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Abstract: This paper presents an algorithm based on the Generalized Lyapunov Theorem (GLT) for
constructing nonsmooth Lyapunov Function (LF) for nonlinear time invariant continuous dynamical
systems which can be differentiable almost every-where. A new method is firstly defined that a
neighborhood of the equilibrium point (origin) is partitioned into several regions by means of the

coordinate hyperplans (axes) and system state eq
a function of number of system states. Then, th

uations (nullclines); hence, the number of regions is
is method selects a LF in each region by original

nonlinear model of system, based on the several proposed analytical Notes. These Notes select LF’s
and solve continuity problem of them on-the boundaries of regions in more cases. The existing
methods that use piecewise model of system in each region for constructing piecewise LF are
approximate and computational, but, the defined method is completely exact and analytic. The
different steps of this method are proposed by means of a non-iterative algorithm for constructing a
nonsmooth continuous Generalized Lyapunov Function (GLF) in whole neighborhood of the origin.
The ability of this algorithm is demonstrated via a few examples for constructing LF and analyzing

system stability.

Keywords: Stability analysis, Continuous nonlinear dynamical systems, Generalized Lyapunov

theorem, Nonsmooth continuous Lyapunov functions.
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1- Introduction

Lyapunov theorem is used for system stability
analysis, which is an important issue in nonlinear
dynamical systems theory. A main advantage of this
theorem is reduction of system stability analysis with
several dimensional equations, to the study of a LF
with one-dimensional equation. There is no a
systematic approach to choose LF for any nonlinear
system, and the choice of LF is not unique.

Several nonsmooth Lyapunov stability theorems
are defined in the articles. These theorems can be
classified in two main categories. The first category
determines the generalized derivative of a
nonsmooth LF on its nonsmooth surfaces, via
differential inclusion or similar approaches. In these
theorems, the important step is to verify the
generalized derivative of a nonsmooth LF on its
nonsmooth surfaces. For example, [5] defined a
nonsmooth Lyapunov stability theorem for a class of
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nonsmooth Lipschitz continuous LF’s using
Filipov’s differential inclusion and Clarke’s
generalized gradient. Based on the latter paper, [6]
constructed the LF’s for several complicated
systems.

The second category of nonsmooth Lyapunov
stability theorems does not determine the generalized
derivative of a nonsmooth LF on its nonsmooth
surfaces. These theorems analyze system stability
without calculation of gradient vector to the system
solutions. Several of these theorems are mentioned
below.

[1] proved a GLT for nonlinear dynamical systems,
in which, LF can be discontinuous except for the
origin, so, all regularity assumptions are removed for
the system dynamics and LF’s, Our algorithm in this
paper is proposed using this GLT.

equations, whose right b <4 -

not Lipschitz continuous, in general, For such
systems, stability cannot be characterized in general
by means of smooth LF’s.

[8] defined another theorem for constructing weak
GLF for time invariant continuous systems. In
nonsmooth Lyapunov stability theorems, the LF’s
can be »smooth except for the origin. Therefore,
based «. .nese theorems, nonsmooth LF’s can be
constructed for both continuous and discontinuous
systems.

A number of articles have dealt with the continuity
type for LF, for example; [2] proved for nonlinear
systems, which are at least continuous, that the
existence of a continuous LF does not imply the
existence of a locally Lipschitz continuous LF, and
also the existence of a Lipschitz continuous LF
doesn’t imply the existence of continuously
differentiable LF.

The nonlinear systems can be analyzed by
partitioning the state space into several divisions. By
this method, firstly, in each division a Piecewise
Model (PM) of the original nonlinear system is
selected, and using it, a LF is constructed in each
region. After that, the constructed LF’s under special
conditions are combined, and a piecewise LF for the
PM of the whole system is obtained. This method
should finally prove this obtained piecewise LF is
useful for stability analysis of original nonlinear
system.

Various applications of this method have been

reported in the literature; for example; [9] obtaipgd a_
switching LF for a class of nonlinear continuous.

number of system states.

systems. It approximates a PM by a switching fuzzy
model in each quadrant. The stability is analyzed via
a derived Piecewise Quadratic (PWQ) LF for each
region. The parameters of quadratic matrix are
solved by Linear Matrix Inequalities (LMI).

