) 
 
In various neural network models, different activation 
functions have been proposed. In this study sigmoid and 
pure-line functions are used but you can use any other 
common used activation functions in modeling process 
[13-14]. 
A multilayer perceptron (MLP) neural network model 
consists of a feed-forward, layered network of 
McCulloch and Pitts’ neurons. Each neuron in an MLP 
has a nonlinear activation function that is often 
continuously differentiable. One of the most frequently 
used activation functions for MLP includes the sigmoid 
function. A typical MLP configuration is depicted in 
Fig.3. Each circle represents an individual neuron. 
These neurons are organized in layers, labeled as the 
hidden layer #1, hidden layer #2, and the output layer in 
this figure. While the inputs at the bottom are also 
labeled as the input layer, there is usually no neuron 
model implemented in that layer. The name hidden 
layer refers to the fact that the output of these neurons 
will be fed into upper layer neurons and, therefore, is 
hidden from the user who only observes the output of 

neurons at the output layer. Fig.3 illustrates a popular 
configuration of MLP where interconnections are 
provided only between neurons of successive layers in 
the network [13]. 
 

 
Fig.3. A three-layer multilayer perceptron configuration 

 
An important step when accommodating a neural 
network is the training. For training an input is 
introduced to the network with its especial output. The 
neural network initially chooses the weight and bias 
values randomly. These values will be updated in each 
iteration to produce the desired outputs. The weights, 
after training, contain meaningful information, whereas 
before training, they are random and have no meaning. 
When a satisfactory level of performance is reached, the 
training stops, and the network uses these weights to 
make decisions. 
In this study, the learning algorithm called the back-
propagation was applied for the feed-forward network. 
Backpropagation was created by generalizing the 
Widrow-Hoff learning rule to multiple-layer networks 
and nonlinear differentiable transfer functions. Input 
vectors and the corresponding target vectors are used to 
train a network until it can approximate a function, 
associate input vectors with specific output vectors, or 
classify input vectors in an appropriate way as defined 
by user. Networks with biases, a sigmoid layer, and a 
linear output layer are capable of approximating any 
function with a finite number of discontinuities [15]. 
As we can see in Fig.4 the ANN model in this study has 
one hidden layer which has 25 neurons. The inputs for 
the ANN are inlet manifold pressure, inlet manifold 
temperature, mass flow rate of inlet air, fuel 
consumption, torque and engine speed. The output is 
density of soot in the exhaust manifold. Levenberg–
Marquardt (LM) algorithm has been used for training 
the network. For activation function we used pure-line 
and logistic sigmoid (logsig). Inputs and outputs of the 
network are normalized to have values between -1 and 
1. This leads to easier training. 
The ANN was trained and tested by means of 
MATLAB software on a PC. For training the neural 
network six ranges of pressures were used. Seventh 
range of pressure was kept for testing the accuracy of 
the trained network. Root mean squared-error (RMSE), 
fraction of variance ( ) and mean absolute percentage 
error (MAPE) are defined as follows: 
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(12) 

 
(13) 

 
(14) 

 

 
Fig.4. ANN architecture with 25 neurons in a single hidden-

layer 

Results and discussion 
The ANN predictions for the density of soot emission of 
the DI diesel engine as a function of the experimental 
ones are shown in Fig.5. The accuracy of the ANN 
predictions was evaluated with the help of a straight line 
indicating the perfect prediction. Also the comparison 
between actual values and predicted values are shown in 
Fig.6 and Fig.7. Because the range of soot density is [2-
200]  we separated high density modes and low 
density modes in two different charts. 
Root mean squared-error (RMSE), fraction of variance 
( ) and mean absolute percentage error (MAPE) were 
found to be 3.4 , 0.998 and 8.1%respectively. These 
figures and the magnitude of errors show that the ANN 
predicts the density of soot emission quite well. It is 
clear that the performance of the ANN would have been 
even better if a higher number of test runs had been 
performed to provide a larger amount of experimental 
data for the network training. 
 
 

 

 
Fig.5. Comparison of actual and ANN approach values for density of soot emission training data 

 

 
Fig.6. Comparison of actual and ANN approach values for density of soot emission test data(low and average density modes) 
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Fig.7. Comparison of actual and ANN approach values for density of soot emission test data(high density modes) 

 
Conclusion 
This paper wants to show the possibility of using 
artificial neural networks for predicting the density of 
soot emission of a turbo-charged DI diesel engine in 
different opening ranges of waste gate under the ECE-
R49, 13 mode standard test. Root mean squared-error 
(RMSE), fraction of variance ( ) and mean absolute 
percentage error (MAPE) were found to be 3.4 , 
0.998 and 8.1% respectively. These results show that, in 
most cases, the network produces values close enough 
to the experimental data. So this model can be used as 
an alternative for the tested engine and it can help us to 
study the amount of soot emission. Therefore in other 
applications like this that we have enough experimental 
data we can use this approach to reduce the 
experimental testing and consequently save time and 
money. 
 
