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A note on convex renorming and fragmentability
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Abstract.  Using the game approach to fragmentability, we give new and simpler
proofs of the following known results: (a) If the Banach space admits an equivalent
Kadec norm, then its weak topology is fragmented by a metric which is stronger than the
norm topology. (b) If the Banach space admits an equivalent rotund norm, then its weak
topology is fragmented by a metric. (c) If the Banach space is weakly locally uniformly
rotund, then its weak topology is fragmented by a metric which is stronger than the norm
topology.
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1. Introduction

Let (X, 1) be a topological space and p be a metric on X. Given € > 0, a nonempty subset
A of X is said to be fragmented by p down to € if each nonempty subset of A contains a
nonempty t—relatively open subset of p-diameter less than €. A is called fragmented by p
if A is fragmented by p down to € for each € > 0. The set A is said to be o -fragmented by
p if for every € > 0, A can be expressed as A = U>° | A, . with each A, . fragmented by
p down to €.

The notion of fragmentability was originally introduced in [3] to investigate the existence
of nice selections for upper semicontinuous compact-valued mappings. The notion of o -
fragmentability appeared in [1] in order to study Banach spaces, the weak topology of
which is o-fragmented by the norm (such Banach spaces are said to be o-fragmentable).
Since then, these two concepts have been playing an important role in the study of the
geometry of Banach spaces.

Kenderov and Moors [4] used the following topological game to characterize frag-
mentability of a topological space X: Two players ¥ and €2 alternatively select subsets
of X. ¥ starts the game by choosing some nonempty subset A; of X. Then € chooses
some nonempty relatively open subset By of Ap. In general, if the selection B, # ¢ of
the player 2 is already specified, the player ¥ makes the next move by selecting an arbi-
trary nonempty set A, contained in B,,. Continuing the game the two players generate
a sequence of sets

AiDB1D---DA; DB, D
which is called a play and is denoted by p = (A;, B;){2,. If
pr=(A1),...,pn=(A1, B1,... , Ay)
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are the first ‘n” move of some play (of the game), then p, is called the nth partial play of
the game. The player 2 is said to have won the play p if N2, A; = N2, B; contains at
most one point. Otherwise the player Y _ is said to be the winner in this play. Under the
term strategy s for Q2-player, we mean a rule by means of which the player €2 makes his/her
choices. More precisely, the strategy s is a sequence of mappings s = {s, },>1, which are
defined inductively as follows: s assigns to each possible first move A; of X-player a
nonempty relatively open subset B; = s1(A1). Therefore, the domain of s is the set of
all nonempty subsets of X and s; assigns to each such an element a nonempty relatively
open subset of it. The domain of s, consists of triples of the type (A, B, Az), where A
is from the domain of 51, B = s1(A) and A3 is an arbitrary nonempty subset of Bj. s
assigns to such a triple a nonempty relatively open subset By = s2(A1, By, Az) of Ay. In
general, the domain of 5,41 consists of partial plays of the type

(A1, ..., A, Bi, Aigt, ..., Ang),

where, for every i < n, (Ay, ..., A;) is from the domain of s;, B; = s;(A1,...,A;)
and A, 41 is an arbitrary nonempty subset of B,. To every element from its domain s,,41
assigns a nonempty relatively open subset By, 41 of Aj41.

A play p = (A;, B;)i>1 is called an s-play if B; = s;(p;) foreachi > 1. s is called a
winning strategy for the player Q2 if he/she wins every s-play. If the space X is fragmentable
by ametricd (-, -), then €2 has an obvious winning strategy s. Indeed, to each partial play pj,
this strategy puts into correspondence some nonempty subset B, C A, which is relatively
open in A, and has d-diameter less than 1/n. Clearly, the set N;>1A; = N;>1B; has at
most one point because it has zero d-diameter. Kenderov and Moors have shown that the
existence of a winning strategy for the player 2 characterizes fragmentability, that is,

Theorem 1.1 [4]. The topological space X is fragmentable if and only if the player Q2 has
a winning strategy.

