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ABSTRACT
A one-dimensional numerical model, ROCKFLOW, has been developed to analyze unsteady non-linear flow through coarse porous media. The
model is particularly applicable to flow through valley fills and rock drains resulting from mining operations and takes factors such as the spatial
variability of material properties and the variability of the cross-sectional geometry into account. The modified Saint-Venant equations together with
the Forchheimer equation constitute the mathematical formulation of the flow system. The model employs a four-point finite difference method and a
Newton-Raphson scheme to solve the resulting non-linear equations. With regard to the vertical heterogeneity of the materials, a superposition method
has been developed and used in the model to account for changes in material properties. Laboratory studies on three, 1.5 m long, rockfills made of
different homogeneous materials and also a layered rockfill were used to verify the model under different initial and boundary conditions. First, the
material hydraulic parameters were determined using steady-state conditions in the physical models. The resulting hydraulic parameters were then
used to model unsteady conditions. It was found that the model is able to reproduce the experimental results well in terms of both water surface profiles
and depth variation with time curves in the physical models. There is a need to minimize the environmental impacts of mining activities. ROCKFLOW
can be applied to valley fills under field conditions to test various design scenarios and to thereby assess their potential impact on the environment
(e.g. modified flow regime in the downstream channel).
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1 Introduction

Mining activities can be a serious source of environmental con-
cerns, considering the amount of waste that they may create.
Aubertin et al. (1996) and Greenly and Joy (1996) provide good
examples of the amount of waste that may be generated from
mining activities. One method of waste rock disposal is to use
a technique known as a valley fill (Cowherd, 1981; Findikakis
and Tu, 1985). This involves placing waste rock in stream valleys
close to mining sites. Such dumps may be several kilometers long
and composed of a wide range of material sizes. These dumps
in some areas may act as dams which retain flood waves during
intense storms and water depths of 40 m have been observed in
the temporary reservoirs upstream of such dumps (Findikakis and
Tu, 1985).

There are also environmental concerns about such facilities.
These concerns are mainly due to the acid and sediment generated
from the dumps that may affect water quality and disturb the
aquatic life in receiving streams (Joy, 1990; Cowherd, 1981).
At present there are not adequate analytical tools to reasonably
predict the acid and sediment production from these installations.
Understanding the flow behavior inside these structures is the
first step for determination of the potential acid and sediment
generation.

A common characteristic of rockfill structures including valley
fills is that flow through this porous media often deviates from
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Darcy’s law and a non-linear flow equation is required. The
occurrence of unsteady, free-surface flow serves to increase the
complexity of flow through valley fills. Spatial and temporal vari-
ability of materials further complicates the prediction of flow
through valley fills. When rock is dumped from a height, as is typ-
ically done for these installations, the larger materials naturally
roll to the bottom with progressively smaller materials remain-
ing near the top and therefore a segregated fill is created. This
naturally creates a large drainage blanket over the entire bottom
of the valley (Cowherd, 1981).

In this study, a model, ROCKFLOW has been developed to
model the hydraulic flow behavior in structures such as valley
fills. This has been done while considering the key characteristics
of valley fills such as the unsteadiness of flow, heterogeneity in
material properties and variability in slope and cross section of
the valley fill. In order to verify the applicability of the ROCK-
FLOW model to rockfill and the accuracy of the model outputs,
experiments were conducted in laboratory to collect necessary
data. The experiments were done in a laboratory flume avail-
able at the School of Engineering, University of Guelph. Three
rectangular rockfill structures made of homogeneous materials
with different sizes were constructed in the flume. The fourth
rockfill structure was a layered system to study the effect of seg-
regation on the flow behavior. Different steady discharges and
hydrographs were imposed on the system at the upstream face of
the rockfills. The hydrographs were mainly different in terms of
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the rate of rise. Pressure transducers along the centerline of the
flume bottom allowed the recording of the variable depth with
time within the rockfill. This was done based on adoption of
gradually-varied flow behavior for these structures. The experi-
ments resulted in values of the hydraulic parameters of different
media and created a set of data suitable for verifying any model
that simulates unsteady flow through homogeneous and layered
rockfills subject to an upstream hydrograph.

2 Background

Figure 1 is a schematic representation of flow through a
hypothetical valley fill. Characteristics of this flow situation are
identified here to clarify the physical behavior of the flow sys-
tem. The characteristics aid the development of a mathematical
formulation suitable for the physical system. The main charac-
teristics of valley fills together with approaches selected to model
these characteristics are described below.

(a) The media consists of coarse materials that make use of a
non-linear flow law necessary.

(b) The valley fill structure is long compared to other man-made
rockfill hydraulic structures. This implies that these struc-
tures have a high length-to-depth ratio compared to other
rockfill structures (Fig. 1a). Therefore, a one-dimensional
approach can be used to model the flow through the valley
fill (Bari and Hansen, 2002; Greenly and Joy, 1996).

(c) Field studies on end-dumped valley fills show that the size of
the material making up the valley fill changes significantly in
the vertical direction due to natural segregation of the mate-
rials during dumping. This segregation results in a vertical
variability of all material properties including the friction
coefficients. This adds to the complexity of the flow system.
This requires either a multiple dimensional approach to the
modeling or a form of vertically averaging these properties.

A
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Figure 1 A valley fill configuration.

(d) Flow takes place in a valley with a non-rectangular and non-
prismatic cross section. In ROCKFLOW, the generic shape
considered for the valley is a trapezoidal shape (Fig. 1b).
Side slopes of the valley can be different in either side of the
cross section, and these, along with the base width can vary
from section to section. This provides enough flexibility to
reasonably approximate the shape of any valley cross section.

2.1 Non-linear flow analysis

Many different non-linear constitutive equations for steady flow
through coarse porous media have been proposed in the litera-
ture. It has been shown theoretically (Ahmed and Sunada, 1969;
Hassanizadeh and Gray, 1987; Irmay, 1958; Ma and Ruth, 1993)
and statistically (Dullien, 1992; Joy, 1991) that the Forchheimer
equation is, in general, superior to the other non-linear equations
such as the power law equation. This equation includes a second
velocity term to account for inertial terms in addition to the vis-
cous effects represented by the Darcy equation. Therefore, the
Forchheimer equation has been selected as the non-linear consti-
tutive relationship of interest in ROCKFLOW. The Forchheimer
equation has the following structure:

i = av + bv2 (1)

where i is the hydraulic gradient in the direction of flow, v is
the bulk velocity of the flow, and a and b are media friction
coefficients. Coefficients a and b depend on different properties
of the media such as porosity, size, shape, and orientation of the
particles.

