

Genetic Algorithm based Logic Optimization for Multi-
Output Majority Gate-Based

Nano-electronic Circuits
Monireh Houshmand*, Saied Hosseini Khayat**, Razie Rezaei***
*Department of Electrical Engineering, Imamreza University of Mashhad, Iran

 ** Department of Electrical Engineering, Ferdowsi University of Mashhad, Iran
*** Department of Computer Engineering, Ferdowsi University of Mashhad, Iran

{monirehhoushmand, saied.hosseini, r.rezayee}@gmail.com

Abstract- The majority-gate and the inverter-gate together make a
universal set of Boolean primitives in Quantum-dot Cellular
Automata (QCA) circuits. An important step in designing QCA
circuits is reducing the number of required primitives to
implement a given Boolean function. This paper presents a method
to reduce the number of primitive gates in a multi-output Boolean
circuit. It extends the previous methodology based on genetic
algorithm for converting sum of product expressions into a
reduced number of QCA primitive gates in a single-output Boolean
circuit. Simulation results show that the proposed method is able
to reduce the number of primitive gates.

Key words: Multi-output QCA circuits, Majority gate, Genetic
algorithm, Hardware reduction.

I. INTRODUCTION
Quantum-dot Cellular Automata (QCA) circuits [1-6] are

being investigated as a promising nanotechnology that attempts
to create general computational functionality by controlling the
position of single-electrons. The building blocks of the QCA
circuit are the majority-gate and the inverter-gate.

 Gate-level optimization is a necessary step in the design
of logic circuits in general and QCA circuits in particular.
Traditional logic reduction methods, such as Karnaugh maps
(K-maps), always produce simplified expressions in the two
standard forms: sum of products (SOP) or product of sums
(POS). In the CMOS/silicon design, logic circuits are usually
implemented using AND and OR gates based on SOP or POS
formats. However, it is difficult to convert these two forms into
majority expressions due to the complexity of multi-level
majority gates. There has been some research in this area for
QCA circuits [7-10].

In [10], an optimization method is proposed for single-
output QCA circuits based on genetic algorithm (SO-GA). But,
in this paper will be proved that for multi-output circuits (e.g., a
full adder with sum and carry outputs) independently
optimizing for each output does not produce an efficient
solution. Consequently, in this paper, a genetic algorithm for
multi-output circuits which is named MO-GA is presented. In
this approach, first a SO-GA is run for one of the outputs and
the desirable chromosomes are stored. Then other genetic

algorithms are run for the other outputs, but not independent
from the previous desirable chromosomes, in such a way that
leads to a circuit having the maximum common gates with those
chromosomes. In this way, this algorithm reduces the total
number of gates in the circuit which implements all of the
expected outputs. To demonstrate the effectiveness of the
proposed algorithm, we choose some multi-output circuits and
then in the first step, we optimize the circuits for each output
independently using the SO-GA, and calculate the total number
of required primitive gates. In the second step, we apply our
proposed method (MO-GA), and calculate the total number of
required gates again. Simulations show that our proposed
method results in less or at most the same number of primitive
gates in compare with the SO-GA method.

The remainder of this paper is organized as follows: in the
next section some related background materials are presented.
In section 3, an optimization for a single-output QCA circuit
using the SO-GA is described. The proposed algorithm (MO-
GA) is presented in Section 4. After that, simulation results are
present and finally Section 6 concludes the paper.

II. BACKGROUND MATERIALS

A. QCA Basic
A QCA cell (Fig. 1) contains four quantum-dots positioned

at the corners of a square and two electrons that can move to
any quantum-dot within the cell through electron tunneling [1].
Due to Coulombic interactions, as shown in Fig. 2, only two
stable configurations of an electron pair exist. These
configurations are denoted as cell polarization P = +1 and P = -
1, respectively. Using cell polarization P = +1 to represent logic
’1’and P = -1 to represent logic’0’, binary information can be
encoded.

Figure1. A QCA cell

978-1-4244-4738-1/09/$25.00 ©2009 IEEE

584

Figure 2. Two polarizations in a QCA cell

B. QCA Logic Devices
The fundamental QCA logic devices are the QCA wire,

majority gate and inverter. In a QCA wire, a binary signal
propagates from input to output because of the Coulombic
interactions between cells.