Of special interest is the case when the topology generated by the fragmenting metric
contains the original topology of the space (in this case it is said that X is fragmented by
a metric which is stronger than its topology).

Theorem 1.2 [4]. The topological space X is fragmentable by a metric stronger than its
topology if and only if the player 2 has a strategy a such that, for every s-play p =
(Ai, Bi)i>1 the intersection ﬁ?ilAi = m?LBi is either empty or contains just one point
xo and for every neighborhood U of xg there exists some k such that A; C U foralli > k.

This characterization of fragmentability has some applications (see e.g. [4-6]). In [5],
it is shown that fragmentability and o -fragmentability of the weak topology in a Banach
space are related to each other in the following way:

Theorem 1.3 ([S], Theorems 1.3, 1.4 and 2.1). For a Banach space X the following are
equivalent:

(1) (X, weak) is o-fragmented by the norm (i.e. X is o -fragmented);
(i) (X, weak) is fragmented by a metric which is stronger than the weak topology;
(iil) (X, weak) is fragmented by a metric which is stronger than the norm topology;
(iv) There exists a strategy s for the player Q2 in (X, weak) such that, for every s-play
p = (Ai, Bi)i>1 either Ni>1B; = ¥ or lim;_, o norm-diam (B;) = 0.
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(v) There exists a strategy s for the player Q in (X, weak) such that, for every s-play
p = (A;, Bi)i>1 either Nj>1B; = 0 or every sequence {x;};>1 with x; € Bj,i > 1
has a weak cluster point.

Moreover, we have the following: The norm || - || of a Banach space X is said to be Kadec
if the norm topology and the weak topology coincide on the unit sphere {x € X: ||x| = 1}.
In [2], it was shown that every Banach space with Kadec norm is o -fragmented. It follows
that there exists a strategy for the player Q2 satisfying condition (iv) from the theorem
of Kenderov and Moors. In the next section, we will directly construct such a strategy
(without using the theorem of Kenderov and Moors).

Thenorm ||-|| of aBanach space X is said to be rotund (or strictly convex) if the unit sphere
{x € X :|x|| = 1} does not contain nontrivial line segments. Ribarska has shown in [7] that
the weak topology of a rotund Banach space is fragmented by a metric. By the abovemen-
tioned characterization of fragmentability it follows that the player €2 has a winning strat-
egy. In the next section we will directly define such a strategy (without using the result of
Ribarska and the mentioned theorem of Kenderov and Moors). Moreover, if the norm of X is
weakly locally uniformly rotund, then the strategy we construct satisfies condition (v) from
the above theorem of Kenderov and Moors. Recall that the Banach space X is called locally
uniformly rotund (resp. weakly locally uniformly rotund) if lim,_, » ||x, — x| = O (resp.
weak—lim(x,, — x) = 0, whenever lim,,_, 0 || (x, + x) /2| = limy— 00 X2l = lIx].

2. Description of the strategies

Lemma 1. Let X be a Banach space with Kadec norm. Then, for every € > 0 and x € X,
there exists some positive number o , and a weakly open set W x > x suchthat ||y —x|| <
¢ whenever y € We . and |[lyll — x| < ..

Proof. If x = 0, it suffices to put W, , = X and to take as o , any positive number smaller
than €/2. Suppose x # 0 and take a convex weakly open neighborhood G of x such that
the norm diameter of G N {z: ||z|| = ||x||} is less than €/2. Define o > 0 to be smaller
than €/2, || x| and such that ac x B C (G — x)/2 (as usual B stands for the closed unit ball
of X).Put We x :=x4+ (G —x)/2=(x+G)/2.Lety € W, and |||ly|| — lIx|l| < @e x-
Then we have

(A IDy = (xi/yDy = y) +y = Uxl = Iy Dy/Iyl 4y
€yl = lIxll1B+ Wex CacxB+ Wex C(G—x)/2+(G+x)/2=0G.