Investigations show that unsteady flow through coarse porous
media can be complicated from energy loss point of view,
especially in flow through rubble-mound breakwaters under the
effect of oscillatory waves. In these situations, the extended
Forchheimer equation has been proposed as a substitute for
the standard Forchheimer equation. This equation is basically
the same equation originally proposed by Polubarinova-Kochina
(1952):

i = av + bv2 + Ca

∂v

∂t
(2)

where t is time and Ca is a friction coefficient. As is discussed in
section 5.2, the effect of the third term in Eq. (2) is negligible for
flow through valley fills. This is due to the nature of the unsteady
flow which is not a fast accelerating, oscillatory flow. Therefore,
this additional term was not included in the model.

2.2 Equivalent friction coefficients

Figure 2 shows a general cross section of a valley fill with a
heterogeneous rockfill in the vertical direction. Gradation of the
materials in the vertical plane can be a continuous function of
depth or can have sharp boundaries, depending on the method of
placement of the material.

One approach to analyzing this system and properly
representing the change in material properties is to use higher
dimensional models. This has the advantage of properly repre-
senting the gradation but the disadvantage of requiring a two or
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Figure 2 Geometry of a segregated valley fill.

three dimensional model which requires considerable computa-
tional effort and a large amount of data. The alternative is to
consider a form of averaged media properties and analyzing the
system as a one-dimensional problem. Hosseini and Joy (1997)
analyzed the effect of segregation on flow behavior and found
appropriate averaging schemes for the friction coefficients (a and
b in the Forchheimer equation).

The objective of their approach was to represent the entire flow
depth of the valley fill by single values of the friction coefficients
a and b for cases where they clearly changed from level-to-level.
In their approach, for any depth of flow Y consisting of n layers
(as shown in Fig. 2), an equivalent hydraulic system is defined
for which equivalent a and b values in the Forchheimer equa-
tion are found. Their approach is based on separating the losses
into laminar and turbulent losses, finding equivalent a (aeq) and
equivalentb (beq) separately and finally superposing the results
to find the overall energy loss in the equivalent hydraulic system
using:

i = aeqV + beqV
2 (3)

where aeq and beq are the a and b coefficient for the equivalent
hydraulic system and V is the average longitudinal bulk velocity.

The final result of their approach is to use Eq. (4) to find aeq

at any depth Y for a system that considers continuous variation
of a with depth.

aeq = A∫ Y

0
dA
a(y)

(4)

where A is the total cross sectional area at depth of flow Y , and
a(y) is a function that accounts for the variability of a with y. For
the discretized configuration, necessary for numerical computa-
tion, shown in Fig. 2b, Eq. (4) for any flow depth can be written as:

aeq = (A1 + A2 + · · · + An)(
A1
a1

+ A2
a2

+ · · · + An

an

) =
∑

Ai∑(
Ai

ai

) (5)

where Ai and ai refer to the cross sectional area and the
coefficient a in each subsection i, respectively.

In an analogous fashion, similar equations with similar
notations are used to find beq as follows:

beq = A2(∫ Y

0
dA√
b(y)

)2 (6)

beq = (A1 + A2 + · · · + An)
2(

A1√
b1

+ A2√
b2

+ · · · An√
bn

)2 (7)

The derived Eqs. (5) and (7) are reported in terms of the cross
sectional area rather than thickness. Therefore, the equations can
be easily applied to valley fills with variable widths as long as
the variability of the cross section with depth can be defined.

2.3 Governing equations

Use of the one-dimensional gradually varied flow equation is a
common practice in the analysis of steady flow through rock-
fill structures (Bari and Hansen, 2002; Garga et al., 1989; Leps,
1973; Parkin, 1991; Stephenson, 1979). The one-dimensional
approach ignores changes in velocity in the vertical and lat-
eral directions and assumes a hydrostatic pressure distribution.
Although this has been applied to different rockfill structures,
the approach is more acceptable for valley fills and rock drains
(Greenly and Joy, 1996). This is due to the fact that these struc-
tures have a high length-to-depth ratio compared to the other
structures.

To model unsteady flow through rockfill, the modified Saint-
Venant equations were used. Modifications to these equations for
flow through rockfill were obtained by applying the momentum
equation to a control volume of flow. The results for a valley with
a general cross-sectional shape are outlined below.

Momentum equation:

−A
∂y

∂x
+ A(S0 − Sf ) = 1

n2g

∂
(

Q2

A

)
∂x

+ 1

ng

∂Q

∂t
(8)

Continuity equation:

∂Q

∂x
= −n

∂A

∂t
(9)

Constitutive relationship (Forchheimer Equation):

Sf = aV + bV 2 (10)

where x is the longitudinal direction of flow, y is the depth of
flow, t is time, A is the cross sectional area of flow, So is the bed
slope of channel, Sf is the slope of the energy grade line, n is
the porosity of media, g is the gravitational acceleration, Q is the
volumetric discharge, V is the longitudinal bulk velocity, and a

and b are coefficients in the Forchheimer equation.
Similar governing equations have also been developed by

Stephenson (1979) for a rockfill with a rectangular cross section.
For the sake of simplicity, here, Eqs (8) to (10) have been written
for a homogeneous media. However, in section 3, in the process
of development of the model, the methodology for including the
varibility of material properties is presented.
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The boundary conditions associated with Eqs (8) and (9) are:

Upstream Boundary Conditions:
An imposed hydrograph: Qupstream = Q(t)

or
A recorded history of upstream depth: yupstream = y(t)

Downstream Boundary Conditions:
A recorded history of downstream
depth governed by some downstream conditions
(e.g. a lake):

ydownstream = y(t)

or
The natural exit depth of the fill
geometry and discharge, i.e. the critical-flow condition:

Q2T

n2gA3
= 1

where in the boundary conditions, y(t) and Q(t) values refer to
the specified values of depth and discharge at the boundaries as
a function of time.

