
On the Minimax Optimality of Block Thresholded
Wavelets Estimators for ρ-Mixing Process

Hassan Doosti, HoseinAli Niroumand

Ferdowsi University, Mashhad, Iran

September 12, 2005

Key words and phrases: Block Thresholded, Non-linear wavelet-based estimator,
Rates of convergence, Minimax estimation splines

Abstract

We propose a wavelet based regression function estimator for the estimation
of the regression function for a sequence of ρ-missing random variables with a
common one-dimensional probability density function. Some asymptotic prop-
erties of the proposed estimator based on block threshoding are investigated.
It is found that the estimators achieve optimal minimax convergence rates over
a large classes of functions that involve many irregularities of a wide variety of
types, including chirp and Doppler functions and jump discontinuties.

1 Introduction

Let (Ω,F , P ) be a probability space. The random variables we deal with are all
defined on (Ω,F , P ). Let Nm

k denote the σ-algebra generated by the events

{Xk ∈ Ak, ..., Xm ∈ Am}.

A sequence of random variables {Xn, n ≥ 1} is said to be ρ-mixing if

sup
m

sup
X∈L2(Nm

1 ),Y ∈L2(N∞
m+s)

|corr(X, Y )| = ρ(s) → 0, as s→∞.
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The problem of interest is the estimation of nonparametric regression function

Ym = g(xm) + εm, m = 1, 2, ..., n, (1.1)

where xm = m
n
∈ [0, 1] and the variables εm are ρ-dependent random variables with

a common one-dimensional normal density function with zero mean and variance σ2

and g belongs to a large function class H (definition will be given in the next section).
Hall et al. (1999) considered model (1.1) when ε1, ..., εn are independent, identically
distributed (i.i.d.) normal random variables with mean 0 and variance σ2. They
introduced a local block thresholding estimator which thresholds empirical wavelet
coefficients in groups rather than individually and showed that the estimators achieve
optimal minimax convergence rates over a large class of functionsH that involve many
irregularities of a wide variety of types, including chip and doppler functions and jump
discontinuities. Therefore, wavelet estimators provide extensive adaptivity to many
irregularities of large function classes. Cai (2002) considered the asymptotic and nu-
merical properties of a class of block thresholding estimators for model (1.1) with
i.i.d. Gaussian errors. He investigated the block size and the thresholding constant
such that the corresponding block thresholding estimators obtain optimal convergence
rates for both global and local estimation over a large classes of functions as in Hall
et al. (1999). Li and Xiao (2004) extended the results of Hall et al. (1999) from
i.i.d. Gaussian errors to long memory stationary Gaussian processes. They showed
that their block thresholded estimator attains exactly optimal convergence rates over
a large classes of functions as in Hall et al. (1999). Doosti and Niroumand (2005)
considered a stochastic regression model with pairwise negative quadrant dependent
noise.
Wavelet methods in nonparametric curve estimation have become a well-known tech-
nique. For a systematic discussion of wavelets and their applications in statistics,
see the recent monograph by Härdle et al. (1998). The major advantage of wavelet
method is ability to adapt to the degree of smoothness of the underlying unknown
curve. These wavelet estimators typically achieve the optimal convergence rates over
exceptionally large function spaces. For reference, see Donoho et al.(1995,1996) and
Donoho and Johnstone (1998). Hall and Patil (1995,1996) also have demonstrated
explicity the extraordinary local adaptability of wavelet estimators in handling dis-
continuities. They showed that discontinuities of the unknown curve have a negligible
effect on performance of nonlinear wavelet curve estimators.
The paper first establishes some necessary basic mathematical background and ter-
minology relating to wavelets in Section 2. The main results are described in section
3.
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2 Preliminaries

2.1 Wavelet Estimators

For any function f ∈ L2(R), we can write a formal expansion (see Daubechies (1992)):

f =
∑
k∈Z

αi0,kφi0,k +
∑
j≥i0

∑
k∈Z

βj,kψj,k,

where the functions
φi0,k(x) = 2i0/2φ(2i0x− k)

and
ψj,k(x) = 2j/2ψ(2jx− k),

constitute an (inhomogeneous) orthonormal basis of L2(R). Here φ(x) and ψ(x)
are the scale function and the orthogonal wavelet, respectively. φ(x) and ψ(x) are
bounded and compactly supported and

∫
φ = 1. Wavelet coefficients are given by the

integrals

αi0,k =

∫
f(x)φi0,k(x)dx, βj,k =

∫
f(x)ψj,kdx.