Johansson and Rantzer defined a method for time
invariant nonlinear systems with Piecewise Affine
(PWA) dynamic model [3], [4]. In this method
around the origin is divided into some polyhedral
cells with pair-wise disjoint interior, then, a PWQLF
is computed in each of them. The search for a PWQ
LF is formulated as a convex optimization problem
in terms of LML

[10] defined a construction method of PWQ LF for
a simplified Piecewise Linear (PWL) model of the
original nonlinear system. This method divided
around the origin into a lot of simplices, then,
sammntec o PWO TF in each division by means of

«d.

[117 proposed an algorithm for constructing a PWA
LF for nonlinear continuous time invariant ordinary
differential equations in a family of simplices by
linear programming,

[12] considered a parametric PWL model of
nonlinear system, over a simplicial partitions in an
area around the equilibrium point. It constructed a
PWL LF using linear programming methods.

[13] computed global LF for nonlinear systems by
means of radial basis functions.

All PM  methods in above, have these
disadvantages; they are approximate and
computational, also, the result of the system analysis
depends on the state space partitioning. To obtain
sufficient resolution in the analysis, it is often
necessary to refine an initial partition. Such
refinements can be targeted towards increasing the
accuracy of the model, or towards increasing the
flexibility of the LF computations.

This paper describes a non-iterative algorithm,
which is introduced for constructing nonsmooth
continwous GLF for nonlinear time invariant
continuous systems that can be differentiable almost
every-where. The proposed algorithm is based on a
GLTin[1]. '

This algorithm has three main stages. In the first
stage, it defines a method in accordance to PM
method for dividing neighborhood of the origin into
several regions by means of coordinate hyperplans
(axes) and state equations (nullclines), therefore, in
this method the number of regjons is a function of
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In the second stage, this method constructs a LF in
each region by means of the original nonlinear model
of system and several analytical Notes. Unlike the
existing PM methods, that use an approximate model
of nonlinear system, this method is completely exact.
Also, the existing PM methods are computational,
but this method is analytic.

In the final stage, it combines selected LF’s and
constructs a nonsmooth continuous GLF with a
condensed formula based on a proved theorem.

The restrictions of this algorithm are; original
selection of LF’s for regions, and then, continuity of
LF’s on boundaries of regions, hence, the Notes are
proposed to solve these restrictions in more cases.

In the next section, the mathematical framework
for this paper is given. A new method for
partitioning the neighborhood of the origin into
several regions is presented in section 3. Section 4
explains construction of GLF. A proposed algorithm
for obtaining GLF is defined in section 5. The
capability of this algorithm is illustrated, when
employed on two examples, in section 6.

2- Mathematical framework

Consider a nonlinear time invariant continuous
dynamical system (1), which can be differentiable
almost every-where.

#=f0d0)), 120 )eDeR, f:D-R, [©=0eD (1)

where D is an open set andx:Tc R— D is said to be

a solution to (1) on the time interval T, providing
x(t) satisfies (1) for all teT. f is such that the

solution x(¢) is well defined on T ={0,), that is,
assume, for every ye D there is a unique solution
x(f) of (1) on T, such that x(0)=y, and all the
solutions x(¢),f 2 0 are continuous functions of the
initial conditions x, =x(0)eD [1]. GLF is lower semi-

continuous and differentiable almost every-where.
Two definitions and a theorem are recalled from 1,
below.

Definition 1 [1]: A function V:D—R is lower
semi-continuous on D, if for every sequence
{xn }:’:0 cp such thatlim , x =X, then

V(x) < liminf,_, V(x,)

Definition 2 [1]: A lower semi-continuous,
positive definite function V(x), which is continuous

at the origin, and satisfies V(x(1)) <V (x(r)) for

allf > 7 > 0is called a GLF.

