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Abstract. Using the game approach to fragmentability, we give new and simpler
proofs of the following known results: (a) If the Banach space admits an equivalent
Kadec norm, then its weak topology is fragmented by a metric which is stronger than the
norm topology. (b) If the Banach space admits an equivalent rotund norm, then its weak
topology is fragmented by a metric. (c) If the Banach space is weakly locally uniformly
rotund, then its weak topology is fragmented by a metric which is stronger than the norm
topology.
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1. Introduction

Let (X, τ) be a topological space and ρ be a metric onX. Given ε > 0, a nonempty subset
A of X is said to be fragmented by ρ down to ε if each nonempty subset of A contains a
nonempty τ–relatively open subset of ρ-diameter less than ε. A is called fragmented by ρ
if A is fragmented by ρ down to ε for each ε > 0. The set A is said to be σ -fragmented by
ρ if for every ε > 0, A can be expressed as A = ∪∞n=1An,ε with each An,ε fragmented by
ρ down to ε.

The notion of fragmentability was originally introduced in [3] to investigate the existence
of nice selections for upper semicontinuous compact-valued mappings. The notion of σ -
fragmentability appeared in [1] in order to study Banach spaces, the weak topology of
which is σ -fragmented by the norm (such Banach spaces are said to be σ -fragmentable).
Since then, these two concepts have been playing an important role in the study of the
geometry of Banach spaces.

Kenderov and Moors [4] used the following topological game to characterize frag-
mentability of a topological space X: Two players 6 and � alternatively select subsets
of X. 6 starts the game by choosing some nonempty subset A1 of X. Then � chooses
some nonempty relatively open subset B1 of A1. In general, if the selection Bn 6= ∅ of
the player � is already specified, the player 6 makes the next move by selecting an arbi-
trary nonempty set An+1 contained in Bn. Continuing the game the two players generate
a sequence of sets

A1 ⊃ B1 ⊃ · · · ⊃ An ⊃ Bn ⊃ · · ·
which is called a play and is denoted by p = (Ai, Bi)∞i=1. If

p1 = (A1), . . . , pn = (A1, B1, . . . , An)
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are the first ‘n’ move of some play (of the game), then pn is called the nth partial play of
the game. The player � is said to have won the play p if ∩∞i=1Ai = ∩∞i=1Bi contains at
most one point. Otherwise the player

∑
is said to be the winner in this play. Under the

term strategy s for�-player, we mean a rule by means of which the player�makes his/her
choices. More precisely, the strategy s is a sequence of mappings s = {sn}n≥1, which are
defined inductively as follows: s1 assigns to each possible first move A1 of 6-player a
nonempty relatively open subset B1 = s1(A1). Therefore, the domain of s1 is the set of
all nonempty subsets of X and s1 assigns to each such an element a nonempty relatively
open subset of it. The domain of s2 consists of triples of the type (A1, B1, A2), where A1
is from the domain of s1, B1 = s1(A1) and A2 is an arbitrary nonempty subset of B1. s2
assigns to such a triple a nonempty relatively open subset B2 = s2(A1, B1, A2) of A2. In
general, the domain of sn+1 consists of partial plays of the type

(A1, . . . , Ai, Bi, Ai+1, . . . , An+1),

where, for every i ≤ n, (A1, . . . , Ai) is from the domain of si, Bi = si(A1, . . . , Ai)

and An+1 is an arbitrary nonempty subset of Bn. To every element from its domain sn+1
assigns a nonempty relatively open subset Bn+1 of An+1.