The QCA majority gate is a device that implements a
majority function. The reason why the device cell always
assumes a majority polarization is that it is in this polarization
state that the Coulombic repulsion between electrons in the
input cells is minimized. Assuming A, B, and C as inputs, the
logic function of the majority gate is:

 M(A,B,C)=AB+AC+BC

By fixing the polarization of one input as logic ’1’or
’0’we can obtain an OR gate and an AND gate, respectively.

M(A,B,1)=A+B, M(A,B,0)=AB

Hence, more complex logic circuits can be constructed from
OR and AND gates. In a QCA inverter, cells oriented at 45° to
each other take on opposing polarization. Fig. 3 shows QCA
wire, majority and inverter gate respectively.

III. QCA CIRCUIT OPTIMIZATION USING THE SO-GA

In [10] an algorithm is proposed for logic optimization of
QCA circuits based on genetic algorithm (SO-GA). This
optimization reduces the number of majority gates and
inverters. Unlike other implementations that generally use
matrix structure for digital circuit, in this method a tree

Figure 3. a) QCA wire b) QCA majority gate c) inverter gate

structure is used for chromosome representation. The nodes of
the tree are the majority-gates and inverter gates, leaves of the
tree can be either logical '1's or Boolean variables. A majority
function is denoted by M is defined as:

M(A,B,C) = AB+AC+BC

As an example, Fig. 4 shows M(A,C’,M(A,B,1)’).

The fitness function is defined based on the similarity of the
chromosome to the expected logical function. In addition, the
chromosome that has fewer nodes is a better solution. Suppose
n is the number of variables, F is the Boolean function, and C is
the chromosome. The fitness function is defined as:

n

CFNCFit
2

),()(= (1)

where N(F,C) is the number of identical minterms between
chromosome C and function F. If a chromosome has the same
minterms as the function F, then the fitness function defined by
(1) will become equal to 1. In that case, a different fitness
function is used:

)(
11)(

CNodes
CFit += (2)

where Nodes(C) denotes the number of nodes in C. The
above fitness functions (1) and (2) together can rank the
chromosomes according to both their similarity to the Boolean
function F and number of nodes in C. The process starts with an
initial population created randomly. Evaluation is done by
mutation and crossover. Mutation [11]gives another chance to a
lost genome in the population to appear in next generation
chromosomes. Genome loss happens when it is not produced in
the initial population at all or due to crossover. To solve the
problem of the genome loss, mutation in some chromosomes is
done with some specific probability. In other words, mutation,
changes one or more genomes in population with some other
ones from problem space. But the job is too complicated in our
structure. For example, suppose we want to change the inverter
node with the majority node. Because there is a difference
between the number of inputs in the structure of inverter and
majority, this job becomes intricate. So a new method of
mutation is used which works properly for this chromosome
structure. In this method a random chromosome is produced and

Figure 4. A chromosome for M(A,C',M(A,B,1)’)

585

is added to the population instead of some chromosomes that
has the worst fitness in population. This job will be done in
some specific probability in generations. The new chromosomes
can bring back the utilization chance of lost genomes and avoid
local minima. For crossover, a random node and its sub-tree in
one chromosome is exchanged by a random node and its sub-
tree in another chromosome. Figs. 5 and 6 show a two point
crossover.

Figure 5. Before crossover

Figure 6. After crossover

IV. PROPOSED ALGORITHM
As mentioned before, SO-GA algorithm is efficient only for

single-output circuits. But in applicable environment, most of
circuits have more than one output. Optimizing multi-output
circuits in such a way that each output is independently
optimized, does not result in an optimum and efficient solution.
So in this paper, we extend SO-GA for optimizing multi-output
circuits.

Suppose we want to optimize the logic of multi-output
circuit. First consider a circuit with two outputs, out1 and out2.
A tree structure with two outputs is used as chromosome
representation. Fig. 7 illustrates such a chromosome. In this
chromosome, outputs are as below:

Out1=M(M(A’,B,C),A,M(A,B,1)’)

Out2=M(M(A’,B,C), M(A,B,1),0)’

Before explaining the algorithm it is necessary to define two
functions: Nodes(C) and Combine(ch1,ch2).