A two-dimensional approach, which considers the curvature
of streamlines in the vertical plane, also can be used to ana-
lyze unsteady flow. Samani et al. (2003) used this approach to
conduct reservoir routing through rockfill dams. They defined
a 2-D unsteady continuity equation and combined it with a
non-linear constitutive relationship ignoring acceleration terms.
Although the way that they have included storage term in
their continuity equation needs further clarification, applying
their method to heterogeneous valley fills adds more diffi-
culty and inflexibility compared to accuracy which may be
gained.

3 Model development

Model development requires three primary issues be addressed.
Firstly, how to represent the system in an appropriate numerical
manner. Secondly, because the problem is highly non-linear an
appropriate iteration scheme needs to be applied to account for
this non-linearity. Finally, since the exit is usually sloped the
effective length of the structure is variable and this also needs
to be included. The effective length is defined as the distance
between exit point and beginning of the rockfill. These three
issues are addressed below.

3.1 Numerical scheme

Except for a few trivial cases, the governing equations can-
not be solved analytically. In this case a solution has been
developed using an appropriate finite difference scheme together
with the related initial and boundary conditions. The weighted
four-point finite difference scheme (Fread, 1993; Singh, 1996)
was used to solve the governing partial differential equa-
tions together with the initial and boundary conditions. The
method was first used by Preissman in 1961 (Abbot and Basco,
1989).

In a domain discretized over distance and time, the method
approximates any general function f and its derivatives as:

f = θ

(
f

j+1
i+1 + f

j+1
i

2

)
+ (1 − θ)

(
f

j

i+1 + f
j

i

2

)
(11)

∂f

∂t
= f

j+1
i − f

j

i + f
j+1
i+1 − f

j

i+1

2�t
(12)

∂f

∂x
=

θ
(
f

j+1
i+1 − f

j+1
i

)
�xi

+
(1 − θ)

(
f

j

i+1 − f
j

i

)
�xi

(13)

where i and j refer to distance and time steps, respectively, and θ

is a weighting factor that varies between 0 and 1. In order to
apply the scheme to the governing partial differential equations,
the momentum (Eq. (8)) and continuity (Eq. (9)) equations were
rearranged as:

∂y

∂x

(
A − Fr2A

)− A
(
So − Sf

)+ 1

ng

∂Q

∂t
= 0 (14)

∂Q

∂x
+ n

∂A

∂t
= 0 (15)

where Fr is Froude number for flow through porous media
defined as:

Fr =
(

Q2T

n2gA3

) 1
2

(16)

In the Froude Number, T is the top width of the flow as shown
in Fig. 1b.

Applying the differencing schemes in Eqs. (11) to (13) to
Eqs. (14) and (15) gives the following finite difference equations:[

θ

(
y

j+1
i+1 − y

j+1
i

�xi

)
+ (1 − θ)

(
y

j

i+1 − y
j

i

�xi

)] (
Ā − F̄ r2Ā

)

− Ā
(
So − S̄f

)+ 1

n̄g

(
Q

j+1
i+1 − Q

j

i+1

2�t
+ Q

j+1
i − Q

j

i

2�t

)
= 0

(17)[
θ

(
Q

j+1
i+1 − Q

j+1
i

�xi

)
+ (1 − θ)

(
Q

j

i+1 − Q
j

i

�xi

)]

+ n̄

(
A

j+1
i+1 − A

j

i+1

2�t
+ A

j+1
i − A

j

i

2�t

)
= 0

(18)

with:

ȳ = θ

(
y

j+1
i+1 + y

j+1
i

2

)
+ (1 − θ)

(
y

j

i+1 + y
j

i

2

)

Q̄ = θ

(
Q

j+1
i+1 + Q

j+1
i

2

)
+ (1 − θ)

(
Q

j

i+1 + Q
j

i

2

)

F̄ r2 = Q̄2T̄

gĀ3n̄2

S̄f = āV̄ + b̄V̄ 2

n̄ = ni+1/2 (ȳ)
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Ā = Ai+1/2 (ȳ)

V̄ = Q̄

Ā

T̄ = Ti+1/2 (ȳ)

ā = ai+1/2,eq (ȳ)

b̄ = bi+1/2,eq (ȳ)

In the above, properties such as Ai+1/2 (ȳ), which are calculated
midway between 2 nodes, are based on the mean depth(ȳ)and the
mean of geometrical properties such as the bottom width between
nodes i and i + 1. The finite difference equations are highly non-
linear due to the dependency of the coefficients on the unknown
variables. Averaging material properties in the vertical plane also
adds to the non-linearity of the system. Because of these non-
linearities, the Newton-Raphson iterative scheme was used to
solve the equations. The following discussion of this method is
drawn from Chow et al. (1988) and Singh (1996) to describe the
applied procedure.

In vector form, a system of non-linear equations of a vector
of unknowns, �X, can be represented as:

�f (�X) = 0 (19)

The solution of Eq. (19) by iteration is written as:

�f (�Xk+1
) ≈ �f (�Xk

)+ J
(�Xk

) (
��Xk

)
(20)

where k refers to the iteration number, J
(�Xk

)
is the Jacobian

matrix consisting of the first derivatives of �f (�X) calculated at
�Xk and ��Xk is the change required to improve the previous
solution toward the correct solution. When the correct solu-
tion for the unknowns is arrived at, �f (�Xk+1

)
in Eq. (20) is 0.

Therefore:

J
(�Xk

) (
��Xk

) = −�f (�Xk
)

(21)

The right hand side of Eq. (21) is the negative of the residual
vector at iteration k. By solving the linear system of equations
(Eq. (21)), the iteration improvement, ��Xk, can be obtained
considering thatJ

(�Xk
)

is a known coefficient matrix that is
updated after each iteration. This procedure is repeated until
all elements of ��Xk are smaller than some set of specified
tolerances.