A play p = (Ai, Bi)i≥1 is called an s-play if Bi = si(pi) for each i ≥ 1. s is called a
winning strategy for the player� if he/she wins every s-play. If the spaceX is fragmentable
by a metric d(· , ·), then� has an obvious winning strategy s. Indeed, to each partial playpn
this strategy puts into correspondence some nonempty subset Bn ⊂ An which is relatively
open in An and has d-diameter less than 1/n. Clearly, the set ∩i≥1Ai = ∩i≥1Bi has at
most one point because it has zero d-diameter. Kenderov and Moors have shown that the
existence of a winning strategy for the player � characterizes fragmentability, that is,

Theorem 1.1 [4]. The topological spaceX is fragmentable if and only if the player� has
a winning strategy.

Of special interest is the case when the topology generated by the fragmenting metric
contains the original topology of the space (in this case it is said that X is fragmented by
a metric which is stronger than its topology).

Theorem 1.2 [4]. The topological space X is fragmentable by a metric stronger than its
topology if and only if the player � has a strategy a such that, for every s-play p =
(Ai, Bi)i≥1 the intersection ∩∞i=1Ai = ∩∞i=1Bi is either empty or contains just one point
x0 and for every neighborhoodU of x0 there exists some k such thatAi ⊂ U for all i > k.

This characterization of fragmentability has some applications (see e.g. [4–6]). In [5],
it is shown that fragmentability and σ -fragmentability of the weak topology in a Banach
space are related to each other in the following way:

Theorem 1.3 ([5], Theorems 1.3, 1.4 and 2.1). For a Banach space X the following are
equivalent:

(i) (X, weak) is σ -fragmented by the norm (i.e. X is σ -fragmented);
(ii) (X, weak) is fragmented by a metric which is stronger than the weak topology;

(iii) (X, weak) is fragmented by a metric which is stronger than the norm topology;
(iv) There exists a strategy s for the player � in (X, weak) such that, for every s-play

p = (Ai, Bi)i≥1 either ∩i≥1Bi = ∅ or limi→∞ norm-diam (Bi) = 0.
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(v) There exists a strategy s for the player � in (X, weak) such that, for every s-play
p = (Ai, Bi)i≥1 either ∩i≥1Bi = ∅ or every sequence {xi}i≥1 with xi ∈ Bi, i ≥ 1
has a weak cluster point.

Moreover, we have the following: The norm ‖·‖ of a Banach spaceX is said to be Kadec
if the norm topology and the weak topology coincide on the unit sphere {x ∈ X: ‖x‖ = 1}.
In [2], it was shown that every Banach space with Kadec norm is σ -fragmented. It follows
that there exists a strategy for the player � satisfying condition (iv) from the theorem
of Kenderov and Moors. In the next section, we will directly construct such a strategy
(without using the theorem of Kenderov and Moors).

The norm‖·‖of a Banach spaceX is said to be rotund (or strictly convex) if the unit sphere
{x ∈ X : ‖x‖ = 1} does not contain nontrivial line segments. Ribarska has shown in [7] that
the weak topology of a rotund Banach space is fragmented by a metric. By the abovemen-
tioned characterization of fragmentability it follows that the player � has a winning strat-
egy. In the next section we will directly define such a strategy (without using the result of
Ribarska and the mentioned theorem of Kenderov and Moors). Moreover, if the norm ofX is
weakly locally uniformly rotund, then the strategy we construct satisfies condition (v) from
the above theorem of Kenderov and Moors. Recall that the Banach spaceX is called locally
uniformly rotund (resp. weakly locally uniformly rotund) if limn→∞ ‖xn − x‖ = 0 (resp.
weak– lim(xn − x) = 0, whenever limn→∞ ‖(xn + x)/2‖ = limn→∞ ‖xn‖ = ‖x‖.

2. Description of the strategies

Lemma 1. Let X be a Banach space with Kadec norm. Then, for every ε > 0 and x ∈ X,
there exists some positive number αε,x and a weakly open setWε,x 3 x such that ‖y−x‖ <
ε whenever y ∈ Wε,x and |‖y‖ − ‖x‖| ≤ αε,x .