Theorem 1 [1]: Consider the nonlinear dynamical
system (1) and let,x(#),£ 20, denotes the solution

to (1). Assume that, there exists a lower semi-
continuous, positive-definite function ¥ :D — R such
that ¥(x) is continuous at the origin and

V(x(0) <V (x(r)) for all t>720. Then the zero
solution x(f) = 0 is Lyapunov stable.

3. Partition method (definition of region)

Let, the coordinate hyperplans (axes) x, =0, and
nullclines x, =f, =0, ie{l,Z,...,n}, partition an

openset Dc R" ina neighborhood of the origin into
several regions, where each region is denoted
byR,je {1,2,...,m}- Obviously, a common boundary

of two neighboring regions is a coordinate hyperplan
or a nullcline. If a nullcline is along a coordinate
hyperplan, then the coordinate hyperplan is
considered. The common vertex of all regions is the
origin. Each  region has n  common
boundaries Sﬁz Rj r\Rﬁ, which are the coordinate

hyperplans or nullclines with its neighboring
Tegions g .

4. Construction of GLF

For constructing GLF for (1), a smooth LF is
selected in each region; hence, each LF is non-
increasing  within its  corresponding region.
Moreover, if all neighboring LF’s be equal on their
common boundary, therefore, the condition
V) <Vix(ry for all r2z20 i satisfied, so, one

can use theorem 1 for constructing GLF.

Assume, v (x) in R, satisfies (2),(3).

Vj,v,(x):R,c Dc R" > Rv;(0)=0 @
VxeB, =BNR, :(v(x)>0forx=0)and(x)<0 (%)
vxeB; =BNR,:((x) >0forx #0)andv,(x) <0 3

Where B is an open set in neighborhood of the
origin and vj OEB_,.CBCD-

vxeS, NBv,(x)=v, (x) G

If (4) is satisfied on all common boundaries of
regions, then all neighboring LF’s are continuous on
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their common boundary Sjl: ,in B.

Definition 3: A proposed parametric LF is a time-
invariant smooth function v (x) in R, that satisfy

(2) and (3).

At first, v,(x) is often selected for more regions as

vj(x)=a1h,(x)|,aeR*, where, =12 is a time-

invariant smooth function in R,- .

Definition 4: A proper LF is a proposed parametric
LF which satisfies (4) at some common boundaries
of its region.

Definition 5: A special LF is a proper LF which
satisfies (4) on all common boundaries of its region,
and its parameters are identified.

Definition 6: An orthant is the n-dimensional
generalization of the two dimensional quadrant and
three dimensional octant.

To construct GLF, the following steps must be
carried out: firstly, proposed LF’s are chosen for
more regions. Secondly, using these proposed LF’s,
proper LF’s are constructed. Special LF’s are
obtained by means of the proper LF’s, and finally, a
GLF is defined using the special LF’s. Each kind of
boundaries, which are the coordinate hyperplans,
nuliclines or both of them, will provided different
relationships for LF’s. An algorithm is proposed for
constructing GLF.

5. Proposed algorithm

Please, trace each step with its corresponding step
in examples, to illustrate algorithm.

Divide a neighborhood of the origin into several
regions by the coordinate hyperplans and nullclines.
Select the lowest order of all LF’s equal together to
satisfy (4) on the coordinate hyperplans, else, the
continuity of GLF is not provided on them.

Select proper LF for regions, which are on either
side of the nullclines that aren’t along the coordinate
hyperplans by the next Note.

Note 1: Let, a nuilcline S,:%=0, be the common
boundary of R, and R, and it isn’t along the
coordinate hyperplans. Let, |7, (x)| and |f,(x) be

proposed LF’s in R, and R,, respectively, such- ‘

that, £, (1) - f,(0) = (0 =% e - Asume,

then, V/(‘x)=ajk|./;'l(x)i and v.(;):a,,,lf,,(x)l:a eR" .

proper LF’s for R, and R,, because,

Si)=f,0=1(x)=x and VxeS; NB=x, =£(x)=0

50,V € 5, NB=> £,(0~ £ =025, = /o)
thus, v, (x)=v, (%) and holds (4) true.