In Eqs (17) and (18), there are two unknowns at each node:
depth and discharge. Thus for a system consisting of N nodes,
there are 2N unknowns at time j + 1. Therefore, the vector of
unknowns at time j + 1 is:

�X = (y1, Q1, . . . , yi, Qi, . . . , yN, QN) (22)

The continuity and momentum equations written for N − 1
elements result in 2N − 2 equations. The other two equa-
tions required for solving the unknowns are obtained from the

boundary conditions applied to the boundary nodes. The resulting
equations can be written in the following format:

UBE (y1, Q1) = 0
CE1 (y1, Q1, y2, Q2) = 0
ME1 (y1, Q1, y2, Q2) = 0

...

CEi (yi, Qi, yi+1, Qi+1) = 0
MEi (yi, Qi, yi+1, Qi+1) = 0

...

CEN−1 (yN−1, QN−1, yN, QN) = 0
MEN−1 (yN−1, QN−1, yN, QN) = 0

DBE (yN, QN) = 0

(23)

In Eq. (23), UBE and DBE refer to the upstream and downstream
boundary conditions, respectively, and CE and ME refer to the
continuity and momentum equations, respectively. The initial
estimate of J

(�Xk
)

to start the procedure was assumed to be the
initial condition or the previous time solution.

The following equations were specifically derived and used
in this study to find the derivative terms required to calculate the
J
(�Xk

)
:

∂MEi

∂y
j+1
i

= −θ

�xi

Ā(1 − F̄ r2) + ∂Ā

∂y
j+1
i

[
θ

(
y

j+1
i+1 − y

j+1
i

�xi

)

+ (1 − θ)

(
y

j

i+1 − y
j

i

�xi

)]

(1 − F̄ r2) − ∂Ā

∂y
j+1
i

(So − S̄f ) − Ā

(
āQ̄

Ā2
+ 2b̄Q̄2

Ā3

)
∂Ā

∂y
j+1
i

(24)

∂MEi

∂Q
j+1
i

= 1

2n̄g�t
+ Āθ

(
ā

Ā
+ 2b̄

Ā2
Q̄

)
(25)

∂MEi

∂y
j+1
i+1

= θ

�xi

Ā(1 − F̄ r2) + ∂Ā

∂y
j+1
i+1

[
θ

(
y

j+1
i+1 − y

j+1
i

�xi

)

+ (1 − θ)

(
y

j

i+1 − y
j

i

�xi

)]

(
1 − F̄ r2

) − ∂Ā

∂y
j+1
i+1

(So − S̄f ) − Ā

(
āQ̄

Ā2
+ 2b̄Q̄2

Ā3

)
∂Ā

∂y
j+1
i+1

(26)

∂MEi

∂Q
j+1
i+1

= 1

2n̄g�t
+ Āθ

(
ā

Ā
+ 2b̄

Ā2
Q̄

)
(27)

∂CEi

∂y
j+1
i

= n̄T
j+1
i

2�t
(28)

∂CEi

∂Q
j+1
i

= − θ

�xi

(29)

∂CEi

∂y
j+1
i+1

= n̄T
j+1
i+1

2�t
(30)
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∂CEi

∂Q
j+1
i+1

= θ

�xi

(31)

The derivatives of the critical-flow boundary condition defined at
node N and time j + 1 are:

∂DBE

∂y
= Q2 ∂T

∂y
− 3gA2n2 ∂A

∂y
(32)

∂DBE

∂Q
= 2QT (33)

The other boundary conditions introduced in section 2 are linear
functions of Q and y and have a derivative of either 1 or 0. The
∂A
∂y

and ∂T
∂y

terms are easily related to the geometry of the cross
section of the channel.

After developing the Jacobian matrix and the negative of the
residual vector, the resulting linear system in Eq. (21) must
be solved. The Choleski method for non-symmetric banded
matrix in vector storage (Istok, 1989) was used to solve the
equations.

3.2 Sloped downstream faces

The exit presents two problems in the analysis. Firstly, what
is the exit depth if it is not determined by some downstream
condition? Secondly, because the downstream face is sloped, the
effective length of the structure will change with discharge. This
is particularly true for the last element in the finite difference
scheme described above.

Three methods or equations are found in the literature that
introduce an exit depth for rockfill structures as a necessity to
solve the gradually-varied flow equation inside the rockfill under
steady-state conditions (Hansen, 1992). The depth calculated by
these methods is applied provided that it exceeds the tailwater
depth downstream of the rockfill. If not, the tailwater level pro-
vides the downstream control. Hansen (1992), based on extensive
flume studies conducted on different rockfills, concluded that the
critical depth approach proposed by Stephenson (Stephenson,
1978; 1979) works better than other methods. Therefore, this
approach was selected as the method for calculation of the exit
location.

In unsteady-state situations, the downstream depth varies
with time because discharge varies with time. This means that
the location that this depth meets with the downstream face
changes with time. In order to deal with the variability of the
downstream location, the co-ordinate of the last node must
be adjusted at each time step (Fig. 3) using the following
equation:

x
j+1
N = xN(fixed) − y

j

N

tan(β)
(34)

where x
j+1
N is the adjusted co-ordinate of node N at time

step j + 1, xN (fixed) is the fixed co-ordinate of the lower
end of the rockfill, and β is the slope of downstream face.
This methodology provides a means for imposing a vari-
able downstream depth by varying the size of the last ele-
ment. In order that the last element always be present in the

N(fixed)
N-1

1 2

N(adjusted)

y
N

N(fixed)
N-1

1 2

N(adjusted)

y
Nβ

Figure 3 Location adjustment of the last node for rockfills with sloped
downstream faces.

process of calculations, the following restriction must also be
satisfied:

xN−1 < xN(fixed) − yN,max

tan(β)
(35)

where yN,max is an estimated maximum downstream depth. This
estimation can be easily made by looking at the history of
the downstream depth. If it is a critical-flow boundary con-
dition, the estimate can be made by calculating the critical
depth based on the peak of the imposed upstream hydrograph
considering that the flood wave attenuates as it leaves the
rockfill.

4 Experimental setup and data

4.1 Media physical properties

Three types of materials selected in this study were different
in size ranging from 8.7 mm to 25.7 mm. Although each mate-
rial had been mechanically sorted in the quarry, it was washed
and completely mixed in the laboratory to produce a media as
uniform as possible. Three samples were randomly drawn from
each material. Each sample was about 25 kg. For each sample the
size distribution, particle density, porosity and shape factor were
determined using standard methods. Shape factors (SF ) were
estimated using the following relationship:

SF = c∗
√

a∗b∗ (36)

where a∗ is length in longest direction and b∗ are c∗ are
lengths measured in mutually perpendicular medium and short
directions, respectively.