Proof. If x = 0, it suffices to putWε,x = X and to take as αε,x any positive number smaller
than ε/2. Suppose x 6= 0 and take a convex weakly open neighborhood G of x such that
the norm diameter of G ∩ {z: ‖z‖ = ‖x‖} is less than ε/2. Define αε,x > 0 to be smaller
than ε/2, ‖x‖ and such that αε,xB ⊂ (G− x)/2 (as usual B stands for the closed unit ball
of X). Put Wε,x := x + (G− x)/2 = (x +G)/2. Let y ∈ Wε,x and |‖y‖ − ‖x‖| < αε,x .
Then we have

(‖x‖/‖y‖)y = ((‖x‖/‖y‖)y − y)+ y = (‖x‖ − ‖y‖)y/‖y‖ + y
∈ |‖y‖ − ‖x‖|B +Wε,x ⊂ αε,xB +Wε,x ⊂ (G− x)/2+ (G+ x)/2 = G.

Hence ‖(‖x‖/‖y‖)y − x)‖ < ε/2. Finally we have

‖y − x‖ ≤ ‖y − (‖x‖/‖y‖)y‖ + ‖(‖x‖/‖y‖)y − x‖ < αε,x + ε/2 < ε.

2

We also need the following result:

Lemma 2 ([5], Proposition 2.1). If the closed unit ball B of a Banach space X admits a
strategy s with the property (iv) of Theorem 1.3, then the whole space also admits such a
strategy.
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Theorem 2.1. LetX be a Banach space with Kadec norm. Then there exists a strategy s for
the player � in (B, weak) such that, for every s-play p = (Ai, Bi)i≥1 either ∩i≥1Bi = ∅
or limi→∞ norm-diam (Bi) = 0.

Proof. Let ‖·‖ denote the Kadec norm on X and A1 be the first choice of 6-player. By
Lemma 2, we may assume that A1 ⊂ B, where B denotes the closed unit ball of X. Put

ρ1 = sup{‖x‖ : x ∈ A1} and ε1 = 1.

Two cases may happen.

(1) There is an element x1 ∈ A1 such that αε1,x1 +‖x1‖ > ρ1. Then we take such a point
x1 and define s1(A1) = B1 := Wε1,x1 ∩ A1\(‖x1‖ − αε1,x1)B and ε2 := ε1/2. Then
for each y ∈ B1, ‖y‖ ≤ ρ1 < αε1,x1 + ‖x1‖ and ‖y‖ ≥ ‖x1‖ − αε1,x1 . Therefore, by
Lemma 1, ‖y − x1‖ < ε1. Hence ‖ ‖ − diam(B1) < 2ε1.

(2) For every x ∈ A1, αε1,x + ‖x‖ ≤ ρ1. Then,

s1(A1) = B1 := A1\(1/2)ρ1B

and set ε2 = ε1. Suppose the mappings (si)i≤n participating in the definition of
a strategy for player � have already been defined. Let (Ai, Bi)1≤i≤n be a partial
play which is generated by the strategy mappings defined so far. This partial play is
accompanied by the numbers {εi}1≤i≤n and the points x1, . . . , xn. If An+1 is the next
move of the player 6, we put

ρn+1 = sup{‖x‖ : x ∈ An+1}
and consider the following two possible cases:

(1) There exists an element xn+1 ∈ An+1, such that αεn+1,xn+1 + ‖xn+1‖ > ρn+1. In this
case, we take such a point xn+1, define

sn+1(A1, . . . , An+1) = Bn+1 := Wεn+1,xn+1 ∩ An+1\(‖xn+1‖ − αεn,xn+1)B

and set εn+2 = εn+1/2. As above one shows that in this case ‖ ‖ − diam(Bn+1) <

2εn+1.
(2) For every point x ∈ An+1, αεn+1,x + ‖x‖ ≤ ρn+1. In this case, we define

sn+1(A1, . . . , An+1) = Bn+1 := An+1

∖(
1− 1

(n+ 2)

)
ρn+1B

and set εn+2 = εn+1. In this way the strategy s = (si)i≥1 for the �-player is already
defined.