Nodes(C) returns the number of nodes in chromosome C as
mentioned before. Combine(ch1,ch2) gets two chromosomes as
input and returns a chromosome with two outputs that is a
combination of ch1 and ch2. The common nodes of ch1 and ch2
appear once in the combined chromosome. Fig. 8 is an example
for explanation of this function.

Figure 7. A two output chromosome

Figure 8. (a) ch1, (b) ch2, (c) combined chromosome

The algorithm is started by running SO-GA for the first
output (out1). We run the SO-GA with sufficient number of
generations to get some chromosomes with the fitness more

586

than one, and then we store them. We call each of these
chromosomes CorrectFinalChromosome1. Then for each
CorrectFinalChromosome1, the proposed algorithm is run. Fig.
9 shows the pseudo code of the algorithm and Fig. 11 shows its
flow chart.

In this algorithm the set of chromosomes for out2 is called
Chromosome2; and Chromosome[j,i] denotes the i-th
chromosome in the j-th generation. A FinalChromosome2[j,i]
is obtained by combining a CorrectChromosome1 with a
Chromosome2[j,i]. Then, FinalChromosome2 with the best
fitness is stored. We call each of these chromosomes
CorrectFinalChromosome2.

After running the algorithm for each
CorrectFinalChromosome1 the best chromosome among the
CorrectFinalChromosomes2 is selected as the final solution.

Generate a random first generation for Chromosome2
For j=1 to number of generations do

 For i=1 to number of chromosomes in generation do
 Generate a random number num_of_cuts between 1
 and Nodes(CorrectFinalChromosome1)

//merge operation(Fig 10)
 For k=1 to num_of_cuts do
 Generate a random number M between 0 and
 Nodes(Chromosome2[j,i])
 Generate a random number N between 0

and Nodes(CorrectFinalChromosome1).
 If one of the variables M, N is zero,
 do nothing.
 Else replace the node number M and its sub-

tree in Chromosme2[j,i] by the node
number N and its sub-tree.
 in the CorrectFinalChromosome1
//notice that CorrectChromosome1 does
not change

FinalChromosme2[j,i]=
Combine(CorrectFinalChromosome1
,Chromosme2[j,i])
Do the selection, crossover and mutation for
Chromosome2 (in the same way as SO-GA in order to
generate the next generation of Chromosome2). The
number of nodes in the FinalChromosome2 is used in
the calculation of fitness as follows:
 Nodes(FinalChromosome2) =
 Nodes(CorrectChromosome1) +
 Nodes(Chromosome2) – (number of common

nodes)

Store CorrectFinalChromosome2. (the best chromosome in the
last generation).

Figure 9. The proposed algorithm

The algorithm is apriority extendable to circuits with n-
outputs. To do this, in the i-th step, the algorithm in Fig. 9 is
run for each of CorrectFinalChromosome i-1 to obtain
CorrectFinalChromosomes i. Finally, after n steps the best
chromosome among the CorrectFinalChromosomes n is
selected as the final solution.

Figure 10. The merge operation for num_of_cuts=2 and N(1)=2 and

N(2)=8, M(1)=3, M(2)=7. (a) correct final chromosome 1, (b) Chromosome2,
(c) chromosome 2 after getting some common nodes from correct chromosome
1, (d) the final chromosome2 (with two output)

V. SIMULATION RESULTS
We applied our proposed algorithm on 1000 3-input/2-

output and 1000 4-input/2-output Boolean functions that were
randomly generated. For each function, first, we applied the
SO-GA for both outputs, independently. Then, we applied our
proposed MO-GA. In both cases, we counted the number of
required gates. The Roulette Wheel algorithm is used for
selection. The number of population and the number of
generations are100 and 5000, respectively. In 42% of 3-input
circuits, and in 38% of 4- input circuits, our algorithm achieves
up to 24% reduction of gate counts. In the remaining cases, the
two algorithms produced the same results. This happens when
the logic circuits implementing each output have no common
parts. Table. I shows a sample of comparisons between the
results of the two algorithms.