The average of these physical parameters for the three sam-
ples was considered to be the average for the material. Table 1
summarizes the results.

4.2 Flume tests

Fig. 4 shows the details of the flume used. It was modified for the
free-surface flow experiments, by placing a tank in the beginning
of the flume to create hydrographs with different shapes.

As shown in Fig. 4, the 60.3 cm wide flume was made of
plywood except for the glass side to view the flow pattern. The
elevation of the bottom of the flume was measured at different
pressure transducer locations by a leveling procedure accurate to
1.0 mm. The overall bed slope was found to be 0.0058. A movable
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Table 1 Material properties.

Material d50 d10 Coef. of Coef. of Particle Porosity Shape
(mm) (mm) uniformity concavity density (−) factor

(−) (−) (g/cm3) (−)

Small 8.6 5.6 1.61 1.05 2.75 0.483 0.47
Medium 21.1 15.1 1.45 1.13 2.71 0.458 0.53
Large 26.9 20.4 1.38 1.02 2.60 0.443 0.50
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Figure 4 Plexiglas flume and experimental set-up.

gate at the end of the flume was used to control the downstream
water level.

A 150 kW self priming centrifugal pump, was used to deliver
water to the system. The water first passed through the upstream
tank which was made of plywood with the key dimensions
shown in Fig. 4. A V-notch weir installed at the outlet of the
tank was used to measure the discharge rate supplied to the
rockfill.

Three of the rockfill structures were 150.0 cm long, 60.3 cm
wide, and 40.0 cm high and made of three different materials as
described in section 4.1. The fourth rockfill was a layered sys-
tem of the same length and width with the largest material in the
bottom and the smallest material at the top. The thickness of the
large material in the bottom was 12.0 cm while those of the oth-
ers were 12.0 and 16.0 cm for the medium and small materials,
respectively. All rockfills were constructed under a loose (uncom-
pacted) condition. Two rigid screens with openings appropriate to
contain the large and medium materials were used upstream and

downstream of the rockfill to create vertical faces for the rockfill
structures. In the case of the small material, a 6.3 × 6.3 cm wire
mesh was also used. The head loss through the screen system was
determined to be negligible.

Ten (0−1.45 psi) pressure transducers were used to record
the unsteady flow behavior inside the rockfill. One pressure sen-
sor was installed 5.0 cm upstream of the rockfill to record the
upstream depth with time and one 5.0 cm downstream to record
the downstream depth. Eight pressure transducers were installed
every 20.0 cm inside the rockfill. Two of these eight pressure
sensors were located 5.0 cm inside the rockfill at both ends. All
pressure sensors were connected to manometers installed on a
manometer board and linked to a Campbell Scientific CR10 data-
logger. The exact locations of the pressure sensors were outside,
near the bottom of the flume. They were connected to the flow at
the bottom using copper tubings. However, the datum for head
measurements was considered to be the inner part of the bottom
of the flume.

One pressure transducer was also installed 70.0 cm upstream
of the weir to record the rate of rise or fall of water behind the
weir. The weir was a 60◦V-notch weir made of stainless steel
with a thickness of 2 mm. The calibrated relationship between
the head upstream of this weir and discharge, with a R2 = 0.998
in the range of the experimental discharges, defined the pattern
of the imposed hydrograph.

The experimental procedure used in the flume tests can be
described under two different headings, steady and unsteady state
conditions, for each rockfill.

4.2.1 Steady-state conditions
The pump was used to deliver water to the system with a constant
discharge. Steady state was determined after the head behind the
V-notch weir had reached a constant level. When the steady-state
condition was stabilized, all manometer readings in the system
were recorded. The exit depth at the downstream face of the rock-
fill was also measured using a fixed scale accurate to 1 mm under
either free-flow conditions or drowned (controlled) conditions.
Free-flow condition refers to the condition when a seepage face
appears in the downstream face of the rockfill while the drowned
condition is the situation where the gate at the end of flume was
raised to create a drowned flow condition in the downstream face.
Table 2 presents a summary of the different steady-state tests on
the rockfills. In the table, almost free is the condition when the
two conditions are not distinguishable.
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Table 2 Steady-state test conditions.

Material Discharge Upstream Downstream Measured Water Test
(L/s) depth (mm) condition exit depth (mm) Temperature (◦C) name

Small (S)
(1) 1.01 143 ∼= Free 11 19.7 SS1
(2) 2.53 250 Controlled 63 19.7 SS2
(3) 3.97 330 Controlled 89 19.7 SS3
(4) 1.08 144 ∼= Free 12 19.7 SS4
(5) 2.65 252 Controlled 62 19.7 SS5
(6) 4.11 334 Controlled 89 19.7 SS6

Medium (M)
(1) 0.93 107 Controlled 30 19.8 MS1
(2) 2.78 213 Controlled 53 19.8 MS2
(3) 5.56 330 Controlled 76 19.8 MS3
(4) 1.00 107 Controlled 16 19.8 MS4
(5) 2.89 213 Controlled 39 19.8 MS5
(6) 5.62 327 Controlled 78 19.8 MS6

Large (L)
(1) 2.89 191 Controlled 81 20.5 LS1
(2) 3.84 228 Controlled 84 20.5 LS2
(3) 7.67 353 Controlled 97 20.5 LS3
(4) 1.18 102 Controlled 19 20.5 LS4
(5) 3.43 204 Controlled 37 20.5 LS5
(6) 7.09 329 Controlled 69 20.5 LS6

Layered
Rockfill (N)

(1) 2.39 184 Free 24 20.5 NS1
(2) 3.93 261 ∼= Free 54 20.5 NS2
(3) 6.31 380 Controlled 110 20.5 NS3
(4) 1.20 117 ∼= Free 19 20.5 NS4
(5) 3.49 239 Free 41 20.5 NS5
(6) 5.71 342 Free 59 20.5 NS6

4.2.2 Unsteady-state conditions
The procedure for unsteady-state conditions was basically the
same as that for steady-state conditions except for the fact that
the discharge through the rockfill was varied. To accomplish this,
the pump was started and set to a constant rate with the upstream
tank initially empty. The rate of rise of water in the tank was
recorded every second. Only once the water level reached the
vertex of the V-notch weir did water enter the rockfill. This was
considered as the starting time of the inflow hydrograph. The
water level continued to increase in the head tank and hence
the rising limb of hydrograph was created. The falling limb of
the hydrograph was created by turning off the pump at a spe-
cific time. This time was considered the time that the reservoir
behind the rockfill was nearly full indicating that the whole
body of the rockfill at the upstream face was active in passing
water.

