






 

 

  

Abstract— In this paper, the effects of suction and blowing 

on the temperature field between two eccentric rotating 

spheres which rotate about a common axis of rotation are 

presented. The angular velocity of outer sphere is constant and 

the angular velocity of inner sphere is considered as sinusoidal 

function. The Navier-Stokes and energy equations are solved 

by employing the finite difference method and implicit 

scheme. The resulting flow patterns and temperature 

distributions are presented for various values of the flow 

parameters including rotational Reynolds number Re , and a 

blowing/suction Reynolds number wRe . In this work, the 

effect of viscous dissipation is ignored.  The eddies created in 

the flow field are found as preventive means for heat transfer. 

Also, it is observed, where the distance between two spheres is 

reduced the diffusion of heat becomes more, because the 

Coriolis forces are bigger in these regions 

 

Keywords— Eccentric spheres, Heat transfer,   numerical 

solution, sinusoidal angular velocities, suction and blowing.  

I. INTRODUCTION 

 he flow and heat transfer in an annulus between two 

spheres has been studied in various cases by many 

researchers. Such studies can be classified into two main 

groups.  In the first group, there is neither suction nor blowing 

at the spherical walls. Such containers are used in engineering 

designs like centrifuges and fluid gyroscopes and also are 

important in geophysics. 

Available theoretical works concerning such problems are 

primarily of a boundary-layer or singular-perturbation 
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character considered by Howarth [1], Greenspan [2], Carrier 

[3] and Stewartson [4].  

The first numerical study of time-dependent viscous flow 

between two rotating spheres has been presented by Pearson 

[5] in which the cases of one (or both)sphere is given an 

impulsive change in angular velocity starting from a state of 

either rest or uniform rotation.  Munson and Joseph [6] have 

considered the case of steady motion of a viscous fluid 

between concentric rotating spheres using perturbation 

techniques for small values of Reynolds number and a 

Legendre polynomial expansion for larger values of Reynolds 

numbers.   

 Recently a numerical study of flow and heat transfer 

between two rotating spheres has been done by Jabari 

Moghadam and Rahimi [7] in which the fluid contained 

between two vertically eccentric spheres maintained at 

different temperature and rotating about a common axis with 

different angular velocities when the angular velocities are 

arbitrary functions of time. Jabari Moghadam and Rahimi [8] 

have also studied the similarity solution for spheres rotating 

with constant angular velocity. 

In the second group, the effects of transpiration on flow in 

an annulus between two spheres have been investigated. The 

study of flow in a spherical annulus along with transpiration is 

used in many practical applications, such as rotary machines 

and spherical heat exchangers and in the design of spherical 

fluid storage systems. In these applications transpiration is 

used to regulate the rate of heat transfer.               

     Effects of transpiration on free convection in an annulus 

between two stationary concentric porous spheres have been 

considered by Gulwadi et al. [9]. Gulwadi et al. [10] studied 

the laminar flow in an annulus between rotating porous spheres 

and with injection and suction at spherical walls. They used a 

perturbation technique to solve the steady-state Navier-Stokes 

equations of motion and also used a finite difference method to 

validate their analytical results. Their results are valid for 

small values of the rotational Reynolds number ( 50Re < ) 

and an injection/suction Reynolds number. A review of the 

literature reveals that there is no study on the transient motion 

and heat transfer between two eccentric rotating spheres with 

uniform transpiration. In the present study, a numerical 

solution of unsteady momentum and energy equations is 

presented for eccentric spheres in high Reynolds numbers 

( 1000Re = ). 
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II. PROBLEM FORMULATION  

The geometry of the spherical annulus considered is 

indicated in Fig.1.  

 

Fig.1: Geometry of problem 

The vertical eccentricity of the outer sphere is measured by 

the distance e. If the outer sphere is placed above the central 

position, e has a positive value, otherwise it is negative. The 

origin of the spherical coordinate system is the inner sphere 

center and the characteristic radius of the outer sphere, oR′ , is 

a function of θ . A Newtonian, viscous, incompressible fluid 

fills the gap between the inner and outer spheres, which are of 

radii iR  and oR and with constant surface temperatures 

iT and oT and rotate about a common axis with angular 

velocities iΩ  and oΩ , respectively. The components of 

velocity in r ,θ  and φ  directions are rv , φv  and φv , 

respectively. These velocity components for incompressible 

flow and in meridian plane satisfy the continuity equation and 

are related to stream function ψ  and angular momentum 

function Ω  in the following manner: 
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the blowing/suction Reynolds number is defined as: 

               
ν

oor

w

rv
=Re                                                          (2) 

in which 
or

v  and or   are radial velocity and radius 

reference values, respectively. The blowing/suction Reynolds 

number wRe   is positive for blowing at inner sphere and 

negative for suction.  Since the flow is assumed to be 

independent of the longitude,φ , the non-dimensional Navier-

Stokes equations  and energy equation can be written in terms 

of the stream function and the angular velocity function as 

follows:  
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in which the non-dimensional quantities Reynolds number 

( Re ), Prandtl number ( Pr ), Peclet number ( Pe ) are defined 

as: 

ν
ω 2

Re oor= , αν /Pr = ,
α

ω 2

Pr.Re oorPe ==               (6) 

The following non-dimensional parameters have been used 

in the above equations and then the asterisks have been 

omitted: 
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in which oω is reference value which is selected as oΩ . 