Hence [[(|x]I/llyIDy — x)|| < €/2. Finally we have

Iy —xll < lly = A/ 1y Dyl + HAxA/y Dy — x| < dex +€/2 < €.

We also need the following result:

Lemma 2 ([5], Proposition 2.1). If the closed unit ball B of a Banach space X admits a
strategy s with the property (iv) of Theorem 1.3, then the whole space also admits such a
strategy.
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Theorem 2.1. Let X be a Banach space with Kadec norm. Then there exists a strategy s for
the player Q2 in (B, weak) such that, for every s-play p = (A;, B;)i>1 either Ni>1B; = 0
or lim;_, oo norm-diam (B;) = 0.

Proof. Let ||| denote the Kadec norm on X and A be the first choice of X-player. By
Lemma 2, we may assume that A C B, where B denotes the closed unit ball of X. Put

p1 =sup{llx||:x € A1} and € =1.
Two cases may happen.

(1) There is an element x1 € A such that «¢, x, + ||x1]| > p1. Then we take such a point
x1 and define 51(A1) = By 1= We, x, N A1\(lIx1]l — o) ,x;) B and €2 := €1 /2. Then
foreach y € By, |yl < p1 < ey, + [lx1l and [[y]| = [lx1]| — e, ., . Therefore, by
Lemma 1, ||y — x1]| < €1. Hence || || — diam(B1) < 2e;.

(2) Forevery x € Ay, oy x + [lx|| < p1. Then,

5s1(A1) = By :=A1\(1/2)p1 B

and set €2 = €. Suppose the mappings (s;);<, participating in the definition of
a strategy for player Q2 have already been defined. Let (A;, B;)1<i<n be a partial
play which is generated by the strategy mappings defined so far. This partial play is
accompanied by the numbers {€;}|<; <, and the points xy, ... , x,. If A,,1 is the next
move of the player X, we put

Pn+1 = supfllx|l:x € Apy1}

and consider the following two possible cases:
(1) There exists an element x,, 1 € A, 41, such that e, | x,,; + IXut1ll > Opy1. In this
case, we take such a point x,,1, define

Su1(Ar, ... Apyl) = Byy = Wen+1,x,,+1 N A \Ulxpg1ll — aen,xn+1)B

and set €,42 = €,4+1/2. As above one shows that in this case || || — diam(B,+1) <
2eny1.
(2) For every point x € Ayy1, &g, ;,x + [IX|| < ppy1. In this case, we define

1
S Ar,... A =B = A ] — —— B
n+1(A1 n+1) n+1 n+1\< (n+2)>)0n+1

and set €, 7 = €,41. In this way the strategy s = (s;);>1 for the Q-player is already
defined.

Suppose (A;, B;)i>1 is an s-play with x € N,>1A, and lim,_,  ||-|| — diam(B,) # 0.
Then there exists some § > 0, such that ||-|| — diam(B,) > 6 for each n € N. This means
that for all but finitely many 7, the case (2) happens and thus {¢,} is eventually constant:
€p =€ > 0foralln > k. Since x € Np>14,,

1
(1 - —> pn < Ixll < pp, forall n.
n

Let p,\ p. Then the above inequality shows that || x|| = p. On the other hand, a¢ x4 || x| =
de, x + x|l < p, for n > k which implies the contradiction ae , + [|x|| = [|x]|. O
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Remark 2.2. Lemma 1 directly implies that Banach spaces with Kadec norm are o-
fragmentable. Actually, Theorem 2.3 of [2] indirectly implies that every Kadec renormable
Banach space X has a countable cover by sets of small local norm diameter, i.e., for each
& > 0, it is possible to write X = U, ey X, such that foreachn € N and x € X,, ¢, there
exists an open neighborhood V, of x such that the norm diameter of V, N X, ¢ is less then
€. Using Lemma 1, we can give another proof of this result.

