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Abstract
We investigate shift invariant subspaces of L2(G), where G is a

locally compact abelian group. We show that every shift invariant
space can be decomposed as an orthogonal sum of spaces each of which
is generated by a single function whose shifts form a Parseval frame.
For a second countable locally compact abelian group G we prove
a useful Hilbert space isomorphism, introduce range functions and
give a characterization of shift invariant subspaces of L2(G) in terms
of range functions. Finally, we investigate shift preserving operators
on locally compact abelian groups. We show that there is a one-
to-one correspondence between shift preserving operators and range
operators on L2(G) where G is a locally compact abelian group.
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1 Introduction

In the last decade, shift invariant (SI)subspaces of L2(Rn) have been stud-
ied from different aspects, by many authors such as: Aldroubi, Benedetto,
Bownik, De Boor, DeVore, Li, Ron, Rzeszotnik, Shen, Weiss and Wilson, cf.
[1, 2, 4, 5, 7, 8, 10, 24, 28]. This theory plays an important role in many areas,
specially in the theory of wavelets, and multiresolution analysis. It has been
used to show a new characterization of orthonormal wavelets conjectured by
Weiss [26], a result originally proved in [6] by applying the techniques of
[23, 24].

In this paper we investigate the structure of shift invariant subspaces of
L2(G), where G is a locally compact abelian group. Our results generalize
some of the results appearing in the literature on shift invariant spaces. Such
a unified approach seems to be useful, since it describes the basic features
of shift invariant spaces, and includes most of the special cases. The general
structure of these spaces in L2(Rn) was revealed in the work of de Boor, De-
Vore and Ron with the use of fiberization techniques based on range functions
[5]. The study of analogous spaces for L2(T, H) with values in a separable
Hilbert space H, in terms of range functions, is quite classical and goes back
to Helson [15]. Recently Bownik gave a characterization of shift invariant
subspaces of L2(Rn) following an idea from Helson’s book [15]. So far the
theory of SI spaces has been investigated on Rn but to work with other con-
crete examples of locally compact abelian (LCA) groups, it is essential for
the theory to be extended to the general setting. Some general properties of
SI spaces on LCA groups, have been studied by the authors [19]. The present
paper is devoted to the study of structural properties of SI spaces on second
countable LCA groups using a range function approach.

A bounded linear operator U : L2(Rn) → L2(Rn) is called shift preserving
(which will be abbreviated to “SP”) if UTk = TkU for all k ∈ Zn, where Tk
is the shift operator. As a special case of a shift operator is the time delay
operator Tk : l2 → l2 defined by Tku(n) = u(n − k), u ∈ l2, k, n ∈ Z
where the action is to delay the signal u by k units. A digital filter U is
a SP operator on l2. In other words a filter is a time invariant operator in
which delaying the input by k units of time is just to delay the output by k
units. These operators play an important role in signal processing, such as to
analyse, code, reconstruct signals and so on. They are often used to extract
required frequency components from signals. For example, high frequency
components of a signal usually contain the noise and fluctuations, which often
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have to be removed from the signal using different kinds of filters. For more
details and examples of filters cf. [17, 9].

SP operators on Rn have been studied by Bownik in [7]. He gave a
characterization of these operators in terms of range operators. Our goal in
this paper is to investigate SP operators on locally compact abelian (which
will be abbreviated to “LCA”) groups. The major result in this paper is a
novel characterization of SP operators on L2(G), where G is a LCA group.
This allows us to handel SP operators (specially filters) on L2(G) in a unified
manner. As an application of this approach, one is able to extend several
results from the theory of filters on Rn to a general LCA group.

2 Notations and Preliminary Results

Throughout this paper we assume that G is a locally compact abelian group.
It is well known that such a group possesses a Haar measure µ that is unique
up to a multiplication by constants. We refer to the usual text books about
locally compact groups [13, 16]. We shall denote the measure of a measurable
set A by |A|. Let Ĝ denote the dual group of G equipped with the compact
convergence topology. The elements of Ĝ which we usually denote by ξ, are
characters on G, but one can also regard elements of G as characters on Ĝ.

More precisely
ˆ̂
G = G [13, Pontrjagin Duality Theorem].