The pressure transducers were recording the flow depths in the
system every second during the rising and falling limbs. The rate
of rise of the hydrograph was changed by adjusting the pump
control valve. Three different hydrographs with three different
rates of rise were created for each of the four rockfill structures
in the flume.

Initial condition was a zero depth in the rockfill and the down-
stream condition was a free-flow situation for all hydrographs.
Additional flow situations were also created by establishing a
non-zero depth as an initial condition in the system. This was done
by beginning with a constant discharge through the system and
adjusting the heads using the movable gate at the end of the flume.
This discharge and the resulting depths were recorded as the ini-
tial condition. The hydrograph was then created by increasing
the discharge and turning off the pump or lowering the discharge
using the control valve in the pump. The downstream faces of the
rockfills were in a drowned-flow condition in these cases. The
second kind of hydrograph was not created for the rockfill made
of the medium material because it was the first material placed
in the flume and this idea was not considered in the beginning of
the experiments.

Table 3 shows the characteristics of the unsteady-state tests.
Temperature values were the same as those reported in Table 2
for each material. For hydrographs that were flat near the peak
for a period of time, time to peak was assumed to be the central
value of that constant discharge period.

Different rates of rise were tested over the range from 0.10 to
0.68 (L/s)/s. From the results summarized in the table, it is noted
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Table 3 Unsteady-state test conditions.

Material Peak Time Rate of Downstream Maximum Maximum Test
flow to rise condition measured measured name
(L/s) peak ((L/s)/s) exit depth upstream

(s) (mm) depth
(mm)

Small (S)
(1) 7.86 46.5 0.17 Controlled 81 382 SU1
(2) 11.86 19.0 0.62 Controlled 78 336 SU2
(3) 17.66 26.0 0.68 Free – 394 SU3
(4) 13.55 35.0 0.39 Free – 386 SU4
(5) 8.19 60.5 0.13 Free – 371 SU5

Medium (M)
(1) 12.99 37.5 0.35 Free – 373 MU1
(2) 17.37 27.0 0.64 Free – 369 MU2
(3) 7.87 63.0 0.12 Free – 329 MU3

Large (L)
(1) 7.53 76.0 0.10 Controlled 101 350 LU1
(2) 13.56 27.5 0.49 Controlled 101 358 LU2
(3) 13.56 39.0 0.35 Free – 356 LU3
(4) 8.05 77.0 0.10 Free – 346 LU4
(5) 18.07 28.5 0.63 Free – 380 LU5

Layered
Rockflll (N)

(1) 7.89 54.0 0.15 Controlled 113 376 NU1
(2) 13.07 29.0 0.45 Controlled 115 397 NU2
(3) 13.22 36.0 0.37 Free – 368 NU3
(4) 7.99 66.5 0.12 Free – 352 NU4
(5) 16.25 24.0 0.68 Free – 333 NU5

that, in general, a higher rate of rise corresponds to a smaller time
to peak. Detailed measurements of the unsteady-state scenarios
together with the ability of the model to predict such scenarios
are discussed in section 5.2.

5 Evaluation of the model performance

The collected data can be considered as bench mark data to
evaluate the performance of the ROCKFLOW model. The three
standard steps i.e. code verification, parameter estimation and
model verification (Anderson et al., 1993) were followed to
achieve this. The developed code for steady-state situations was
verified using an example for which analytical solution was avail-
able. In this example, flow through a homogeneous rectangular
(vertical upstream and downstream faces) valley fill of unit width
was considered. The flow characteristics and the selected material
properties are as follows:
q (discharge per unit width) = 0.5 m2/s, n (porosity) = 0.443,
a = 0.82 s/m, b = 39.1 s2/m2, So = 0.0 and L = Length of
Rockfill = 10.0 m

It was assumed that the tailwater depth is small compared
to the critical depth. Therefore, critical-flow condition gave an
exit depth of 0.506 m. Steady gradually-varied flow equation has
an analytical solution of the following form for the situation

described (Hansen, 1992):

x =
[
by

a2
− y2

2qa
+ ln(y)

gn2b
− b2q ln(ay + bq)

a3

− ln(ay + bq)

gn2b

]yx

y0

(37)

where x is the distance yx is from yo (m).
For modeling purposes 11 nodes with equal, 1 m, spacing were

used. The closure criterion was 0.00001 m. Fig. 5 compares the
result of the numerical study with that of the analytical solution.
As demonstrated by the figure, the model predicts the flow behav-
ior inside the rockfill well. However, increasing the number of
nodes results in better agreement between the model and the ana-
lytical solution especially close to the seepage face, a zone with
high hydraulic gradients.

In order to partially verify the unsteady code developed, it was
applied to steady-state example. All characteristics were the same
as values reported except for the imposed upstream discharge.
The upstream discharge in this case was a hydrograph. The dis-
charge starts from 0 and varies linearly for 300 s up to a value
of 0.5 m3/s. Then, the discharge was kept constant until the end
of the simulation at 3000 s. As was expected, the unsteady-state
model gave final depths exactly the same as the corresponding
steady-state values.
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Figure 5 Steady-sate code verification-example.

5.1 Parameter estimation (Calibration)

The estimation of hydraulic parameters is a problem for rockfill
structures. This is due to the fact that these lumped parameters
are representative of spatially-variable physical properties of the
media such as size and size distribution of the materials, porosity,
orientation, shape and roughness of the particles. Local and the
resulting average hydraulic effects of these properties are hard to
quantify and therefore uncertainty will be an inherent ingredient
of the estimated parameters.