The orthogonality properties of φ and ψ imply:∫
φi0,j1φi0,j2 = δj1j2 ,

∫
ψi1,j1ψi2,j2 = δi1i2δj1j2 ,

∫
φi0,j1ψi,j2 = 0, ∀i0 ≤ i,

(2.1)
where δij denotes the Kronecker delta, i.e., δij = 1, if i = j; and δij = 0, otherwise.
In our regression model, the mean function g is supported on a fixed unit interval
[0,1]. Therefore, we confine our attention to the wavelet basis of [0,1] intervals given
by Cohen et al.(1993), that is, the collection of {φi0,j, j = 0, 1, ..., 2i0−1;ψi,j, i ≥ i0 ≥
0, j = 0, 1, ..., 2j − 1} forms an orthonormal basis of L2[0, 1]. Since, in this paper,
we require vanishing moments up to N-1 for both φ and ψ (

∫
xkφ(x)dx = 0, k =

1, 2, ...,N − 1 ;
∫
xkψ(x)dx = 0, k = 1, 2, ...,N − 1 ), the so-called Coiflets will be used

here. Hence, the corresponding wavelet expansion of g(x), is

g(x) =
∑
j∈Z

αi0,jφi0,j +
∑
i≥i0

∑
j∈Z

βi,jψi,j(x), (2.2)

where

αi0,j =

∫
g(x)φi0,j(x)dx, βi,j =

∫
g(x)ψi,jdx.
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An empirical wavelet expansion based on term-by-term thresholding is given by

ḡ(x) =
∑
j∈Z

ᾱi0,jφi0,j +
∑
i≥i0

∑
j∈Z

β̄i,jψi,j(x)I(β̄
2
ij > cn−1logn), (2.3)

where ᾱi,j = n−1
∑

m Ymφi,j(xm), β̄i,j = n−1
∑

m Ymψi,j(xm), c is an appropriate
threshold constant, and i1 > i0 is a truncating point. Note that here, a thresholding
decision is made about each term in ψij.
In block thresholding, the integers j are divided among consecutive, nonoverlapping
blocks of length li, say Bik = {j : (k−1)li+v+1 ≤ j ≤ kli+v}, −∞ < k <∞, where
v is an arbitrary integer. (It simplifies notation a little if we take v = 0 which we shall
do.) In this approach, all terms involving the functions ψij for j ∈ Bik are included
in or excluded from the empirical wavelet transform. This leads to the estimator,

g̃(x) =
∑
j∈Z

ᾱi0,jφi0,j +

i1−1∑
i=i0

∑
k∈Z

(
∑
(ik)

β̄i,jψi,j(x))I(B̂ij > cn−1), (2.4)

where
∑

(ik) denotes summation over j ∈ Bik, and B̂ikis an estimator of the ”average”

value of β2
ij for j ∈ Bik.

Let Vi and Wi be the spaces spanned by {φij, j ∈ Z} and {ψij, j ∈ Z}, respectively,
and let ProjVi

(.) and ProjWi
(.) be the projection operators on these spaces. If i < i1

and f ∈ Vi1 then the coefficients of ProjVi
(f) and ProjWi

(f) may be computed
from the values of

∫
fφi1,j, j ∈ Z, using ”subband filtering schemes” discussed by

Daubechies (1992), chapter 5. Define

Ĝi1 = n−1/2

n∑
m=1

Ymφi1,m.

