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a b s t r a c t

Problems with censored data arise frequently in survival analyses and reliability applica-
tions. The estimation of the density function of the lifetimes is often of interest. In this
paper, the estimation of the density function by the kernel method is considered, when
censored data show some kind of dependence. We apply the strong Gaussian approxima-
tion technique for studying the strong uniform consistency for kernel estimators of the
density function under a censored dependent model.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction and main result

In medical follow-up or in engineering life testing studies, one may not be able to observe the variable of interest, re-
ferred to hereafter as the lifetime. Let X1, . . . , Xn be a sequence of lifetimes, having a commonunknown continuousmarginal
distribution function (d.f.) F , with a density function f = F ′. The random variables are not assumed to be mutually indepen-
dent (see Assumption (1) for the kind of dependence stipulated). Let the random variable Xi be censored on the right by the
random variable Yi, so that one observes only

Zi = Xi ∧ Yi and δi = I(Xi ≤ Yi),
where ∧ denotes the minimum and I(.) is the indicator of the event specified in parentheses. In this random censorship
model, we assume that the censoring random variables Y1, . . . , Yn are not mutually independent (see Assumption (2) for
the kind of dependence stipulated), having a common unknown continuous d.f. G, and that they are independent of the Xi’s.
Since censored data traditionally occur in lifetime analysis, we assume that Xi and Yi are nonnegative. The actually observed
Zi’s have a distribution function H satisfying

H(t) = 1− H(t) = (1− F(t))(1− G(t)).
Denote by

F∗(t) = P(Z ≤ t, δ = 1),
the sub-distribution function for the uncensored observations, and by f∗ the corresponding sub-density. Define by

Nn(t) =
n∑
i=1

I(Zi ≤ t, δ = 1) =
n∑
i=1

I(Xi ≤ t ∧ Yi),

the number of uncensored observations less than or equal to t , and by

Yn(t) =
n∑
i=1

I(Zi ≥ t),

the number of censored or uncensored observations greater than or equal to t and also the empirical distribution functions
of H(t) and F∗(t) are respectively defined as

Y n(t) = n−1Yn(t), Nn(t) = n−1Nn(t).
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Then the Kaplan–Meier estimator for 1− F(t), based on n pairs {(Zi, δi), 1 ≤ i ≤ n} is given by

1− F̂n(t) =
∏
s≤t

(
1−

dNn(s)
Yn(s)

)
, (1.1)

where dNn(t) = Nn(t)− Nn(t−) and Nn(t−) = limε→0+ Nn(t − ε).
In the independence framework with no censoring, the kernel estimate fn of a real univariate density f introduced by

Rosenblatt (1956) and defined by

fn(t) =
n∑
i=1

1
nhn
K
(
t − Xi
hn

)
,

where X1, . . . , Xn are independent observations from the density, K is a kernel function, and hn is a sequence of (positive)
‘‘bandwidths’’ tending to zero as n → ∞. Parzen (1962) showed that under some mild smoothness conditions on K (and
f ), fn(t) is in any respect a consistent estimator of f (t) for each t ∈ R. The weak and strong uniform consistency properties
of fn have been considered by several authors, including Nadaraya (1965), Schuster (1969) and Van Ryzin (1969). In these
papers the condition placed on the bandwidth for strong uniform consistency include

∑
exp(−cnhn2) <∞ for all positive c .

Silverman (1978) established the strong uniform consistency for fn− f using the strong approximation technique developed
by Komlós et al. (1975) for the ordinary empirical process. In censored case, based on the Kaplan–Meier estimator F̂n, Blum
and Susarla (1980) proposed to estimate the density function f by a sequence of kernel estimators fn defined by

fn(t) =
1
hn

∫
∞

0
K
(
t − s
hn

)
d̂Fn(s), (1.2)

where K is a kernel function having finite support on (−1, 1) and hn is a sequence of positive bandwidths tending to 0 as
n → ∞. The properties of the kernel estimator fn have been examined by Blum and Susarla (1980), Földes et al. (1981)
and Mielniczuk (1986), among others. Zhang (1998) established the strong uniform consistency for fn − f using the strong
approximation technique developed by Burke et al. (1981, 1988) for the product-limit process Zn(t) :=

√
n[̂Fn(t)− F(t)].