Let the Fourier transformˆ : L1(G) −→ C0(Ĝ), f −→ f̂ , be defined by
f̂(ξ) =

∫
G
f(x)ξ(x)dx. The Fourier transform can be extended to a unitary

isomorphism from L2(G) to L2(Ĝ) known as the Plancherel transform [13,
The Plancherel Theorem].

Suppose G is a locally compact abelian group and H is a closed subgroup
of G. Let G/H be the quotient group whose Haar measure is µ (which is
unique up to a constant factor). If this factor is suitably chosen we have∫

G

f(x)dx =

∫
G/H

∫
H

f(xy)dydµ(xH) f ∈ L1(G).

This identity is known as Weil’s formula [13].
A subgroup L of G is called a uniform lattice if it is discrete and co-

compact (i.e G/L is compact). The subgroup L⊥ = {ξ ∈ Ĝ; ξ(L) = {1}} is
called the annihilator of L in Ĝ.

Let L be a uniform lattice in G. Then the identities L⊥ = Ĝ/L and
Ĝ/L⊥ = L̂, together with the fact that a locally compact abelian group is
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compact if and only if its dual group is discrete [13], imply that the subgroup
L⊥ is a uniform lattice in Ĝ (see also [21, 27]).

We now define a shift invariant space in L2(G).

Definition 2.1 Let G be a locally compact abelian group and L be a uniform
lattice in G. A closed subspace V ⊆ L2(G) is called a shift invariant space
(with respect to L) if f ∈ V implies Tkf ∈ V , for any k ∈ L, where Tk is
the translation operator defined by Tkf(x) = f(k−1x) for all x ∈ G. For
ϕ ∈ L2(G), span{Tkϕ; k ∈ L} is called the principle shift invariant space
generated by ϕ and will be denoted by Vϕ.

Let ϕ ∈ L2(G). We denote by L2(L̂, wϕ) the space of all functions r :

L̂ −→ C, which satisfy
∫
L̂
|r(ξ)|2wϕ(ξ)dξ <∞, where

wϕ(ξ) =
∑
η∈L⊥

|ϕ̂(ξη)|2. (1)

Note that wϕ ∈ L1(L̂). Indeed, by Weil’s formula and The Plancherel The-
orem

∫
L̂

∑
η∈L⊥ |ϕ̂(ξη)|2dξ =

∫
Ĝ
|ϕ̂(ξ)|2dξ = ‖ϕ‖2. In this case ‖r‖2

L2(L̂,w) =∫
L̂
|r(ξ)|2wϕ(ξ)dξ is a norm in L2(L̂, w).
The following proposition gives a characterization of elements in a prin-

ciple shift invariant subspace of L2(G) in terms of their Fourier transforms.

Proposition 2.2 Let ϕ ∈ L2(G). Then f ∈ Vϕ if and only if f̂(ξ) =

r(ξ)ϕ̂(ξ), for some r ∈ L2(L̂, wϕ).

Proof: Consider Aϕ = span{Tkϕ; k ∈ L}, then Vϕ = Aϕ. For f ∈ Aϕ let
f(x) =

∑n
i=1 aiϕ(k−1

i x), ai ∈ C, ki ∈ L, 1 ≤ i ≤ n, for some n ∈ N. Then
we have

f̂(ξ) =
n∑
i=1

aiξ(ki)ϕ̂(ξ) = r(ξ)ϕ̂(ξ), (2)

where r(ξ) =
∑n

i=1 aiξ(ki). Conversely every trigonometric polynomial will
give us a function f ∈ Aϕ, via formula (2). So f ∈ Aϕ if and only if

f̂(ξ) = r(ξ)ϕ̂(ξ) where r is a trigonometric polynomial. Denote the set of
all trigonometric polynomials by P . The operator U : Aϕ −→ P given by
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U(f) = r is an isometry which is onto. In fact by using The Plancherel
Theorem and Weil’s formula we have

‖f‖2
2 = ‖f̂‖2

2 =
∫
Ĝ
|f̂(ξ)|2dξ

=
∫
L̂

∑
η∈L⊥ |r(ξ)|2|ϕ̂(ξη)|2dξ

=
∫
L̂
wϕ(ξ)|r(ξ)|2dξ

= ‖r‖2
L2(L̂,wϕ).

(3)

Therefore there is a unique isometry Ũ : Aϕ −→ P , which extends U from

Vϕ onto P = L2(L̂, wϕ) (Note that for a compact abelian group G the set of
all trigonometric polynomials is dense in L2(G) [25]).