Let the coefficients α̂i,j and β̂i,j be given by

ProjWi
(Ĝi1) =

∑
j∈Z

β̂i,jψi,j and ProjVi0
(Ĝi1) =

∑
j∈Z

α̂i0,jφi0,j,

and put B̂i,k = l−1
i

∑
(ik) β̂

2
i,j. In this notation our wavelet estimator of g is

ĝ =
∑
j∈Z

α̂i0,jφi0,j +

i1−1∑
i=i0

∑
k∈Z

(
∑
(ik)

β̂i,jψi,j(x))I(B̂ij > cn−1). (2.5)

Choice of i0, i1, li and c will be discussed in next section.
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2.2 The class of Functions, H
Given 0 < s1 < s2 < N and γ, C1, C2, C3, v ≥ 0, we shall define a class of functions
H = H(s1, s2, γ, C1, C2, C3, N, v).

Definition 2.1 For given constants 0 < s1 < s2 < N , letH = H(s1, s2, γ, C1, C2, C3, N, v)
denote the class of functions g such that for any i ≥ 0 there exists a set of integers
Si for which the following is true:card(Si) ≤ C32

iγ and
1. For each j ∈ Si there exist constants a0 = g(j/2i), a1, ..., aN−1 such that

|g(x)−
N−1∑
l=0

al(x− 2−ij)l| ≤ C12
−is1 forall x ∈ [j/2i, (j + v)/2i];

2. For each j 6∈ Si there exist constants a0 = g(j/2i), a1, ..., aN−1 such that

|g(x)−
N−1∑
l=0

al(x− 2−ij)l| ≤ C22
−is2 forall x ∈ [j/2i, (j + v)/2i].

The function class H(s1, s2, γ, C1, C2, C3, N, v) contains the Besov class Bs2
∞∞(C2) as

a subset for all s1 < s2, γ > 0 and with C1 > 0 depending on the choice of the
other constants. Furthermore, as pointed out in Hall et al. (1999), a function g ∈ H
can be regarded as the superposition of a smooth function g2 from the Besov space
Bs2
∞∞ with a function g1 which may have irregularities of different types, such as jump

discontinuities and high-frequency oscillations. However, the irregularities of g1 are
controlled by the constants C3 and γ so that they do not overwhelm the fundamental
structure of g. We refer to Hall et al. (1999) and Cai (2002) for more discussions
about the function classes H.

Since our wavelets’ support is contained in the interval [0,1], we confine attention
to the function space H with v = 1.
The following lemma which characterizes some properties of the wavelet coefficients
of g ∈ H, is due to Hall et al.(1999, Proposition 3.1).

Lemma 2.1 For every function g ∈ H(s1, s2, γ, C1, C2, C3, N, v) and our selected
Coiflets, the wavelet coefficients of g, denoted with αi,j and βi,j have following prop-
erties:

|βi,j| ≤ ‖ψ‖1C12
−i(s1+1/2) ifj ∈ Si,

|βi,j| ≤ ‖ψ‖1C22
−i(s2+1/2) ifj 6∈ Si,

|αi,j − 2−i/2g(j/2i)| ≤ ‖φ‖1C12
−i(s1+1/2) ifj ∈ Si,

|αi,j − 2−i/2g(j/2i)| ≤ ‖φ‖1C22
−i(s2+1/2) ifj 6∈ Si.
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3 Main Results

Our main theorem provides an upper bound to convergence rates uniformly over
functions in H. Since the bound is of the same size as the minimax lower bound,
then it is optimal.
Let φ be a Coiflet, and ψ the associated wavelet, with Daubechies number N and
support contained in the interval [0, 1]. Define the indices i0 and i1 in terms ofN by
2i0−1 ≤ n1/(2N+1) ≤ 2i0and 2i1−1 ≤ n ≤ 2i1 . Assume that the errors εm in the model
at (1.1) form the ρ-mixing sequence of random variables which∑

k

ρ(k) <∞

and identically distributed as normal N(0, σ2). Put li = l = (logn)2 for each i, and
assume that c ≥ 48σ2, 0 ≤ s1 ≤ s2 < N and 0 ≤ γ < 2s1+1

2s2+1
; and that for all δ > 0,

C3 = O(n1/(2s2+1)−γ/(2s1+1)+δ).