In the case where {Xi, i ≥ 1} and {Yi, i ≥ 1} are two independent α-mixing sequences (see Definition 1), by the strong
representation for the density estimators, Cai (1998) established uniform consistency (with rate) of the kernel estimators
for density.
We consider a sequence of kernel estimators fn defined by (1.2) for estimate of, f (x), density function. The main aim of

this paper is to derive strong uniform consistency of kernel density, for the case inwhich the underling lifetimes are assumed
to be α-mixing whose definition is given below.

Definition 1. Let {Xi, i ≥ 1} denote a sequence of random variables. Given a positive integerm, set

α(m) = sup
k≥1
{|P(A ∩ B)− P(A)P(B)|; A ∈ F k

1 , B ∈ F ∞k+m}, (1.3)

where F k
i denote the σ -field of events generated by {Xj; i ≤ j ≤ k}. The sequence is said to be α-mixing (strongly mixing)

if the mixing coefficient α(m)→ 0 asm→∞.

Among various mixing conditions used in the literature, α-mixing, is reasonably weak and has many practical applications.
There exists many processes and time series fulfilling the strongmixing condition. As a simple example we can consider the
Gaussian AR(1) process for which

Zt = ρZt−1 + εt ,
where |ρ| < 1 and εt ’s are independently identically distributed random variables with standard normal distribution. It
can be shown (see Ibragimov and Linnik, 1971, pp. 312–313) that {Zt} satisfies strong mixing condition. The stationary
autoregressive-moving average (ARMA) processes, which are widely applied in time series analysis, are α-mixing with
exponential mixing coefficient, i.e., α(n) = e−νn for some ν > 0. The threshold models, the EXPAR models (see Ozaki,
1979), the simple ARCH models (see Engle, 1984; Masry and Tjostheim, 1995, 1997) and their extensions (see Diebolt
and Guégan, 1993) and the bilinear Markovian models are geometrically strongly mixing under some general ergodicity
conditions. Auestad and Tjostheim (1990) provided excellent discussions on the role of α-mixing for model identification
in nonlinear time series analysis.
It is the purpose of this paper to study the strong uniform consistency for fn− f , using the strong Gaussian approximation

technique obtained by Fakoor andNakhaei Rad (2009) for the product-limit process. Our approach is first to apply the strong
approximation technique to establish the strong uniform consistency of fn − f̃n, where

f̃n(t) =
1
hn

∫
∞

0
K
(
t − s
hn

)
dF(s). (1.4)

Now, for the sake of simplicity, the assumptions used in this paper are as follows.
Assumptions
(1) Suppose that {Xi, i ≥ 1} is a sequence of stationary α-mixing random variables with continuous distribution function F ,
survival function S(.) and mixing coefficient α1(n).
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(2) Suppose that {Yi, i ≥ 1} is a sequence of stationary α-mixing random variables with continuous distribution function G
and mixing coefficient α2(n). Moreover, we assume the censoring times are independent of {Xi, i ≥ 1}.

(3) α(n) = O(e−(log n)
1+ν
) for some ν > 0, with α(n) = max(α1(n), α2(n)) (see Remark 2.1 in Ould-Saïd and Sadki, 2005, for

details).
(4) Suppose that f is continuous on [0, τ ], where τ = sup{t : H(t) > 0}.
(5) Suppose that the symmetric kernel function K satisfies

∫ 1
−1 K(t)dt = 1,

∫ 1
−1 tK(t)dt = 0, K(t) = 0 if t 6∈ (−1, 1) and is

of bounded variation on (−1, 1)with total variation denoted by VK .
(6) Suppose that f has a bounded second derivative on [0, τ ].

Our main result is the following theorem.