Nomenclature 
 

0A  Orifice area 

DC  Discharge coefficient 

fC  Power correction factor 

am&  Air mass flow rate 

fm&  Fuel mass flow rate 

sootm&  Soot mass flow rate 
N Engine speed 

bP  Engine brake power 

mP  Measured ambient-air absolute pressure 

mvP ,  Measured ambient-water vapor partial 
pressure 

dsP ,  Standard dry-air absolute pressure 

eP  Exhaust pressure 
Pi Inlet manifold pressure 

eQ&  Volumetric flow rate of exhaust gas 

sootS  Specific soot emission 
T Engine torque 
Te Exhaust temperature 
Tm Measured ambient –air temperature 
Ts Standard ambient –air temperature 

ft  Required time for consumption of 50 cc of 
fuel 

fw  Weighting factor 

orifich∆  Difference in elevation of orifice 

sootρ  Exhaust soot density 

airρ  Intake air density 

eρ  Exhaust gas density 

lρ  Manometr liquid density 

ft  Required time for consumption of 50 cc of 
fuel 

EVO Exhaust Valve Opening
O.R.W.G Opening range of waste gate 

W.G. Waste-gate 
ANN Artificial neural-network 
LM Levenberg–Marquardt 

RMSE Root mean squared-error 
Fraction of variance 

MAPE mean absolute percentage error 
MLP Multilayer Perceptron 
Φ Equivalence ratio 

 
References 
[1]- George Sam, and Balla Santhosh, and Gautam 
Vishaal, and Gautam Mridul, “Effect of diesel soot on 
lubricant oil viscosity,” USA. Tribology International, 
Vol. 40, pp. 809-818, 2007. 
[2]- Tree, D. R., and Svensson, K. I., “Soot processes in 
compression ignition engines,” Progress in Energy and 
Combustion Science, Vol. 33, pp. 272-309, 2007. 
[3]- Pickett, L. M., and Siebers, D. L., “Soot in diesel 
fuel jets: effect of ambient temperature, ambient 
density, and injection pressure,” Combustion and 
Flame, Vol. 138, pp. 114-135, 2003. 
[4]- Deng Yuanwang, and Zhu Meilin, and Xiang Dong, 
and Cheng Xiaobei, “An analysis for effect of cetane 
number on exhaust emissions from engine with the 
neural network,” Fuel, Vol. 81, pp. 1963–1970, 2002. 
[5]- Durana, A., and Lapuertab, M., and Rodriguez-
Fernandezb, J., “Neural networks estimation of diesel 
particulate matter composition from transesterified 
waste oils blends,” Fuel, Vol. 84, pp. 2080–2085, 2005. 
[6]- Mustafa Canakci, and Ahmet Erdil, and Erol 
Arcaklioglu, “Performance and exhaust emissions of a 



 

8 

biodiesel engine,” Applied Energy, Vol. 83, pp. 594–
605, 2006. 
[7]- Veli Celik, and Erol Arcaklioglu, “Performance 
maps of a diesel engine,” Applied Energy, Vol. 81, pp. 
247–259, 2005. 
[8]- Cenk Sayin, and Metin Ertunc, H., and Murat 
Hosoz, and Ibrahim Kilicaslan, and Mustafa Canakci, 
“Performance and exhaust emissions of a gasoline 
engine using artificial neural network,” Applied 
Thermal Engineering, Vol. 27, pp. 46–54, 2007. 
[9]- Mustafa Golcu, and Yakup Sekmen, and Perihan 
Erduranlı, and Sahir Salman, M., “Artificial neural-
network based modeling of variable valve-timing in a 
spark-ignition engine,” Applied Energy, Vol. 81, pp. 
187–197, 2005. 
[10]- Youhong Yu, and Lingen Chen, and Fengrui Sun, 
and Chih Wu, “Neural-network based analysis and 
prediction of a compressor’s characteristic performance 
map,” Applied Energy, Vol. 84, pp. 48–55, 2007. 
[11]- Ghazikhani, M., and Davarpanah, M., and 
Moosavi Shayegh, S. A., “An experimental study on the 
effects of different opening ranges of waste-gate on the 
exhaust soot emission of a turbo-charged DI diesel 
engine,” Energy Conversion and Management, Vol. 49, 
pp. 2563–2569, 2008. 
[12]- http://www.Dieselnet.com/standards/eu/hd.htm 
[13]- Yu Hen Hu, and Jenq-Neng Hwang, Handbook of 
neural network signal processing, CRC Press. 2001 
[14]- Beale, R., and Jackson, T., Neural Computing: An 
Introduction, Institute of Physics Publishing. 1998. 
[15]- Matlab Version 6.5 Online Manual. 