(Recall that c is the threshold constant in the formula for ĝ.) We call these conditions
(C). Hall et al. (1999) considered model (1.1) and provided the following theorem
when ε1, ..., εn were independent, identically distributed (i.i.d.) normal random vari-
ables with mean 0 and variance σ2. Here we extend their results when variables εm
form a ρ-dependent processes.

Theorem 3.1 If conditions (C) hold, and if the estimator ĝ is as defined at (2.5),
then for each C1, C2 > 0 there exist a constant K = K(s1, s2, γ, C1, C2, V,N, v) > 0
such that

supg∈H(s1,s2,γ,C1,C2,V,N,v)

∫
E(ĝ − g)2 ≤ n

−2s2
2s2+1 (K + o(1)).

Proof: The proof of this Theorem is similar to that of Theorem 4.1 of Hall et
al.(1999). The difference is that we consider the errors {εm, m ≥ 1} to be a ρ-
mixing process, instead of i.i.d. random variables in their paper. Hence, several
technical difficulties have to be overcome.
We will break the proof of Theorem 3.1 into several parts.
Part (a):Properties of the projection operator. As in Hall et al. (1999, P.42), there

6



exists small number ri1m, such that

αi1m =

∫
g(x)φi1m(x)dx

= n1/2

∫
g(
m+ y

n
)φ(y)dy (3.1)

=: n1/2g(
m

n
)− ri1m.

Thus, we have

Ĝi1(x) =
n∑

m=1

(αi1m + ri1m)αi1m(x) + n−1/2

n∑
m=1

εmαi1m(x).

In similar way, we may write for every integer 0 ≤ i < i1,

ProjWi
(Ĝi1) =

∑
j∈Z

(βij + uij + Uij)ψij(x),

P rojVi0
(Ĝi1) =

∑
j∈Z

(αi0j + vi0j + Vi0j)φi0j(x),

where uij and vi0j are real numbers,

Uij =
1√
n

n∑
m=1

εm < φi1m, ψij >, Vi0j =
1√
n

n∑
m=1

εm < φi1m, φi0j > . (3.2)

In the above, < f, g >=
∫
fg is the inner product in L2([0, 1]). In this notation, we

may write

uij =
n∑

m=1

ri1m < φi1m, ψij > .

By Parseval’s identity, ∑
i0≤i<i1

∑
j∈Z

u2
ij +

∑
j∈Z

v2
i0j =

∑
m

r2
i1m.

Hall et al. (1999, p.43) showed that∑
m

r2
i1m ≤ Cn

−2s2
2s2+1 , (3.3)
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and
|uij| ≤ Ć2−i(s1+1/2). (3.4)

Because of the compact support of our wavelets, there are at most 2i1−i none zero
terms of < φi1l, ψij >, l = 1, 2, ..., n, and also, | < φi1m, ψij > | ≤ 2i/2−i1/2‖ψ‖∞‖φ‖1.
At last, let’s calculate the variance of Uij and Vi0j.

EU2
ij =

1

n

n∑
m=1

E(ε2m) < φi1m, ψij >
2 +

2

n
(
n−1∑
k=1

n∑
l=k+1

Eεkεl < φi1k, ψij > . < φi1l, ψij >)

=
σ2

n
+

2σ2

n

n−1∑
k=1

ρ(k)[
n−k∑
r=k

< φi1r, ψij > . < φi1(r+k), ψij >]

≤ σ2

n
+

2σ2

n

n−1∑
k=1

ρ(k)

= O(
1

n
). (3.5)

Similarly, we have

EV 2
i0j = O(

1

n
) (3.6)

Therefore, Uij and Vi0j are both normally distributed with zero means with variance
σ2/n.
Part (b):Decomposition of the quadratic risk. Observing that the orthogonality (2.1)
implies that