In this study, the material hydraulic parameters were deter-
mined using steady-state runs in the model. The resulting
hydraulic parameters were then used to model unsteady condi-
tions. To achieve this, calibration techniques to determine in-situ
hydraulic parameters were explored. Although the detailed pre-
sentation of these methods is beyond the scope of this paper, it
is worth mentioning that the linear regression method suggested
by Goodwill and Kalliontzis (1988) and non-linear regression
using PEST software (Doherty et al., 1994) were used. In gen-
eral it was found that the values obtained using the PEST software
performed the best both in terms of the overall behavior of the
simulated water surface profiles and the upstream depth. There-
fore the idea behind using PEST and the results obtained are
briefly discussed here.

PEST, a model independent parameter estimation software
tool (Doherty et al., 1994) is a model that employs a non-linear
estimation technique known as the Gauss-Marquardt-Levenberg
method to find the best parameters in a weighted least-squares
sense. The method can be applied to different discharge condi-
tions of interest and the resulting parameters can be averaged.
However, in this study, a simple modification was applied to
the developed model to be able to calibrate for all steady-state
conditions simultaneously. This modification was to create one
input file containing all data related to the different conditions
and have the model analyze this data in one run. As a result, one
output file was developed and this made it possible for PEST to
calibrate for all conditions simultaneously. The results obtained
from this procedure are reported in Table 4. These are the results
obtained from the simultaneous calibration of all tests for each
material. In addition, the regression was done on the heads, and
thus 48 data points were used to estimate the two parameters for
each material. This provides enough degrees of freedom for mak-
ing an estimate. The data points were given equal weight in the

Table 4 Hydraulic parameters resulting from using
PEST software.

Material a 95% b 95%
(s/m) Confidence (s2/m2) Confidence

interval interval
a b

Small 2.73 ±0.29 85.7 ±11.1
Medium 1.79 ±0.30 46.4 ±7.9
Large 1.01 ±0.17 39.7 ±3.7

analysis. The results for layered rockfill were slightly different
due to change in packing.

The results of applying PEST estimated parameters to flume
rockfills show that the overall average absolute error in the
upstream depth is less than 1%, and none greater than 6%.

5.2 Model verification

In order to verify the unsteady-state ROCKFLOW model, the
unsteady-state tests summarized in Table 3 were used as inde-
pendent data for the verification procedure. In this regard,
the hydraulic parameters applicable to the rockfill materials
were considered to be the in-situ parameters resulting from the
calibration under steady-state conditions.

As was shown in Fig. 4, there is a reservoir between the rockfill
and the weir where the hydrograph is measured. The role of
this reservoir is important in flow behavior under unsteady-state
conditions because it stores a relatively large volume of water.
This zone was also included in the modeling by considering it as a
zone with negligible energy loss compared to the rockfill and that
a nearly horizontal water surface was observed in this zone during
unsteady-state experiments. The a and b friction coefficients in
the Forchheimer equation were assumed to be 0 for this zone.
Small values of a and b such as 0.0001 s/m and 0.0001 s2/m2 that
do not produce a difference in head along this storage area could
be also considered.

To model the unsteady-state conditions, the model parameters
selected were: �t = 1 s, �x = 0.1 m and θ = 0.55. Also,
the depth and discharge tolerances were 10−4 m and 10−5 m3/s,
respectively. The selected parameter values provided sufficient
accuracy for modeling. In general, the selected �t and �x values
are compatible with the experimental measurements. At three
locations, �x values of 0.05 m, 0.05 m and 0.08 m were used to
adapt the model to the geometry of the flume and measurement
points.

To asses the effect of the third term in Eq. 2, assuming con-
stant a and b for each material, it was found that for the conditions
in the experimental apparatus, a maximum value of approxi-
mately 0.8 was appropriate for Ca (Hannoura and McCorquodale,
1985; Irmay, 1958; van Gent, 1995). It was included in the model
and used in modeling flow through medium material. Examina-
tion of the water surface profiles at different times showed that the
effect of this additional term was negligible (maximum change
in calculated water depth of only 1 mm). Because of this small
effect, this additional term was not included in the model.
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Table 5 Measured and simulated peak characteristics of depth variation with time curves

Test Peak depth (time to peak) Peak depth (time to peak)
name at upstream face at x = 0.65 m

Measured Simulated Difference Measured Simulated Difference
mm-(s) mm-(s) (%) mm-(s) mm-(s) (%)

SU1 382 (57) 376 (57) −1.6 (0.0) 304 (60) 301 (61) −1.0(1.7)
SU2 336 (31) 332 (30.5) −1.2 (−1.6) 268(35) 265 (35.5) −1.1(1.4)
SU3 394 (34) 380 (34.5) −3.5 (1.5) 306 (39) 299 (40.5) −2.3 (3.8)
SU4 386 (43) 379 (43) −1.8 (0.0) 303 (47) 299 (48) −1.3 (2.1)
SU5 371 (73) 367 (71) −1.1 (−2.7) 293(74.5) 293(75) 0.0(0.7)

MU1 373 (44) 355 (43.5) −4.8(1.1) 298 (46) 283 (47) −5.3 (2.2)
MU2 369(34.5) 353(34) −4.3 (−1.4) 296(37) 281 (37.5) −5.1 (1.4)
MU3 329 (70.5) 324 (72.5) −1.5 (2.8) 266 (73) 248 (75.5) −6.8 (3.4)

LU1 350 (82) 327(80.5) −6.6 (−1.8) 288(82) 269(82.5) −6.6 (0.6)
LU2 358 (32) 355 (33.5) −0.8 (4.7) 292 (36) 290 (35.5) −0.7 (−1.4)
LU3 356 (43) 348 (42.5) −2.2 (−1.2) 285 (44) 281 (44.5) −1.4 (1.1)
LU4 347 (99) 348 (105.5) 0.3 (6.6) 282 (104) 284 (107) 0.7 (2.9)
LU5 379 (34) 373 (34) −1.6 (0.0) 306 (35) 302 (37) −1.3 (5.7)

NU1 376 (64) 370 (64) −1.6 (0.0) 295 (66) 290(66.5) −1.7(0.8)
NU2 396 (35) 390 (35.5) −1.5 (1.4) 310 (37) 304 (38) 1.9 (2.7)
NU3 368 (42) 355 (43) −3.5 (2.4) 282 (46) 272 (47) −3.5 (2.2)
NU4 352 (76) 347 (76.5) −1.4 (0.6) 272 (79) 268 (79) −1.5 (0.0)
NU5 333 (31) 317 (33) −4.8 (6.4) 256 (36) 243 (37) −5.1 (2.8)

Figure 6 is a typical graphical presentation of the performance
of the model under the reported unsteady-state conditions. These
figures, drawn for all unsteady-state tests show the input hydro-
graph, water surface profiles at three representative times during
the test and the depth variation with time at two representative
locations.