Note that in the case G = R, Z is a uniform lattice. In this case we have
the following corollary which is also proved in [26, Theorem 1.2.4].

Corollary 2.3 Let V ϕ be a principle shift invariant subspace of L2(R).
Then f ∈ Vϕ if and only if f̂(ξ) = r(ξ)ϕ̂(ξ), for some r ∈ L2(T, wϕ), where
wϕ(ξ) =

∑
k∈Z |ϕ̂(ξ + k)|2.

3 The Structure of Shift invariant Spaces

It is natural to ask if for any given principle shift invariant space V we can
find a function ϕ in L2(G) whose shifts are orthonormal. In general the
answer is not affirmative. (However, we will find another kind of generator
for every principle shift invariant space; see Corollary 3.8 below). In the
following theorem we state a necessary and sufficient condition for shifts of a
function ϕ in L2(G), to be an orthonormal system. Throughout this section
the notations are as in Section 2.

Proposition 3.1 [19] Suppose that ϕ ∈ L2(G), then {Tkϕ; k ∈ L} is an
orthonormal system in L2(G) if and only if

wϕ = 1 a.e. on Ĝ (4)

If Vϕ is a principle shift invariant space and wϕ is given by (1), then the
set supp wϕ is called the spectrum of Vϕ and is denoted by Ωϕ (Note that by
supp wϕ we mean the set of all ξ such that wϕ(ξ) 6= 0. Also our convention
is that all measurable sets are determined up to a null set). In the case of
Proposition 3.1, Ωϕ is equal to Ĝ. The following example shows the existence
of principle shift invariant spaces which do not satisfy this property.
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Example 3.2 Let G = (R2,+), L = Z2, (so L⊥ = Z2), E = [0, 1/2] ×
[1/2, 3/2], and ϕ be given by ϕ̂ = χE. Then wϕ(ξ) =

∑
k∈Z2 χE(ξ + k). So

Ωϕ =
⋃
k∈Z2(E + k) 6= R2.

Now we shall determine how the information about orthogonality of Vϕ1

and Vϕ2 can be transferred into some other information about the generators
ϕ1 and ϕ2 in L2(G).

Proposition 3.3 [19] The spaces Vϕ1 and Vϕ2 are orthogonal if and only if∑
η∈L⊥

ϕ̂1(ξη)ϕ̂2(ξη) = 0 a.e. ξ ∈ Ĝ.

As a consequence of Propositions 3.1 and 3.3, we have the following corol-
lary; (see also [28]).

Corollary 3.4 (i)Suppose ψ ∈ L2(R). Then {ψ(. − k); k ∈ Z} is an or-
thonormal system if and only if

∑
k∈Z |ψ̂(ξ + k)|2 = 1, for a.e. ξ ∈ R.

(ii)For any two functions ϕ, ψ ∈ L2(R) the sets {ϕ(. − k); k ∈ Z} and

{ψ(.−k); k ∈ Z} are biorthogonal, if and only if
∑

k∈Z ϕ̂(ξ+k)ψ̂(ξ+k) = 0,
for a.e. ξ ∈ R.

Definition 3.5 Let H be a Hilbert space. A subset X ⊆ H is called a frame
for H if there exist two numbers 0 < A ≤ B <∞ so that

A‖h‖2 ≤
∑
η∈X

| < h, η > |2 ≤ B‖h‖2 for h ∈ H. (5)

If A = B = 1, X is called a Parseval frame.

Now we prove that every principle shift invariant space has generators
whose shifts form a Parseval frame. The key is the following theorem.

Theorem 3.6 [19] Let ϕ ∈ L2(G). The shifts of ϕ (with respect to L) form
a Parseval frame for the space Vϕ, if and only if

wϕ = χΩϕ a.e. on Ĝ. (6)

Remark 3.7 Equality (6) is obviously a more general version of equality (4)
that characterizes the orthonormality of the system {Tkϕ}k∈L.
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Corollary 3.8 [19] If Vϕ is a principle shift invariant space and ψ is given

by ψ̂(ξ) =

{
ϕ̂(ξ)wϕ(ξ)

−1/2 ξ ∈ Ω
0 otherwise

, then {Tkψ, k ∈ L} is a Parseval

frame for Vϕ.