Suppose (Ai, Bi)i≥1 is an s-play with x ∈ ∩n≥1An and limn→∞ ‖·‖ − diam(Bn) 6= 0.
Then there exists some δ > 0, such that ‖·‖ − diam(Bn) > δ for each n ∈ N . This means
that for all but finitely many n, the case (2) happens and thus {εn} is eventually constant:
εn = ε > 0 for all n > k. Since x ∈ ∩n≥1An,(

1− 1

n

)
ρn < ‖x‖ < ρn, for all n.

Let ρn↘ρ. Then the above inequality shows that ‖x‖ = ρ. On the other hand, αε,x+‖x‖ =
αεn,x + ‖x‖ ≤ ρn for n > k which implies the contradiction αε,x + ‖x‖ = ‖x‖. 2
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Remark 2.2. Lemma 1 directly implies that Banach spaces with Kadec norm are σ -
fragmentable. Actually, Theorem 2.3 of [2] indirectly implies that every Kadec renormable
Banach space X has a countable cover by sets of small local norm diameter, i.e., for each
ε > 0, it is possible to writeX = ∪n∈NXn,ε such that for each n ∈ N and x ∈ Xn,ε , there
exists an open neighborhood Vx , of x such that the norm diameter of Vx ∩Xn,ε is less then
ε. Using Lemma 1, we can give another proof of this result.

PROPOSITION 2.3

Let X be a Banach space with Kadec norm. Then for every ε > 0 there exists a countable
cover of X,X = ∪i≥0Xi , such that, for every x ∈ Xi , there exists a weakly open neigh-
borhood W of x such that W ∩ Xi is contained in x + εB, in particular the points of Xi
have weak neighborhoods with norm-diameter smaller than 2ε.

Proof. Given ε > 0 consider, for k = 1, 2, . . . , and n = 0, 1, 2, . . . , the sets Xkn =
{x ∈ X :αε,x > 2/k, and n/k ≤ ‖x‖ ≤ (n + 1)/k}. Clearly, X is covered by Xkn. Put
W := Wε,x . By Lemma 1 the set W ∩Xkn is contained in x + εB. 2

Theorem 2.4. Let X be a Banach space.

(a) If the norm of X is rotund, then (X, weak) is fragmentable by a metric.
(b) If the norm of X is weakly locally uniformly rotund, then (X, weak) is fragmented by

a metric which is stronger than the norm topology.

Proof. According to Theorems 1.2 and 1.3 and Lemma 2, it is enough to show that
in (B, weak) the player � has a winning strategy s such that, for every s-play p =
(Ai, Bi)i≥1,∩i≥1Bi has at most one point and in case (b) either ∩i≥1Bi = ∅ or every
sequence {yn}, yn ∈ Bn, n ≥ 1 is weakly convergent to the element of ∩i≥1Bi . Let ‖ ‖ be
the equivalent norm on X and 6 start a game by choosing a nonempty subset A1 of B.
Define

ρ1 = sup{‖x‖ : x ∈ A1}.

Choose an element x1 ∈ A1 such that ‖x1‖ > ρ1 − 1/2 and find some µ1 ∈ X∗ such that
‖µ1‖ = 1 and µ1(x1) = ‖x1‖. Define

s1(A1) = B1 := {x ∈ A1: µ1(x) > ρ1 − 1/2}

as the first choice of �-player. Then for each x ∈ B1, we have

ρ1 − 1/2 < µ1(x) ≤ ‖x‖ ≤ ρ1.