TABLE I. Simulation results for a function
 out1=∑m(0,2,4,7), out2=∑m(0,2,3,4)

Out1(minterms) ∑m(0,2,4,7)
Out2(minterms) ∑m(0,2,3,4)

Result of both algorithms for
out1 M(M(C,1,M(A,B,C))’,M(A’,C,M(1,B,A’)),A)

Result of SO_GA for out2 M(M(B,C,1),A,M(1,A,B)’)’

Result of MO_GA for out2 M(M(1,B,A),A’,M(1,C,M(A,B,C)’))

 required gates
for out1

required
gates for

out2
Common gates Total number of

gates

SO_GA 7 5 0 7+5=12

MO_GA 7 6 3 7+6-3=10

587

Start

End

Generate a random first
generation for Chromosome2

j<= number of

generations

j ←1

i←1

i<=number of
chromosomes in

Generate a random number num_of_cuts between 1
and Nodes(CorrectFinalChromosome1)

k←1

k<= num_of_cuts

Generate a random number M between 0 and
Nodes(Chromosome2[j,i])

Generate a random number N between 0 and
Nodes(CorrectFinalChromosome1)

M=0 or N=0

replace the node number M and its sub‐tree in Chromosme2[j,i] by
the node number N and its sub‐tree. in the correctFinalChromosome1

k←k+1

FinalChromosme2[j,i]=
Combine(CorrectFinalChromosome1

i←i+1

Calculate fitness based on the number of nodes in the
FinalChromosome2.

Do the selection, crossover and mutation for Chromosome2

j←j+1

Yes

No

Store CorrectFinalChromosome2

Yes

Yes

No

No

Yes

No

A

A

Figure 11. The flowchart of the proposed algorithm

VI. CONCLUSION
In this paper, a method is proposed for reducing the

number of gates in multi-output QCA circuits based on
genetic algorithm. Multi-output QCA circuits are common
and reducing the number of required gates to implement
them is of much interest. Simulation results for two output
circuits show that our method produces fewer number of
gates compared to independent runs of SO-GA. The
algorithm is easily extendable to circuits with more than
two outputs.

REFERENCES
[1] N. Gergel, S. Craft, and J. Lach, “Modeling QCA for area

minimization in logic synthesis,” Proc. ACM Great Lakes
Symposium VLSI, April 2003.

[2] M. Wilson , nanotechnology: Basic Science and Emerging
Technologies, London, U.K.: Chapman & Hall, 2002.

[3] C. S. Lent, “Quantum cellular automata, Nainventerechnology, ”
vol. 4, pp. 49–57, 1993.

[4] C. S. Lent and P. D. Tougaw, A device architecture for computing
with quantum dots, Proc. IEEE, vol. 85, pp. 541–557, Apr. 1997.

[5] G. Toth and C. S. Lent, “Quasiadiabatic switching for metal-island
quantum-dot cellular automata,” J. Appl. Phys., vol. 85, no. 5, pp.
2977–2984, 1999.

[6] I. Amlani et al, “Experimental demonstration of a leadless
quantum-dot cellular automata cell,” Appl. Phys. Lett., vol. 77, no.
5, pp. 738–740,2000.

[7] Rui Zhang, P. Gupta, and N. K. Jha, “Synthesis of majority and
minority networks and its applications to QCA, TPL and SET
based nainventerechnologies,” Int. Conference on VLSI Design,
2005.

[8] R. Zhang, K. Walnut, Wei Wang and G. Jullien, “A method of
majority logic reduction for quantum cellular automata,” IEEE
Trans. Nainventerechnology, Vol. 3 , no. 4, Dec. 2004.

[9] Zhi Huo , Qishan Zhang , Zhi Huo and Qishan Zhang, “Logic
optimization for Majority Gate-Based Nanoelectronic Circuits,”
ISCAS 2006.

[10] M.R. Bonyadi , S.M.R. Azghadi, N.M. Rad, K. Navi and E. Afjei,
“Logic optimization for Majority Gate-Based Nanoelectronic
Circuits Based on Genetic Algorithm,” International Conference on
Electrical Engineering, ICEE, 2007.

[11] Mitchell Melanie , An Introduction to Genetic Algorithms, A
Bradford Book The MIT Press, Cambridge, Massachusetts,
London, England, fifth printing 1999.

588