Definition 3.9 If Vϕ is a principle shift invariant space and the system
{Tkϕ, k ∈ L} is a Parseval frame for Vϕ, the function ϕ is called a Par-
seval frame generator of Vϕ.

Corollary 3.8 shows that every principle shift invariant space has a Par-
seval frame generator.

Now we show the existence of a decomposition of a shift invariant sub-
space of L2(G) into an orthogonal sum of spaces each of which is generated
by a single function whose shifts form a Parseval frame.

Theorem 3.10 [19] Let G be a locally compact abelian group and let L be
a uniform lattice in G. If V is a shift invariant space in L2(G), then there
exists a family of functions {ϕα}α∈I in L2(G) (where I is an index set), such
that

V =
⊕
α∈I

Vϕα , (7)

and ϕα is a Parseval frame generator of the space Vϕα. Moreover, f ∈ V if
and only if

f̂(ξ) =
∑
α∈I

rα(ξ)ϕ̂α(ξ), (8)

and ‖f‖2
2 =

∑
α∈I ‖rα‖2

L2(L̂
⋂

Ωϕα ,wϕα )
, where rα ∈ L2(L̂

⋂
Ωϕα , wϕα) and Ωϕα

is the spectrum of Vϕα, for every α ∈ I.

Remark 3.11 Using the above theorem we can find a Parseval frame for
every shift invariant subspace of L2(G):

If {Tkϕα}k∈L is a Parseval frame for Vϕα, for every α ∈ I, then {Tkϕα}k∈L,α∈I
is a Parseval frame for the orthogonal sum

⊕
α∈I Vϕα. Indeed, for every

f =
∑

β∈I Pβf ∈
⊕

α∈I Vϕα, where Pβ is the orthogonal projection onto Vϕβ
,

we have:∑
α∈I

∑
k∈L | < Tkϕα, f > |2 =

∑
α∈I

∑
β∈I

∑
k∈L | < Tkϕα, Pβf > |2

=
∑

α∈I
∑

k∈L | < Tkϕα, Pαf > |2
=

∑
α∈I ‖Pαf‖2

= ‖
∑

α∈I Pαf‖2

= ‖f‖2.
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4 A Hilbert Space Isomorphism

We show that L2(G) is isometrically isomorphic to the space L2(SL⊥ , l
2(L⊥))

of square integrable functions from SL⊥ to l2(L⊥). Notice that this space
is just the direct integral

∫ ⊕
A
Hξdξ, where A = SL⊥ and Hξ = l2(L⊥), for

all ξ ∈ SL⊥ [13]. L2(SL⊥ , l
2(L⊥)) is a Hilbert space with inner product

< f, g >=
∫
S

L⊥
< f(ξ), g(ξ) >l2(L⊥) d(ξ) [12, part II, Proposition 1.5].

Proposition 4.1 [18] The mapping T : L2(G) −→ L2(SL⊥ , l
2(L⊥)), defined

by T f(ξ) = (f̂(ξη))η∈L⊥ is an isometric isomorphism, between L2(G) and
L2(SL⊥ , l

2(L⊥)).

Applying Proposition 4.1 to G = Rn and L = Zn, the following corollary
which is [7, Proposition 1.2], is immediate.

Corollary 4.2 [18] The mapping T : L2(Rn) → L2(Tn, l2(Zn)) defined for
f ∈ L2(Rn) by T f : Tn → l2(Zn), T f(x) = (f̂(x + k))k∈Zn, is an isometric
isomorphism between L2(Rn) and L2(Tn, l2(Zn)).

Consider L2(L̂, l2(L⊥)) as the direct integral
∫ ⊕
A
l2(L⊥)dλ, for A = L̂ with

its Haar measure λ. It is interesting to note that this space is also isometri-
cally isomorphic to L2(G). To prove it we use a direct integral argument.

Proposition 4.3 L2(L̂, l2(L⊥)) is isometrically isomorphic to L2(G).

Proof: By [12, Part II, Proposition 1.11], we have

(

∫ ⊕

L̂

Cdλ)⊗ l2(L⊥) '
∫ ⊕

L̂

(C⊗ l2(L⊥))dλ,

where ⊗ is the Hilbert space tensor product (see [22]). The right hand side
is isometrically isomorphic to

∫ ⊕
L̂
l2(L⊥)dλ. Therefore,

L2(L̂)⊗ l2(L⊥) ' L2(L̂, l2(L⊥)).