Suppose that the finite sequence {xk}k≤n of points of X, {µk}k≤n of elements of X∗,
and the partial play pn = (A1, . . . , Bn) have already been specified so that for each
x ∈ Bk, k ≤ n the inequality

ρk −
1

k + 1
< µk(x) < ‖x‖ ≤ ρk

holds. Let An+1 be the answer of 6-player to pn. Put

ρn+1 = sup{‖x‖ : x ∈ An+1}
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and find some xn+1 ∈ An+1, ‖xn+1‖ > ρn+1− 1
n+2 . Take some µn+1 ∈ X∗, ‖µn+1‖ = 1

with µn+1(xn+1) = ‖xn+1‖ and define

sn+1(A1, . . . , An+1) = Bn+1 =
{
x ∈ An+1: µn+1(x) > ρn+1 −

1

n+ 2

}
,

as the next choice of the player �. Clearly, for each x ∈ Bn+1, the inequality

ρn+1 −
1

n+ 2
< µn+1(x) < ‖x‖ ≤ ρn+1

holds. Thus, by induction on n, we have shown that the �-player can choose sets of the
form

Bn =
{
x ∈ An :µn(x) > ρn −

1

n+ 1

}
,

where ‖µn‖ = 1 and ρn = sup{‖x‖ : x ∈ An} for each n ∈ N .
Let ∩n≥1Bn 6= ∅ and µ be a weak∗ cluster point of {µn}. Then for each x ∈ ∩n≥1Bn,

the inequality

ρn −
1

n+ 1
< µn(x) < ‖x‖ ≤ ρn

for each n ∈ N implies that µ(x) = ‖x‖ = ρ, where ρ is the limit of the decreasing
sequence {ρn}. It follows that for each x, y ∈ ∩n≥1Bn, we have µ(x) = ‖x‖ = ‖y‖ =
µ(y). Rotundity ofX implies that x = y, thus, in this case, ∩n≥1Bn has at most one point.
In case (b), suppose that x ∈ ∩n≥1Bn. If yn ∈ Bn, the inequality

ρn −
1

n+ 1
<

1

2
µn(x + yn) ≤

1

2
‖x + yn‖ ≤

1

2
(‖x‖ + ‖yn‖) ≤ ρn

shows that limn→∞ ‖(x + yn)/2‖ = limn→∞ ‖yn‖ = ‖x‖ = ρ. Since (X, ‖ ‖) is weakly
locally uniformly rotund, it follows that limn→∞(x−yn) = 0. By Theorem 1.2, the space
is fragmented by a metric stronger than the weak topology. This completes the proof. 2

Remark 2.5. It is well-known that locally uniformly rotund norms are Kadec. Therefore
statement (b) from the above theorem follows from Theorem 2.1 as well.

Acknowledgement

The author is indebted to P Kenderov for the useful remarks while this work was in progress.

References

[1] Jayne J E, Namioka I and Rogers C A, Topological properties of Banach spaces, Proc.
London Math. Soc. (3)66 (1993) 651–672

[2] Jayne J E, Namioka I and Rogers C A, σ -Fragmentable Banach spaces I, Mathematika 39
(1992) 161–188

[3] Jayne J E and Rogers C A, Borel selectors for upper semi-continuous set-valued maps,
Acta Math. 56 (1985) 41–79



Convex renorming and fragmentability 207

[4] Kenderov P S and Moors W B, Game characterization of fragmentability of toplogical
spaces, Mathematics and Education in Mathematics (1996) pp. 8–18 (Proceedings of the
25th Spring Conference of the Union of Bulgarian Mathematicians, April 1996, Kazanlak,
Bulgaria)

[5] Kenderov P S and Moors W B, Fragmentability and sigma-fragmentability of Banach
spaces, J. London Math. Soc. (2)60 (1999) 203–223

[6] Mirmostafaee A K, On non-fragmentability of Banach spaces, Proc. Indian Acad. Sci.
(Math. Sci.) 108(2) (1998) 163–167

[7] Ribarska N K, A note on fragmentability of some topological spaces, C. R. I’Acad, Bulgare
des Sci. t. 43, No. 7 (1990) 13–15