PROPOSITION 2.3

Let X be a Banach space with Kadec norm. Then for every € > 0 there exists a countable
cover of X, X = U;>0X;, such that, for every x € X;, there exists a weakly open neigh-
borhood W of x such that W N X; is contained in x + € B, in particular the points of X;
have weak neighborhoods with norm-diameter smaller than 2e.

Proof. Given € > 0 consider, for k = 1,2,...,andn = 0, 1,2, ..., the sets Xy, =
{x €e X:iaex >2/k,andn/k < ||x|| < (n 4 1)/k}. Clearly, X is covered by Xy,. Put
W := We . By Lemma 1 the set W N Xy, is contained in x + €B. O

Theorem 2.4. Let X be a Banach space.

(a) If the norm of X is rotund, then (X, weak) is fragmentable by a metric.
(b) If the norm of X is weakly locally uniformly rotund, then (X, weak) is fragmented by
a metric which is stronger than the norm topology.

Proof. According to Theorems 1.2 and 1.3 and Lemma 2, it is enough to show that
in (B, weak) the player 2 has a winning strategy s such that, for every s-play p =
(Ai, Bi)i>1,Ni>1B; has at most one point and in case (b) either N;>; B; = ¥ or every
sequence {y,}, y» € By, n > 1 is weakly convergent to the element of N;>1 B;. Let || || be
the equivalent norm on X and X start a game by choosing a nonempty subset A1 of B.
Define

p1 =supf{llx|l : x € Ay}.

Choose an element x; € A such that ||x;|| > o1 — 1/2 and find some | € X™ such that
]l = 1 and 1 (x1) = [|x1]]. Define

si(AD) =Br:={x € A u1(x) > p1 — 1/2}
as the first choice of Q2-player. Then for each x € Bj, we have
p1—1/2 < pui(x) < llxll < p1.

Suppose that the finite sequence {xi}x<, of points of X, {ix}k<, of elements of X*,
and the partial play p, = (Aj,..., By) have already been specified so that for each
X € By, k < n the inequality

1
Ok — 1 < pmr(x) < [lxll < o

holds. Let A, 41 be the answer of X-player to p,,. Put

Pnt1 =sup{llx|l:x € Apy1}
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and find some x,4+1 € Ayy1, 1 Xn+1ll > on+1 — ﬁ Take some w41 € X*, [un+1ll = 1
With fnt1(one1) = [n41 [l and define
1
Spp1(Ar, oo, Apr1) = Byt = (X € Ayt tp 1 (X) > ppg1 — m s

as the next choice of the player Q2. Clearly, for each x € B, 1, the inequality

P+l — < 1 (x) < [Ix]| < ot

n+2
holds. Thus, by induction on n, we have shown that the Q2-player can choose sets of the
form

1
B, = {x € Ay in(x) > py — m} ,
where ||, || = 1 and p, = sup{||x|| : x € A,} foreachn € N.
Let Ny>1B, # ¥ and u be a weak™ cluster point of {x,,}. Then for each x € Ny>1 By,
the inequality

Pn — m < un(x) < |Ixll < pon
for each n € N implies that u(x) = ||x|| = p, where p is the limit of the decreasing
sequence {p,}. It follows that for each x, y € N,>1B,, we have u(x) = |x|| = [|yll =

1 (y). Rotundity of X implies that x = y, thus, in this case, N,>1 B, has at most one point.
In case (b), suppose that x € N,>1B,. If y, € B,, the inequality

1
n—+1

1 1 1
Pn — < Eﬂn(x+yn)§ ElliranI < 5(|IX|I+||yn||)§pn
shows that limy,, oo [|(x + yu) /2] = limy— o0 lynll = llx[l = p. Since (X, || ||) is weakly
locally uniformly rotund, it follows that lim,,_, oo (x — y,) = 0. By Theorem 1.2, the space
is fragmented by a metric stronger than the weak topology. This completes the proof. O

Remark 2.5. 1t is well-known that locally uniformly rotund norms are Kadec. Therefore
statement (b) from the above theorem follows from Theorem 2.1 as well.
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