The previous step offers n LF’s for a region whose
all boundaries are nullclines which are not along the
coordinate hyperplans. For such a region, compare
the offered LF’s with LF’s of its neighboring
regions, and then, for this region select a LF equal to
one of the LF’s of its neighboring regions.

Select proposed LF for a region whose boundaries
are only coordinate hyperplans, by the next Note.

Note 2: Suppose, R, is a region whose boundaries
are the coordinate hyperplansS, : x, =0, this

region is an orthant. Let, LF’s of all neighboring
regions of Rsv , are selected by the previous

steps. Therefore, each v!_(x)I is a LF for
4 x,=0

S,:x,=0inB.

To satisfy (4), v, (x)‘ ey

must be satisfied
x;=0

for all Sﬂ_; x, =0 in B. It imply that, (6) can satisfy
(4) on all common boundaries of R, by adding

some statements with each v_‘(x)‘ or a selection of
S =0

appropriate parameters for LF’s in the next step.

=0’

V()= 28,0 by € R (6)

(when,n=2, if b, =bj2 =1, then "/(X)LI:O = /x(X)',fo’

hence = ){
> > vi(x)=v,(x x’=o+vj2(x)ixz=0

,Vj (x)|:,=0 = ij (x){x I

satisfies (4) in R; .) Moreover, if (6) satisfies (3) in
R, then, (6) is a proper LF on this orthant.

.

If the following Note is satisfied on all coordinate
hyperplans, then parameters of LF’s and special

LF’s are specified

lflote 3 Let, R cQ, and R cQ, be two
neighboring regions. where Q,and @, denote
orthants and S, :x,=0 is their common boundary.

All LF’s jp Q,and ¢ are already selected in
glftf-vious steps.

() =d (1) —d, () @)
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Such that, d,(%=v, 0‘*,:0’ d, ()=, (xﬂw.

If a selection of appropriate parameters for v, (%)
and v, (x) satisfies d,(x)=0 then these proper LF’s

are continuous on S, %, =05 and holds (4) true.

Else if, the lowest order of v, () and v, (x) is deleted
ind,(x) by a selection of appropriate parameters for
them, then, the value of d,(x) is smaller than the
value of each LF in neighborhood of the origin (note
that, the lowest order of all LF’s for system must be
equal).

Therefore, by adding d; (%) with all LF’s in g,
(or_djk (x) with all LF’sin Q,), new LF’sin Q,and
Q, are constructed, as the new constructed v, (%) and
v (x) are continuous on §_ :x, =0, and holds (4)
true.

If this Note is repeated on all coordinate

hyperplans, then, parameters of LF’s and all special
LF’s may be identified.

If the special LF’s for all regions are identified,
then, construct a nonsmooth continuous GLF for
system (1) by following Note.

Note 4: A nonsmooth continuous function is
constructed by combination of the special LF’s,

vj(x),j € {1,...,m}

3 1 xeB,
V(x)=2v,(0¥,() l}'j(x)={0 iZBJ. ®)

where ¥ (x) is a characteristic function.

(9) defines derivative of (8) almost every where.
V=30 @Y @ ae ©)
=t

According to theorem 2, ¥(x) in (8) is a GLF, and
the origin is (asymptotically) stable.

Theorem 2: Consider the nonlinear dynamical
system (1). Let, B D be an open set, o e 5 where is

the interior of B and p, be the interior of B,
0eB cR: Suppose, D is divided by the coordinate

hyperplans and nuliclines of system into several
regions R -

If ¥(x) in (8) which is constructed by the special
LE’s, satisfies (2) and (3) within all regions in B,

and also, if it satisfies (4) on all common boundaries
of the regions in B, then, (8) is a GLF for (1), and
the origin is Lyapunov stable. Moreover, If all
special LF’s satisfy (3) within their regions, then,
origin is asymptotically stable.

Prpof:

* Since, V(x) satisfies (2),Vj,vj (0)=0=>¥(0)=0>
therefore, V/(x) is continuous at the origin.