A constant simulation time of 250 seconds was selected for all
scenarios. This time was considered to be a sufficient time to study
the overall behavior of the flow system in different zones such as
the rising limb, peak zone and the falling limb of the depth varia-
tion with time curves. Table 5 summarizes the results in terms of
some important flow characteristics such as maximum depth and
time to maximum depth at two locations, the upstream face and at
x = 0.65 m. Regarding the experimental and simulation results
partially given in Table 5 and illustrated in Fig. 6 as a typical fig-
ure, the points reported below are observed and worth discussing.

(1) The depth results are good both in terms of the charac-
teristics at the peak and overall performance of the depth
variation with time curves considered at two locations, the
upstream face and at x = 0.65 m. The average absolute
difference between the simulated and the measured peak
upstream depths is 2.5%, ranging from 0.3% to −6.6% while
that of x = 0.65 m is 2.6% ranging from 0.0% to −6.8%.

(2) As shown in Table 5, a trend of underestimation of depth by
the model is observed. However, such performance cannot
be totally attributed to the model. The reason is that the flow
of water entering the small reservoir upstream of the weir
is not smooth. The impact of the accelerating jet of water
running through the weir and entering the reservoir upstream
the rockfill may cause an increase in depth that may propagate

some distance downstream. The numerical model has not
been developed to consider such secondary effects present in
this complicated unsteady-state phenomena.

(3) The time results are also promising. On average, a difference
ofabout1.1 s isobservedbetween themeasuredandsimulated
times. This difference is compatible with the accuracy in time
measurements. The high difference in the case of LU4 test is
due to relatively flat input hydrograph existed in this case.

(4) No major differences are observed between the performances
of the model for different media.

(5) The curves predicted by the model follow the same pattern
as the measured curves under different types of boundary
and initial conditions. This is observed for both the depth
variation with time and water surface profile curves. This
also confirms that considering a critical flow in the down-
stream face of the rockfill under free-flow conditions leads
to satisfactory results for unsteady-state conditions.

(6) Although some discrepancy is observed between the mea-
sured and simulated depths in the early stages of the
flow, especially under non-zero depth initial conditions or
rapidly rising hydrographs, the model is able to predict
the more straight or concave-upward water surface profiles
reasonably well.

(7) A concave-upward pattern was observed in water-surface
profiles at early stages of the flow for all tests conducted
under free-flow conditions. This is because it takes time for
the flow to be affected by the downstream boundary condi-
tion and move towards the development of a fully-developed,
concave-downward water surface profile. This time gets
smaller as the material gets larger under the same imposed
hydrograph.
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Figure 6 Unsteady-state model verification- SU4 test.

Considering the uncertainty and secondary effects present in
physical modeling of unsteady flow through rockfill as a media
susceptible to disturbance, and also the above discussed points,
it can be concluded that the model has produced good results.
Also, the fact that model was tested under variety of materials,
and initial and boundary conditions, supports the potential for the
applicability of the model to field conditions.

6 Conclusions

An unsteady model, ROCKFLOW, with a potential to use in the
analysis of non-linear flow through heterogeneous valley fills was
developed. It was concluded that the model works well based on
the following evidence:

(a) The code verification of the model was successful,
(b) The model was able to simulate the experimental results well

in terms of peak characteristics of depth variation with time
curves at two representative locations, the upstream face and
at x = 0.65 m as reported in Table 5,

(c) The overall pattern of modelled depth variation with time
curves and water surface profiles was the same as the exper-
imental results for different types of initial and boundary
conditions, and

(d) No major differences were found between the performance
of the model under different media, homogeneous or layered.

The following points were also concluded from the modeling
exercises:

(e) A critical-flow condition at the downstream face of the rock-
fill under free-flow conditions was found to work well under
unsteady-state conditions, and

(f) Times to peak of the depth variation with time curves were
less sensitive to the choice of the model parameters compared
to the depth itself.

As a final point, it can be concluded that the developed model
has the potential for application to field situations considering its
structure, capabilities, and performance briefly reviewed in the
paper. The choice of the model parameters and the methods of the
estimation of the hydraulic parameters will also help engineers
to precisely model such a phenomenon.

Notations

A total area of the cross section at any depth (m2)

a parameter in the Forchheimer equation (s/m)
aeq value of a in the Forchheimer equation for an

equivalent hydraulic system (s/m)
a∗ length in longest direction of a particle
b parameter in the Forchheimer equation (s2/m2)

beq value of b in the Forchheimer equation for an
equivalent hydraulic system (s2/m2)

Ca parameter in the extended Forchheimer equation (s2/m)
b∗, c∗ lengths measured in mutually perpendicular

medium and short directions of a particle, respectively
CE continuity equation

DBE downstream boundary condition equation
f general function
Fr Froude number
g gravitational acceleration (m/s2)

i hydraulic gradient
i subscript referring to the nodes in longitudinal

direction
j superscript referring to time step
k superscript indicating iteration number
L total length of rockfill (m)

ME momentum equation
n porosity
N number of nodes in finite difference discretization
Q discharge (m3/s)
SF shape factor
So bed slope
Sf slope of energy grade line
t time (s)
T top width (m)

UBE upstream boundary condition equation
v bulk velocity of flow (m/s)
V average longitudinal bulk velocity of flow (m/s)
x longitudinal direction
�X vector of unknowns
y depth of flow (m)
Y total depth of flow for a layered system (m)
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yN,max estimated maximum downstream depth (m)
β slope of downstream face of the rockfill
θ weighting parameter in weighted four-point

finite difference formulation
�t time step (s)
�x distance step (m)
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