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This paper discusses a finite element analysis of the Bauschinger effect in the reverse cup drawing process, taken from the
NUMISHEET’99 (Gelin and Picart, 1999) benchmark. In order to study the Bauschinger effect, several hardening models are
considered such as isotropic, kinematic, and combined forms in the linear and nonlinear cases, including the well-known Yoshida
and Chaboche’s model. The obtained results have been compared with some experimental results reported in literature. The
various factors, namely, normalized axial stress, von Mises stress, and the punch forces, for both first and second stages have
been calculated for different materials and thicknesses. Results show that the combined model had acceptable agreement with the
empirical data through both stages, while the bilinear models did not show this effectiveness. Generally, the nonlinear kinematic
and combined models lead to more accurate results.
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1. Introduction

During deformation of metals at room temperature, usually
their resistance against deformation increases in a process
known as work hardening. There are different theories
for predicting this phenomenon in different materials,
that is, isotropic hardening and kinematic hardening [1].
The isotropic hardening theory, as the simplest hardening
theory, assumes that the size of yield surface during plastic
deformation increases but it does not move in the space of
stresses. The amount of increase in size depends on only
one parameter which is controlled by plastic deformation [2]
(Figure 1).

On the other hand, the kinematic hardening rule assumes
that during plastic deformation, the yield surface moves in
the stress space as a rigid body but without any change in
orientation. Therefore the size, shape, and orientation of the
initial yield surface are fixed. This hardening rule provides
a simple method to consider the Bauschinger effect and the
yield surface transfers in the principal stresses space in the
direction of plastic strain [3].

1.1. Reverse Plasticity Models. In the kinematic hardening
rule, the initial yield surface is represented by equation
f (σi j) = k2 where k is a constant. If the resultant
displacement of yield surface at any stage is denoted by a
symmetrical tensor αi j , the current yield surface is given by

f
(
σi j − αi j

)
= k2. (1)

The incremental movement of the yield surface in the
direction of plastic increment is a vector in the space. Then,

dαi j = cdεi j
p, (2)

where c defines material behavior. If deformation is too
small, the effect of element rotation on dαi j will be ignored.
This hardening rule is shown in Figure 2 where O is the
center of stress space and c is the current center of yield
surface. The incremental translation of the yield surface
during a stress increment pp′ is represented by cc′, which
is parallel and equal to PQ. When c is constant, the total
translation of the yield surface is a measurement of the total
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Figure 1: The sketch of isotropic hardening in stress space.

plastic strain. In addition, if the initial surface is that of von
Mises, the yield criterion becomes

(
si j − cεpi j

)(
si j − cεi j p

)
= 2k2, (3)

where k is the initial yield stress in pure shear. A constant
value of c represents a linear strain-hardening with a plastic
modulus of H = 3c/2.

In many cases the yield surface undergoes translation but
in a direction different from the outward normal which is
know as zeigler hardening [4, 5]:

dα i j =
(
σi j − αi j

)
dμ, (4)

where dμ is a positive scalar. This equation states that the
yield surface translates in the direction of a line connecting
the center of the yield surface to the current stress point p
(Figure 3). Moreover, the incremental translation of the yield
surface is represented by the vector cc′, equal to the vector
PQ, where Q lies on CP extended. Thus,

(
dσi j − dαi j

)
dεi j

p = 0. (5)

By substituting (5) into (4) we get,

dμ = dσi jdεi j p

(σkl − αkl)dεkl p
. (6)

In recent years, various hardening models have been
presented by some researchers. Armstrong and Fredrick
proposed a nonlinear kinematic hardening [4]. In their
model, the effect of strain path, the anisotropy property
in compression-tension curve, and the movement of yield
surface during loading and unloading in stress space were
investigated.

Hu et al. (1992) [6] and Hu (1994) [7] have proposed a
uniaxial constitutive model of large-strain plasticity that may
describe the work hardening stagnation as well as the cyclic
strain-range dependency of stress amplitude. Later on, Teo-
dosiu et al. (1997) [8] generalized that model for multiaxial
plasticity. Although their models can simulate the transient
Bauschinger effect and the behavior of work hardening
stagnation, they did not pay much attention to the accurate
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Figure 2: The sketch of prager hardening in stress space.
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Figure 3: The sketch of ziegler hardening in stress space.

description of the stress-strain in the small-scale re-yielding
region, which is essential for the springback prediction [9].
Yoshida proposed a constitutive model of plasticity within
the framework of well-known two surface modeling, wherein
the yield surface moves kinematically within a bounding
surface [10, 11]; see Figure 4. As well as for the global
cyclic hardening behavior, it is very important to simulate
precisely the transient Bauschinger deformation, especially
for the purpose of accurate prediction of springback in
sheet metal forming. The stress-strain responses during the
transient period calculated by Yoshida-Uemori and the IH
+ NLK (isotropic hardening + nonlinear kinematic) models
are different as can be seen in Figure 5 [12].
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Figure 4: Schematic illustration of two-surface model.
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Figure 5: Stress-strain responses during the transient Bauschinger
deformation calculated by Yoshida-Uemori and the IH + NLK
model, together with experimental results.