Theorem 1. Let hn be a sequence of positive bandwidths tending to zero as n→∞. Suppose that Assumptions (1)–(5) hold and
that

lim
n→∞

(log n)−λ
√
nhn

= 0, (1.5)

for some λ > 0. Then, for any ε > 0,

lim
n→∞

sup
0≤t≤τ−ε

|fn(t)− f (t)| = 0 a.s. (1.6)

Proof. See the Appendix. �

An inspection of the proof of Theorem 1, gives the rate of strong uniform consistency for fn − f̃n.

Lemma 1. Under the same conditions as in Theorem 1, we have

sup
0≤t≤τ−ε

|fn(t)− f̃ (t)| = O

(√
log log n
n

)
+ O

(
(log n)−λ
√
nhn

)
a.s.

Remark 1. If the bandwidth hn is chosen to be hn ∼ αn−β with α > 0 and 0 < β ≤ 1
2 , then condition (1.5) is satisfied.

Remark 2. In the independence framework with no censoring (with censoring), for suitable kernels, Silverman (1978)
(Zhang, 1998) showed that the condition h−1n = o(n/ log n) as n → ∞ is sufficient for strong uniform consistency of
kernel density estimates. In the α-mixing case with censoring, we cannot achieve the same rate as in the iid case.

Using strong Gaussian approximation in Lemma Fakoor and Nakhaei Rad (2009) for the product-limit process, we can
find a two parameter Gaussian process which strongly uniform approximate the empirical density process as shown in this
subsection. Let

ψn(t, s) =
1
hn
K
(
t − s
hn

)
. (1.7)

Theorem 2. Let ψn(t, s) be a sequence of functions defined on (1.7). Suppose that Assumptions (1)–(6) hold, Then

sup
t
|
√
n(fn(t)− f (t))− Γ (t, n)| = O

(
(log n)−λ

hn
+
√
nh2n

)
a.s.,

where

Γ (t, n) = −
∫
∞

0
S(x)B(x, n)dψn(t, x).

Proof. Applying Lemma, we have

fn(t)− f (t) = (fn(t)− f̃n(t))+ (̃fn(t)− f (t))

=

∫
∞

0
ψn(t, x)d[̂Fn(x)− F(x)] + (̃fn(t)− f (t))

= −
1
√
n

∫
∞

0
Zn(x)dψn(t, x)+ (̃fn(t)− f (t))

a.s.
= −

1
√
n

∫
∞

0
S(x)B(x, n)dψn(t, x)+ O

(
(log n)−λ
√
nhn

)
+ (̃fn(t)− f (t)).

The result follows from Lemma 6.1.2 in Csörgő and Révész (1981). �
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Remark 3. Theorem 2 suggests the optimal rate hn ∼
(
n−1/2(log n)−λ

)1/3 for such approximation.
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Appendix

In order to prove main theorem, we need the following lemmas.

Lemma 2 (Theorem 3 in Dhompongsa, 1984).Under Assumptions (1) and (3), there exists a Kiefer process {k(s, t), s ∈ R, t ≥ 0}
with covariance function

E[k(s, t)k(s′, t ′)] = Γ (s, s′)min(t, t ′)

and Γ (s, s′) is defined by

Γ (s, s′) = Cov(g1(s), g1(s′))+
∞∑
k=2

[Cov(g1(s), gk(s′))+ Cov(g1(s′), gk(s))],

where gk(s) = I(Zk ≤ s)− H(s), such that, for some λ > 0 depending only on ν , given in Assumption (3),

sup
t∈R
|Y n(t)− H(t)− k(t, n)/n| = O(bn), a.s.

where

bn = n−1/2(log n)−λ. �

Consider the following Gaussian process

B(t, n) =
∫ t

0

k(x, n)/
√
n

(H(x))2
dF∗(x), (A.1)

where k(x, n) is the Kiefer process in Lemma 2.

Lemma 3 (Theorem 3 in Fakoor and Nakhaei Rad, 2009). Suppose that Assumptions (1)–(3) are satisfied. On a rich probability
space, there exists a two parameter mean zero Gaussian process {B(u, v)u, v ≥ 0} such that,

sup
t≥0
|Zn(t)− S(t)B(t, n)| = O((logn)−λ) a.s., (A.2)

for some λ > 0.