* Since, V(x) satisfies (3),

VxeB, < B:V(x)=v,(x)>0forx=0, hence, V(x) is
a positive-definite function, also, vxeB,,v,(x)<0>
but, wxeS,- o) v is non-differentiable in

general, therefore, V/\(x) isn’t often defined on the

boundaries. Thus, vxeB; cB:V,(x)=v(x)<0> ie.
v(x) is differentiable and non-increasing within all
regions in B.

* Since, VxeS, NB:V(x)=v,(x)=() in (4), thus,
V(x(f)) < V(x(r)) for all 12720 forany x, e B-

* Since, y(x) has a zero minimum value in B, for
every sequence {xn }::o c B> S0, lim__x,=0- Hence,

inf, . V(x,) exists andiminf

ned0

V(x)2V(0)=0, 1€
V(x) is a lower semi-continuous function.

* According to theorem 1, since, function ¥V:D—R
is lower semi-continuous, positive-definite and
continuous at the origin, and  MOICOVer,
V() <V(x(r) for allt>7>0, (8) is a GLF for (1) in
B and x(f)=0 is Lyapunov stable.

* Moreover, If each special LF’s satisfies 3)
within its regionvy e B, ¢ B:V, (1) =,(x)< 0> it means
that V(x) is decreasing within all regions in B,
therefore, Vf(x)<0 ae. along the system solutions in
B.

* In addition, the special LF’s satisfy (4) on all
common boundaries, vxe S, AB:V(x)=v,(x)=v,(x)>

$0, V(x(n)<V(x(r)) forall 12720 forany x, e 8.

* P(x) in (8) has a zero minimum value in B, if
1 —>+w=>V(x{f))—>0, that it means the origin is
asymptotically stable.

(18)
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6- Examples

In this section, the GLF is constructed for two
systems. The stability of the origin in these examples
is approved by simulation with MATLAB software.
These examples demonstrate ability of the proposed
algorithm for system stability analysis.

Example 1:

X = fi(x)=x, =X tan(xzz)
X, = f,(x) = (sgn(x,) - 2)x, — 4sar(x,) +sin’ (x)
~0.2<sa1(x)<0.2

Figure 1 shows a neighborhood of the origin for
this continuous system. The simulation in figure 2
shows that the system is stable. The proposed
algorithm is implemented for constructing GLF.

The neighborhood of the origin is divided by the
axes and nullclines into 6 regions.

In the second quadrant, on %, =0,
4x, —sin’(x,) = -3x, , therefore,
v, (¥) = ayf,, ()| = @, (4x, —sin? (x)) ’
Vi(%) = | £, ()| = =3a,,x,
In the fourth quadrant, on x, =0,
~4x, +sin’(x,) = x,, therefore,
vs(x) = @ |, (x)] = Qs(—4x, +sin’(x, ))’
Vs (x) = ay| £, ()] = agex, -
No region exists with nullcline boundaries,

Consider the first and third quadrants of this two
dimensional system:

In the first quadrant,

v, (Jc)]xl o =400,V (x)|__ =agx,,

x=0

50, v, (_x):as()xJ +4a23x2, and holds (4). After
checking, we find that, (3), is satisfied by it in R,
hence, it’s a proper LF.

In the third quadrant,
"3(x)lx2=0 ==3a,x,» VS(X)L,:O = —4agx,»

50, v,(x) = =3a,,x, — 4a,,x, , satisfies (4).

Similarly, since, this function satisfies (3) in R,,
it’s a proper LF for this region.

Since, system is two dimensional; the continuity of
LF’s on all axes is provided in the previous step.
Thus, va,,,a, € R*, the special LF’s are specified.

.By assumption, ay, =a, =1,

Vi(x) =X, +4x,,v,(x) = 4x, —sin?(x,),
vi(x) =-3x,,v,(x) = ~3x, —4x,,
vs(x) =—4x, +sin’(x,),v, (x) = X, -

6

V(x)=3 v, (0¥, (x)

=t
. 6
Vx)=3% (0¥, (<0 ae.
Jj=1

It is Aa GLF for the system and the origin is
asymptotically stable.