Let SL denote a fundamental domain for L inG. We have l2(L⊥) ' L2(SL), L2(L̂) '
L2(SL⊥) [21, the proof of Theorem 3.1.7]. Thus,

L2(SL⊥)⊗ L2(SL) ' L2(L̂, l2(L⊥)).
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But L2(SL⊥) ⊗ L2(SL) ' L2(SL⊥ × SL) [13, Theorem 7.16] (note that SL
and SL⊥ are of finite measure [21]), and L2(G) ' L2(SL⊥×SL) [21, Theorem
1.3.7]. So L2(G) ' L2(L̂, l2(L⊥)) (By ' we mean “is isometrically isomorphic
to”).

As an immediate consequence of Propositions 4.1 and 4.3 we have:

Corollary 4.4 Suppose G is a second countable LCA group, L is a uni-
form lattice in G and SL⊥ is a fundamental domain for L⊥ in Ĝ. Then the
three Hilbert spaces L2(G), L2(L̂, l2(L⊥)) and L2(SL⊥ , l

2(L⊥)) are isometri-
cally isomorphic.

5 A Characterization of Shift-Invariant Spaces

Let G be a LCA group and L be a uniform lattice in G. A range function is
a mapping

J : SL⊥ → {closed subspaces of l2(L⊥)}.
J is called measurable if the associated orthogonal projections P (ξ) : l2(L⊥) →
J(ξ) are measurable i.e. ξ 7→< P (ξ)a, b > is measurable for each a, b ∈ l2(L⊥)
(see [12]).

The main result of this section is the following characterization theorem
in L2(G).

Theorem 5.1 Suppose G is a second countable LCA group, L is a uniform
lattice in G, and SL⊥ is a fundamental domain for L⊥ in Ĝ. A closed subspace
V ⊆ L2(G) is SI (with respect to the uniform lattice L) if and only if V =
{f ∈ L2(G), T f(ξ) ∈ J(ξ) for a.e ξ ∈ SL⊥}, where J is a measurable range
function and T is the mapping as in Proposition 4.1. The correspondence
between V and J is one to one under the convention that the range functions
are identified if they are equal a.e. Moreover, if V = S(φ) for some countable
set φ ⊆ L2(G) then

J(ξ) = span{T ϕ(ξ); ϕ ∈ φ}. (9)

We will prove this theorem in the sequel. For this, we need some prepa-
rations. We start with a definition.

Definition 5.2 For a given range function J , we define the space

MJ = {ϕ ∈ L2(SL⊥ , l
2(L⊥)), ϕ(ξ) ∈ J(ξ) for a.e. ξ ∈ SL⊥}. (10)
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The following proposition entails that MJ defined by (10) is a Hilbert
subspace of L2(SL⊥ , l

2(L⊥)).

Proposition 5.3 [18] Let J be a range function. Then MJ is a closed sub-
space of L2(SL⊥ , l

2(L⊥)).

The following lemma is needed in the proof of Theorem 6.1.

Lemma 5.4 Let J be a measurable range function with associated orthogonal
projection P . Let Q denote the orthogonal projection of L2(SL⊥ , l

2(L⊥)) onto
MJ . Then for any ϕ ∈ L2(SL⊥ , l

2(L⊥)),

(Qϕ)(ξ) = P (ξ)(ϕ(ξ))

for a.e. ξ ∈ SL⊥.

Proof of Theorem 5.1. Suppose V = S(φ) is a SI space for some
countable set φ ⊆ L2(G), M = T V and J(ξ) is given by (9). It’s enough to
show that M = MJ . Let ϕ ∈M . Then there exists a sequence {ϕn} converg-
ing to ϕ such that T −1ϕn ∈ span{Tkϕ; ϕ ∈ φ, k ∈ L}. Since T Tkϕ(ξ) =

((T̂kϕ)(ξη))η∈L⊥ = (ϕ̂(ξη)ξ(k))η∈L⊥ = ξ(k)T ϕ(ξ), thus ϕn(ξ) ∈ J(ξ) and so
ϕ(ξ) ∈ J(ξ). This implies that M ⊆MJ .
To show that MJ ⊆ M , we observe that M⊥ = {0}. Take any ψ ∈
L2(SL⊥ , l