To study strong uniform consistency of kernel density estimators, we also need to study the modulus of continuity of
approximating process B(u, v). In the next lemma,weprove the globalmodulus of continuity of theGaussian process B(u, v).

Lemma 4. Let hn be a sequence of positive numbers for which

lim
n→∞

hn
√
log log n = 0. (A.3)

Then, for any ε > 0

sup
0≤t≤τ−ε

sup
−1≤u≤1

|B(t − hnu, n)− B(t, n)| = O(hn
√
log log n) a.s. (A.4)

Proof. It is easy to see that,

|B(t − hnu, n)− B(t, n)| ≤
(
sup

0≤x≤τ−ε

∣∣∣∣k(x, n)√
n

∣∣∣∣)
∣∣∣∣∣F∗(t − hnu)− F∗(t)H

2
(τ )

∣∣∣∣∣ .
LetMf∗ = sup0≤t≤τ f∗(t), then it follows from the Mean Value Theorem that |F∗(t − hnu)− F∗(t)| ≤ Mf∗hn for u ∈ [−1, 1]
and t ∈ [0, τ − ε]. Now, by the law of iterated logarithm for the Kiefer process (see, Theorem A of Berkes and Philipp, 1977)
the proof is completed. �
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Lemma 5. Assuming the same conditions as in Theorem 1, we have

lim
n→∞

sup
0≤t≤τ−ε

|fn(t)− f̃n(t)| = 0 a.s.

Proof. According to Lemma 3, there exists Gaussian process B(t, n) such that, for large n and t ∈ [0, τ − ε], we
have

fn(t)− f̃n(t) = −
1
√
nhn

∫
∞

0
Zn(x)dK

(
t − x
hn

)
=

1
√
nhn

∫ 1

−1
S(t − uhn)B(t − uhn, n)dK(u)+ O

(
(log n)−λ
√
nhn

)
a.s.

=
1
√
nhn
S(t)

∫ 1

−1
[B(t − uhn, n)− B(t, n)]dK(u)

+
1
√
nhn

∫ 1

−1
[S(t − uhn)− S(t)][B(t − uhn, n)− B(t, n)]dK(u)

+
1
√
nhn
B(t, n)

∫ 1

−1
[S(t − uhn)− S(t)]dK(u)+ O

(
(log n)−λ
√
nhn

)
= I1n(t)+ I2n(t)+ I3n(t)+ O

(
(log n)−λ
√
nhn

)
a.s. (A.5)

To deal with I1n, we apply Lemma 4, so we have

sup
0≤t≤τ−ε

|I1n(t)| = O

(√
log log n
n

)
a.s. (A.6)

LetMf = sup0≤t≤τ f (t), then it follows from the Mean Value Theorem that

|S(t − hnu)− S(t)| ≤ Mf hn (A.7)

for u ∈ [−1, 1] and t ∈ [0, τ − ε]. Now applying Lemma 4 yields

sup
0≤t≤τ−ε

|I2n(t)| = O

(
hn

√
log log n
n

)
a.s. (A.8)

According to the law of iterated logarithm for the Kiefer process (see Theorem A of Berkes and Philipp, 1977), we have

sup
0≤t≤τ−ε

|B(t, n)| = O
(√
log log n

)
a.s. (A.9)

It follows from (A.7) and (A.9)

sup
0≤t≤τ−ε

|I3n(t)| = O

(√
log log n
n

)
a.s. (A.10)

Combining (A.5), (A.6), (A.8) and (A.10) completes the proof of the lemma. �

Proof of Theorem 1. Since f is continuous on [0, τ ], f is uniformly continuous on [0, τ ], and hence it is easy to show by the
dominated convergence theorem that

lim
n→∞

sup
0≤t≤τ−ε

|f̃n(s)− f (s)| = 0.

Therefore, Theorem 1 is a straightforward consequence of Lemma 5 and the equality

fn − f = fn − f̃n + f̃n − f . �
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