E‖ĝ − g‖2
2 = T1 + T2 + T3 + T4, (3.7)
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where

T1 =
∞∑

i=i1

∑
j∈Z

β2
ij,

T2 =
∑
j∈Z

E(α̂i0j − αi0j)
2 = E‖ProjVi0

(Ĝi1 − g)‖2
2,

T3 =

i1−1∑
i=i0

∑
k∈Z

E{I(B̂ik > n−1c)
∑
(ik)

(β̂ij − βij)
2}

=

i1−1∑
i=i0

∑
k∈Z

E{I(B̂ik > n−1c)
∑
(ik)

(uij − Uij)
2},

T4 =

i1−1∑
i=i0

∑
k∈Z

P (B̂ik ≤ n−1c)
∑
(ik)

β2
ij.

The remainder of the proof consists of bounding T1, ..., T4.
Bound for T1: By Considering Eq (5.5) of Hall et al.(1999)

T1 = O(n
−2s2
2s2+1 ). (3.8)

Bound for T2: From the definition of α̂i0j, (3.3) and (3.6), we have

T3 =
2i0−1∑
j=0

v2
i0j +

2i0−1∑
j=0

EV 2
i0j

≤ Cn
−2s2
2s2+1 + n

−2N
2N+1σ2

= O(n
−2s2
2s2+1 ). (3.9)

Bound for T3:

T3 =

i1−1∑
i=i0

∑
k∈Z

E{I(B̂ik > n−1c)
∑
(ik)

(uij − Uij)
2}

≤ 2

i1−1∑
i=i0

∑
k∈Z

E{I(B̂ik > n−1c)
∑
(ik)

U2
ij}+ 2

i1−1∑
i=i0

∑
k∈Z

E{I(B̂ik > n−1c)
∑
(ik)

u2
ij}

=: 2T ′3 + 2T ′′3. (3.10)
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It follows from (3.3) that

T ′′3 ≤
i1−1∑
i=i0

∑
k

∑
(ik)

u2
ij ≤

i1−1∑
i=i0

∑
j

u2
ij ≤ Cn

−2s2
2s2+1 . (3.11)

Thus, we only need to bound T ′3. Let í − 1 denote the integer part of the base-2
logarithm of n1/(2s2+1); thus, 2−í is of the optimal order for a bandwidth in kernel
estimation of a function of known smoothness s2. Put Bik = l−1

∑
(ik)(βij + uij)

2,

where l = li denotes block length. As in Hall et al. (1999, p.44), we may split T ′3
into several parts:

T ′3 = T31 + T32 + T33 + T34, (3.12)

where

T31 =
í∑

i=i0

∑
k∈Z

E{I(B̂ik > n−1c)
∑
(ik)

U2
ij},

T32 =

i1−1∑
i=í+1

∑
k∈Si

E[I(B̂ik > n−1c)I(Bik > (2n)−1c)
∑
(ik)

U2
ij],

T33 =

i1−1∑
i=í+1

∑
k 6∈Si

E[I(B̂ik > n−1c)I(Bik > (2n)−1c)
∑
(ik)

U2
ij],

T34 =

i1−1∑
i=í+1

∑
k∈Z

E[I(B̂ik > n−1c)I(Bik ≤ (2n)−1c)
∑
(ik)

U2
ij].

From (3.5), we have

T31 ≤
i′∑

i=i0

∑
k

∑
(ik)

E(U2
ij)

≤ Cn−1

i′∑
i=i0

2i−1∑
j=0

= O(n
−2s2
2s2+1 ). (3.13)

By considering Equations (5.10) and (5.11) of Hall et al.(1999, p.45) we have

T32 = O(n
−2s2
2s2+1 ), (3.14)
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T33 = O(n
−2s2
2s2+1 ). (3.15)

By Lemma 3.1 below, we can show that for all λ > 0,

T34 = O(n−λ). (3.16)

Lemma 3.1 Let the integer n be large enough. Then for all integers i, k, and for all
t > 0,

P{
∑
(ik)

U2
ij ≥ σ2ln−1(1 + t)2} ≤ e−lt2/2.