2(L⊥)) which is orthogonal to M . For any ϕ ∈ T φ and k ∈ L,
we have Mkϕ ∈ T V , where Mkϕ(ξ) = ξ(k)ϕ(ξ), so 0 =< Mkϕ, ψ >=∫
S

L⊥
ξ(k) < ϕ(ξ), ψ(ξ) >l2(L⊥) dξ. Hence < ϕ(ξ), ψ(ξ) >= 0 for a.e. ξ ∈ SL⊥

and any ϕ ∈ T φ. Thus ψ(ξ) ∈ J(ξ)⊥for a.e. ξ ∈ SL⊥ . This implies that
there is no 0 6= ψ ∈ MJ which is orthogonal to M . Therefore M = MJ .
Moreover we need to show that J , given by (9) is measurable. Let P (ξ) be
the orthogonal projection of l2(L⊥) onto J(ξ) and ψ ∈ L2(SL⊥ , l

2(L⊥)). By
[12, part II, Proposition 1.9], It is enough to show that ξ 7→ P (ξ)ψ(ξ) is mea-
surable. Let Q denote the orthogonal projection of L2(SL⊥ , l

2(L⊥)) onto M .
Since the map ξ 7→ Qψ(ξ) is measurable, by Lemma 5.4, so is ξ 7→ P (ξ)ψ(ξ).
Thus J is measurable.

Conversely, if J is a measurable range function and V is given by (9) then
since V = T −1MJ , obviously it is a closed shift invariant space.

Suppose MJ1 = MJ2 for some measurable range functions J1 and J2

with associated projections P1 and P2, respectively. Then J1(ξ) = J2(ξ)
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for a.e. ξ ∈ SL⊥ . Indeed, if we apply Lemma 5.4 to the constant function
ϕ(ξ) = eη, where (eη)η∈L⊥ is the standard basis of l2(L⊥), then we have
P1(ξ)eη = P2(ξ)eη for all η ∈ L⊥ and a.e. ξ ∈ SL⊥ . Therefore P1(ξ) = P2(ξ)
for a.e. ξ ∈ SL⊥ . So the correspondence between V and J is one to one.
2

Now suppose that G is a second countable LCA group, L is a uniform
lattice in G, SL⊥ is a fundamental domain for L⊥, V is a shift invariant
subspace of L2(G) with the associated range function J , and P (ξ) is the
projection onto J(ξ), for ξ ∈ SL⊥ . A range operator on J is a mapping R
from the fundamental domain SL⊥ to the set of bounded linear operators on
closed subspaces of l2(L⊥), so that the domain of R(ξ) is equal to J(ξ) for
a.e. ξ ∈ SL⊥ . R is called measurable if ξ 7→< R(ξ)P (ξ)a, b > is a measurable
scalar function for all a, b ∈ l2(L⊥).

Example 5.5 For applications the most important class of LCA groups is
the class of compactly generated LCA Lie groups. By the Structure Theorem
for compactly generated LCA Lie groups, these groups are of the form Rp ×
Zq × Tr × F , where p, q, r ∈ N0 and F is a finite abelian group (see [16]).
Let G = Ra × Zb × Tc × Zd for a, b, c, d ∈ N, where Zd is the finite abelian
group {0, 1, 2, ..., d − 1} of residues modulo d. Fix α ∈ N. Then Ĝ = Ra ×
Zc × Tb × Zd and L = Za × αZb × Zd is a uniform lattice in G. Thus
L⊥ = Za × Zc × Zb

α. Obviously SL⊥ := Ta × αTb × Zd is a fundamental
domain for L⊥ in Ĝ. Consider the orthonormal basis B := B1⊗B2⊗B3⊗B4

for L2(G), where B1 = {MγTkχ[0,1); k, γ ∈ Za}, in which MγTkχ[0,1)(x) =
e2πiγxχ[0,1)(x − k) for x ∈ Ra, B2 = {χ{m};m ∈ Zb}, B3 = {e2πil; l ∈ Zc},
B4 = Zd. Then V :=

⊕
ϕ∈B,γ∈L⊥ Vϕ,γ, in which Vϕ,γ = span{MγTkϕ; k ∈

L}, ϕ ∈ B, γ ∈ L⊥, is a shift invariant subspace of L2(G). By Theorem
5.1, V = {f ∈ L2(G), (f̂(ξη))η∈L⊥ ∈ J(ξ) for a.e ξ ∈ SL⊥}, where J(ξ) =
{T (Mγϕ)(ξ); ϕ ∈ B, γ ∈ L⊥} = span{ϕ̂(γ−1ξη)η∈L⊥ ; ϕ ∈ B, γ ∈ L⊥}.