Chun modified the changes of stress level by isotropic
hardening [13, 14]. His model can predict the behavior
of material better compared to the experimental results.
Recently, other researchers have studied the reverse plasticity
by different hardening models [15–19].

Reverse cup drawing is a remarkable process that may
be investigated by using different theories. For this purpose,
the recognition of these models may have a main role to
help one to achieve an accurate simulation. In order to
study the deep drawing process in thin sheets, using of a
proper hardening model, as mentioned in the previous part,
is essential. The purpose of this paper is to investigate the
accuracy of various plasticity constitutive models in reverse
forming of thin sheets. Thus, different sheets with a variety
of thicknesses have been used in our simulations. To treat
the nonlinear elastic-plastic problem the commercial finite
element code, Ansys 6.1 ( ANSYS 6.1 User Manual), is used.
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Figure 6: Geometry and dimensions for reverse cup drawing test:
(a) at the start of the first stage, and (b) at the start of the second
stage.

2. Method of Simulation

The reverse cup drawing test (Figure 6) is composed of two
stages, that is, forward drawing and reverse drawing, with
fixed gaps between the die and blank holder. Two die gaps
have to be chosen properly enabling the drawing process
to be performed without any wrinkles or failure. In the
current simulation, a fixed gap condition is applied instead
of forces. For instance, a constant blank holder force has
to be applied to keep the gap constant: approximately 1.22
and 1.32 mm for the first and second stages, respectively. The
friction coefficient is assumed to be uniform and constant
for all contacting surfaces and equal to 0.168 [13, 14]. The
simulation may be performed in 2D because of its axial sym-
metry and a visco solid 106 element can be used for the sheet.
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Figure 7: Different applied elements: (a) visco solid element, (b) contact 171 element, and (c) target 169 element.
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Figure 8: Schematic of model optimum meshing: (a) first punch and sheet, and (b) second punch and matrix.

Contact 172 element has been used for deformable surfaces
and Target 169 element for rigid surfaces. Figure 7 illustrates
the geometry, node location, and coordinate system for visco
solid and contact elements. Figure 8 shows that the elements
of different parts have acceptable conformity with each other
to obtain best accuracy during reverse cup drawing test.

The punch force is applied using the displacement of the
punches. At the end of the first stage, the first punch becomes
stationary and plays the role of a holder, while the second
punch moves upwards. The mesh grid is of “free” type and

the grid lines have been placed so that the elements are as
close to squares as possible. The mesh grid is of the highest
importance because in the reverse process, the change in
shape of the elements causes the process not to converge
easily. To examine the legitimacy of the mesh grid, a sample
point is considered at a distance of 64.5 mm from the axis of
symmetry. Figure 9 shows sample point on model with the
symmetry boundary conditions along x-and y-axis.

The entire parameters of the process, including stress-
es, have been investigated at this point in detail. In this
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Figure 9: Finite element mesh and stress sampling point for the
reverse cup drawing process simulation.
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Figure 10: Predicted deformed shapes in the reverse cup drawing
process for AL6016-T4: (a) after the first stage, (b) with 50 mm
punch travel in the second stage, and (c) after the second stage.

Table 1: Numerical parameters and the associated material models
for Aluminum.

Material AL6016-T4

Blank diameter 170 mm

Sheet thickness 1.15 and 0.9 mm

Chaboche model
properties

c′ = 2.8 GPa, γ = 30, Rsat = 215 MPa, m =
9.5

Coefficient of
friction (uniform)

0.168

Mechanical
properties

E = 69 GPa, υ = 0.29, σ0 = 130 MPa

simulation, various hardening models are used for large
deflection problems so that the differences between these
models can be observed. The utilized material is AL6016-
T4 and its basic properties are shown in Table 1. The Ansys
code is used for simulations with different hardening models
such as Chaboche-nonlinear isotropic (Nonlinear Isotropic)
combined model and isotropic hardening in both linear and
nonlinear types (LIso, NIso).