Proof : Let A = {a = (a1, ..., al) ∈ Rl :
∑l

j=1 a
2
j = 1}. Note that for all integer i and

k, we have

(
∑
(ij)

U2
ij)

1/2 = sup
a∈A

l∑
j=1

ajUij. (3.17)

Consider the centered Gaussian process {Z(a), a ∈ A} defined by Z(a) =
∑l

j=1 ajUij.
Firstly, by the Cauchy-Schwarz inequality, Jenson’s inequality and (3.5), we have

E(sup
a∈A

Z(a)) ≤ E{(
l∑

j=1

U2
ij)

1/2

≤ (lσ2/n)1/2. (3.18)

Secondly, for every a ∈ A, we have

E(Z(a)2) =
l∑

j=1

a2
jE(U2

ij) + 2
l−1∑
j=1

l∑
k=j+1

ajakE(UijUik)

= J1 + J2. (3.19)

By an argument similar to that for proving (3.5), we can show the following inequal-
ities:

J1 ≤ 1

n

n∑
m=1

< φi1m,

l∑
j=1

ajψij >
2

≤ 1

n
‖

l∑
j=1

ajψij‖2
2

≤ 1

n

l∑
j=1

a2
j =

1

n
, (3.20)
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J2 ≤ 2

n

l∑
j=1

∑
j 6=j′

ajaj′{
n−1∑

m1=1

n∑
m2=m1+1

ρ(m2 −m1) < φi1m1ψij >< φi1m2ψij′}

≤ 2

n

l∑
j=1

a2
j{

n−1∑
m1=1

n∑
m2=m1+1

ρ(m2 −m1) < φi1m1ψij >< φi1m2ψij}

= O(
1

n
). (3.21)

In deriving the first inequality, we have used the fact that φ and ψ are supported on
[0, 1]. Again (3.20) and (3.21) together yield

D2 := sup
a∈A

E(Z(a)2) = O(
1

n
) (3.22)

Now we denote m̃ := E(supa∈A Z(a)). It follows from Borel’s inequality, (3.18)
and (3.22) that for all u > 2m̃,

P{sup
a∈A

l∑
j=1

ajUij ≥ u} ≤ exp{−(u− m̃)

2D2
}

≤ exp{−nu
2

2σ2
}. (3.23)

The lemma follows on taking u2 = lt2σ2/n.
Bound for T4: As to the last term, we may write

T4 ≤
i1−1∑
i=i0

∑
k∈Si

P (B̂ik ≤ n−1c and Bjk ≥ 2n−1c)
∑
(ik)

β2
ij

+
i′∑

i=i0

∑
k 6∈Si

P (B̂ik ≤ n−1c and Bjk ≥ 2n−1c)
∑
(ik)

β2
ij

+
i′∑

i=i0

∑
k∈Z

P (B̂ik ≤ n−1c and Bjk < 2n−1c)
∑
(ik)

β2
ij

+

i1−1∑
i=i′+1

∑
k∈Si

P (B̂ik ≤ n−1c and Bjk < 2n−1c)
∑
(ik)

β2
ij

+

i1−1∑
i=i′+1

∑
k 6∈Si

P (B̂ik ≤ n−1c
∑
(ik)

β2
ij

=: T41 + T42 + T43 + T44 + T45.
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As in Hall et al.(1999, p.47) we could show

T41 = o(n
−2s2
2s2+1 ), (3.24)

T42 = o(n
−2s2
2s2+1 ), (3.25)

T43 = O(n
−2s2
2s2+1 ), (3.26)

T44 = o(n
−2s2
2s2+1 ), (3.27)

T45 = O(n
−2s2
2s2+1 ). (3.28)

This in conjunction with (3.8)-(3.16), gives Theorem 3.1.
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