The  non-dimensional boundary and initial conditions for the 

above governing equations are: 
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III. PROBLEM SOLUTION 

In this section, we firstly present the Computational 

Procedure and discuss then on the obtained results. 

A. Computational Procedure 

The two equations governing the fluid motion show that each 

is describing the behavior of one of the dependent variables Ω  

andψ .  On the other hand, these two equations are coupled 

only through nonlinear terms.  To solve the problem, the 

momentum equations were discretized by the   finite-difference 

method and implicit scheme. Because of the known velocity 

field, the energy equation is linear and is solved keeping all its 

terms. 

In each time step (n+1), the value of the dependent variables 

are guessed from their values at previous time steps (n), (n-1), 

and (n-2) and after using them in difference equations and 

repeating it until the desired convergence, will lead to the 

corrected values at this time step.  This procedure is applied 

for the next time step. 

     The flow field considered is covered with a regular mesh. 

To solve the system of linear difference equations, a 

tridiagonal method algorithm is used in both directions r  

andθ .  

Direct substitution of previous values of dependent variables 

by new calculated values can cause calculation un-stability in 

general.  To overcome this problem, a weighting procedure is 

used in which the optimum weighting factor depends on 

Reynolds number.  The mesh size used in numerical solution 

for equator of the circle is a uniform 40x20, 60x30, 80x40 and 

100x50(θ -direction x r-direction, respectively)   with the ratio 

of Rout /Rin=2, which all of them show that the problem is 

independent of mesh size, but on the one hand by noting to 

calculations time and on the other hand since a finer mesh size 

is better we choose the 80x40 mesh size.  

In this work, the sphere angular velocity has been 

considered a function of time (sinusoidal) and to apply this 

time function to the program, an average value at the 

beginning of each time step has been calculated and used for 

the sphere angular velocity function.  Therefore, for each 

considered time step, the sphere velocity is defined and 

sectionally continues. 

B. Results and Discussions 

The streamlines and temperature distribution in the   

meridian plane for 1000Re = , 5Re −=w , Pr =10 

1.0=e , )2/sin(2 t
o

i

io π=
Ω

Ω
=Ω in t = 4.01

sec 
are 

presented in Fig.2. In Fig.3 the contours of the streamlines and 

temperature field are presented for the same conditions in 

Fig.2 except t = 11.01
sec 

.As can be seen, the size of the eddies 

created in flow field comparison with the Fig.2 (a), is smaller. 

Also Looking at Fig.3 (b), it is found that the diffusion of heat 

in the vicinity of the poles is less, because the eddies created in 

the vicinity of the poles are as preventive means for heat 

transfer.  

     Fig.4 shows the temperature distribution in the annulus 

for the same before conditions except 10Re −=w . As can be 

seen, the increase in suction increases the diffusion of heat 

transfer toward the inner sphere which has less temperature. 

Finally, in Fig.5 the streamlines and temperature distribution 

are presented for blowing case ( 5Re =w ) and two Prandtl 

numbers Pr =1 and Pr =10. In this case, by considering the 

flow field, it is found out that the eddies near the outer sphere 

are the preventive means for transferring the inner sphere 

coldness toward the outer sphere. Also, the effect of Prandtl 

number on temperature field is considerable, as is shown in 

Fig.4, case (b) (Pr =1) and case(c) (Pr =10). In all of the 

temperature fields, diffusion of heat in lower hemisphere is 

more visible, because of more Coriolis forces in this 

hemisphere. 
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Fig.2: Flow and heat transfer 

for 1000Re = , 5Re −=w , Pr =10, 1.0=e , 

)2/sin(2 tio π=Ω  at t = 4.01
sec 
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(b) 

Fig.3: Flow and heat transfer 

for 1000Re = , 5Re −=w , Pr =10, 1.0=e , 

)2/sin(2 tio π=Ω  at t = 11.01
sec
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Fig.4: Temperature distribution for 1000Re = , 

10Re −=w , 10Pr = , )2/sin(2 tio π=Ω  

at t = 11.01
sec 
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(c) 

 

Fig.5: Flow and heat transfer 

for 1000Re = , 5Re =w , 1.0=e , )2/sin(2 tio π=Ω  

at t = 11.01sec,  

(b) 10Pr = ,(c) 1Pr =  

 

 

IV. CONCLUSION 

In this paper, the effects of suction and blowing on 

flow and especially heat transfer between two vertically 

eccentric spheres are studied. The angular velocity of 

the inner sphere was considered as a sinusoidal function 

while the outer sphere was stationary. The obtained 

results show that the eddies are as the preventive means 

for heat transfer so that the diffusion of heat is more in 

the regions that there are no the eddies. Also it is found; 

where the distance between two spheres is reduced the 

diffusion of heat becomes more, because the Coriolis 

forces are bigger in these regions. Likewise, it is seen 

that with suction and blowing the rate of heat transfer 

can be regulated.  
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