(a) (b) (c)

Figure 11: Simulated deformed shapes in the reverse cup drawing
process for AL6016-T4: (a) after the first stage, (b) with 55 mm
punch travel in the second stage, and (c) after the second stage
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Figure 12: Normalized axial stress at the selected point in the
reverse cup drawing process with AL6016-T4.

Table 2: Maximum punch forces in reverse cup drawing process.

Different states
Maximum punch (kN) forces

First Stage Second stage

Experimental 62 55

Chaboche and NLIso
model

61 52

NLIso model 68 59

LIso model 70 62

3. Results and Discussions

Figure 10 shows the deformed shapes of an experimental
specimen at three different stages, and the comparison with
the simulated results is shown in Figure 11.

The obtained axial stresses from the Chaboche-nonlinear
isotropic combined models and the nonlinear isotropic are
different at both stages as shown in Figure 12. In order to
demonstrate the normalized axial stress, the axial stress is
divided by yield stress; the stresses in the rolling direction
are taken at the sample point for seven steps of deformation
stages. The obtained results show that the element is
initially in tension (at the deformation steps 0–0.7) and is
subsequently compressed as it passes over the die shoulder
(steps 0.7–1.2). However, the axial stresses computed by the
two hardening models show some differences from this stage
(step 1.2). Slight retension and compression is repeated due
to straightening at the side wall (steps 1.2–3). When this
point passes over the die shoulder again, during the second
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Figure 13: Comparison of force-displacement curves during the
first and second stage in the reverse cup drawing process with
AL6016-T4.

stage, the load reversal is more pronounced (steps 3–7). The
overall trend of the Chaboche-nonlinear isotropic combined
model is to predict lower of axial stress due to the permanent
softening characteristic at the reversal straining.

Figure 13 shows a favorable comparison between an
experimental punch force–displacement results and the
prediction obtained from the Chaboche-nonlinear isotropic
combined model [13, 14]. This model predicted slightly
lower maximum of punch forces, compared to the experi-
mental data in the both first and second stages; see Figure 13
and Table 2. The differences in the compared results may
be due to the simulation of boundary conditions. For
instance, the simulation is performed under a fixed gap
condition, and the blank-holder force is applied to keep the
gap approximately fixed in the test. Other obtained errors
may be attributed to the yield criterion, friction effects, and
contact treatment. Concerning the effect of material type
modeling, it is important that different material models
produce different resulting stress distributions with similar
strain path, which leads to different force–displacement
curves. Generally, the Chaboche-nonlinear isotropic com-
bined model predicted the maximum punch forces more
accurately for the reverse cup drawing process.

Figure 14 compares the computed thickness distributions
with experimental results along the 45 degree line from the
rolling direction at first stage (Figure 14(a)) and second stage
(Figure 14(b)). Two hardening models predicted very similar
thickness distribution because the stretching is a dominant
made of deformation.

Figure 15 shows the normalized von Mises stress,
(divided by yield stress), for three hardening models during
loading. The linear isotropic hardening cannot predict the
behavior of materials precisely and effective stress in material
exceeds the yield stress and material will fail during loading
according to this model. The other two models almost show
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Figure 14: Thickness distribution along 45 degree from the rolling
direction: (a) first stage, (b) second stage.
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Figure 16: Comparison of force–displacement curves during the
first and second stages in the reverse cup drawing process for two
thicknesses (AL-Chaboche-Nliso model).

similar behavior. An investigation into the effect of sheet
thickness has also been carried out and the results are
demonstrated in Figure 16. Two different thicknesses (0.9
and 1.15 mm) with Chaboche-nonlinear isotropic combined
model are used, and the difference between the required
forces during the forming process is illustrated in this figure.
The predicted punch forces by two models shows practically
low difference.

4. Conclusions

A forming process consisting of reverse bending was selected
and examined through a series of studies and simulations.
Three hardening models, that is, bilinear isotropic, nonlinear
isotropic, and Chaboche-nonlinear isotropic combined were
numerically evaluated through the reverse cup drawing test.
The effectiveness of Chaboche-nonlinear isotropic model
in predicting the behavior of materials with Bauschinger
effect was considerable. In this simulation, the predicted
thickness distribution by two models shows practically no
difference. However the resulting stresses and punch forces
are quite different. The combined model had acceptable
agreement with measured date through two stages, while the
bilinear models did not show this effectiveness. Generally, the
nonlinear isotropic and combined models produced more
accurate results.
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