6 A Characterization of Shift Preserving op-

erators

In this section the notation will be as in the previous section. The following
theorem is a characterization of SP operators in terms of range operators
which is proved in [20].
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Theorem 6.1 (The Characterization Theorem) [20] Suppose V ⊆ L2(G) is
a shift invariant space and J is its associated range function. For every SP
operator U : V → L2(G), there exists a measurable range operator R on J
such that

(T ◦ U)f(ξ) = R(ξ)(T f(ξ)) for a.e. ξ ∈ SL⊥ , for all f ∈ V, (11)

where T is the isometric isomorphism between L2(G) and L2(SL⊥ , l
2(L⊥)).

Conversely, given a measurable range operator R on J with

ess supξ∈S
L⊥
‖R(ξ)‖ <∞,

there is a bounded SP operator U : V → L2(G), such that (11) holds. The
correspondence between U and R is one-to-one under the usual convention
that the range operators are identified if they are equal a.e.

An immediate consequence of Theorem 6.1 is [7, Theorem 4.5] which is
obtained by putting G = Rn, L = Zn, L⊥ = Zn, SL⊥ = Tn in Theorem 6.1.

Example 6.2 Let G be the second countable LCA group Rn×Zn×Tn×Zn,
for n ∈ N, where Zn is the finite abelian group {1, 2, ..., n} of residues modulo

n. Then L = Zn×Zn×{1}×Zn is a uniform lattice in G and L⊥ = Ĝ/L =
Zn×{1}×Zn×{1}. Let π be the left regular representation of G on L2(G) and
ψ ∈ L2(G) be admissible (see [14] ). Then the continuous wavelet transform,
Vψ : L2(G) → L2(G), defined by Vψϕ(x) =< ϕ, π(x)ψ > is obviously a SP
operator, so by Theorem 6.1 there is a range operator R such that for every
f ∈ L2(G),

R(ξ)(T f(ξ)) = (T ◦ Vψ)f(ξ) = ((V̂ψf(ξη))η∈L⊥ = (f̂(ξη)ψ̂(ξη))η∈L⊥.

Example 6.3 Define U : L2(R) → L2(R) by Uf(x) = f(x) − f(x − 1).
Obviously U is a SP operator. By Theorem 6.1 there exists a range operator
R so that R(ξ)(T f(ξ)) = (T ◦U)f(ξ) = (Ûf(ξ+k))k∈Z = (1+exp(iξ))(f̂(ξ+
k))k∈Z, for every f ∈ L2(R).
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[3] D. Bakić, I. Krishtal, and E.N. Wilson, Parseval frame wavelets with

E
(2)
n -dilations, Appl. Comput. Harmon. Anal, 19 (2005), 386–431.

[4] J.J. Benedetto and S. Li, The theory of multiresolution analysis frames
and applications to filter banks, Appl. Comput. Harmon. Anal. 5 (1998),
389–427.

[5] C. de Boor, R.A. DeVore, and A. Ron, The structure of finitely generated
shift invariant spaces in L2(Rd), J. Funct. Anal.119 (1994), 37–78.

[6] M. Bownik, On characterization of multiwavelets in L2(Rn), Proc. Amer.
Math. Soc. 129 (2001), 3265–3274.

[7] M. Bownik, The structure of shift invariant subspaces of L2(Rn), J.
Funct. Anal. 176 (2000), 1–28.

[8] M. Bownik and Z. Rzeszotnik, The specral function of shift invariant
spaces on general lattices, Contemp. Math. 345 (2004), 49-59.

[9] C.S. Burrus, R.A. Gopinath, H. Guo, Introduction to Wavelets and
Wavelet Transforms, Princetone Hall, Inc. USA, CRC Press, 1995.

[10] C. Cabrelli, Shift-invariant spaces on LCA groups, J. Funct. Anal., 258,
(2010), 2034-2059.

[11] L. Debnath, Wavelet Transforms and Their Applications, Birkhaüser,
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