Example 2:

X = fi=-3x +|x,]+1,:—;,2
1
|

X,=f= =X

T+ xx,

Two functions f£,(.) and /() are continuous, but,
/() is non-differentiable on the axes. Two figures

3, 4 show the neighborhood of the origin for this
stable system and its phase plan, respectively. The
proposed algorithm is used for constructing GLF for
the system.

The neighborhood of the origin is divided by the
axes and nullclines into 8 regions.

In the first quadrant, X =0=x =x, +xx!

vi(x)= a1z'f21(x)' =a,(x)

vy (x)= alz,fzz (x)l =a,(x, +x1x22) :
In the first quadrant, % =02 2x = x, - 2x

vp(x) = azz!fn (x)] =2a,x, ,

vi(x) = az3lflz (x)[ =ay(x, -2x))-
In the third quadrant, X, =0=> x, = x, + x,x2

vs(x) = as&’f‘ﬂ('x)' =ay(-x)),

Journal of Control, Vol. 3, No. 2, Summer 2009
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Ve (X) = s lfzz (x)l =g (~x, — xlxg) .
In the fourth quadrant, ;, =0= —x, =x, +2x
v,(x) = anifn(x)l =0.5a,(-x, - 2x13) )
vg(x) = a7slf|2(x)| =gy

The previous step offered two LF for R,, if
()= (0) =20, =01, then, (4) is satisfied on their
common boundary.

system is two dimensional,
—a,x satisfies “4)

Since, the

v, (x) =v3(%) 5=0 +vg(x)

a0 = B2
on x, and x; . Moreover, after checking, we get
that, (3), is satisfied by it in R,, hence, it’s a proper
LF for this region.

For continuity of LF’s on x/ , x, ,
d,(x) = 2a,,x,, dy(x) = Qe if,
Oy =050 = dig(x)=0.

d (%) = —Qx,,d;(x) = —0.5a5x, »
if,a, =0.5a,, = dg;(x) =0

Therefore, 0.50,,=a,=0ay; by assumption, g, =1,
the special LF’s of the regions are identified.

v, (x) = v, (x) = v5(x) = 2x,, v, (x) = x, = 2x; ’
V(%) = X, = x5 Vs (X) = =% Vg (x)=-x,— ‘xlxg

v, (x) = =%, = 2x;
g 8
V(x)zzvj(x)\yj(x), Vf(x)zzvj(x)\l"j(x)<0 ae.
J=i j=1

v(x) is a GLF for this system and the origin is
asymptotically stable.

02
015 %, ;0
0.1 \
.
0.05 N & A
.
R ™
Qe = = -
\\_‘\\RA‘V

005 R X, =07
01
015

82 A . X .
0%2 o1 ot <006 0 005 01 015 02

Figure 1: The regions for example 1
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Figure 2: Simulation of example 1
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Figure 4: Simulation of example 2

7. Conclusion

In this paper, a non-iterative algorithm was
proposed for constructing Generalized Lyapunov
Function for nonlinear time invariant system which
can be differentiable almost every-where, such that,
the system solutions be well defined. The proposed
algorithm was based on the Generalized Lyapunov
theorem, hence, it didn’t require calculation of the
generalized derivative of nonsmooth LF’s on their
nonsmooth surfaces.
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Unlike the methods that for constructing piecewise
LF, used approximate piecewise model of system in
each region, the defined method used original
nonlinear model of system, hence, this method was
exact. Furthermore, these other methods are
computational and more detailed analysis comes to
the cost of increased computations, but, this method
was analytic.

The steps of algorithm were defined by means of
several proposed Notes, which "select LF with
attention to kind of boundaries of each region.

According to the algorithm, a GLF for the whole
system was constructed by a condensed formula. The
capability of the algorithm was demonstrated by
successful construction of GLF’s for two nonsmooth
examples.

The main restrictions of this algorithm were
original selection of LF’s for regions, and then,
continuity problem of LF’s on their common
boundaries. The Notes are proposed to solve these
restrictions in many cases.

In the next researches, one can suggest these
subjects; can this algorithm obtain GLF for every
stable continuous system? Is there a systematic
approach for selection of LF’s and continuity of
them on the boundaries?
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