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Abstract- The majority-gate and the inverter-gate together make a 
universal set of Boolean primitives in Quantum-dot Cellular 
Automata (QCA) circuits. An important step in designing QCA 
circuits is reducing the number of required primitives to 
implement a given Boolean function. This paper presents a method 
to reduce the number of primitive gates in a multi-output Boolean 
circuit. It extends the previous methodology based on genetic 
algorithm for converting sum of product expressions into a 
reduced number of QCA primitive gates in a single-output Boolean 
circuit. Simulation results show that the proposed method is able 
to reduce the number of primitive gates. 

Key words: Multi-output QCA circuits, Majority gate, Genetic 
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I.      INTRODUCTION 
Quantum-dot Cellular Automata (QCA) circuits [1-6] are 

being investigated as a promising nanotechnology that attempts 
to create general computational functionality by controlling the 
position of single-electrons. The building blocks of the QCA 
circuit are the majority-gate and the inverter-gate.  

      Gate-level optimization is a necessary step in the design 
of logic circuits in general and QCA circuits in particular. 
Traditional logic reduction methods, such as Karnaugh maps 
(K-maps), always produce simplified expressions in the two 
standard forms: sum of products (SOP) or product of sums 
(POS). In the CMOS/silicon design, logic circuits are usually 
implemented using AND and OR gates based on SOP or POS 
formats.  However, it is difficult to convert these two forms into 
majority expressions due to the complexity of multi-level 
majority gates. There has been some research in this area for 
QCA circuits [7-10]. 

In [10], an optimization method is proposed for single-
output QCA circuits based on genetic algorithm (SO-GA). But, 
in this paper will be proved that for multi-output circuits (e.g., a 
full adder with sum and carry outputs) independently 
optimizing for each output does not produce an efficient 
solution. Consequently, in this paper, a genetic algorithm for 
multi-output circuits which is named MO-GA is presented. In 
this approach, first a SO-GA is run for one of the outputs and 
the desirable chromosomes are stored. Then other genetic 

algorithms are run for the other outputs, but not independent 
from the previous desirable chromosomes, in such a way that 
leads to a circuit having the maximum common gates with those 
chromosomes. In this way, this algorithm reduces the total 
number of gates in the circuit which implements all of the 
expected outputs. To demonstrate the effectiveness of the 
proposed algorithm, we choose some multi-output circuits and 
then in the first step, we optimize the circuits for each output 
independently using the SO-GA, and calculate the total number 
of required primitive gates. In the second step, we apply our 
proposed method (MO-GA), and calculate the total number of 
required gates again. Simulations show that our proposed 
method results in less or at most the same number of primitive 
gates in compare with the SO-GA method. 

The remainder of this paper is organized as follows: in the 
next section some related background materials are presented. 
In section 3, an optimization for a single-output QCA circuit 
using the SO-GA is described. The proposed algorithm (MO-
GA) is presented in Section 4. After that, simulation results are 
present and finally Section 6 concludes the paper. 

II. BACKGROUND MATERIALS 

A.   QCA Basic 
A QCA cell (Fig. 1) contains four quantum-dots positioned 

at the corners of a square and two electrons that can move to 
any quantum-dot within the cell through electron tunneling [1]. 
Due to Coulombic interactions, as shown in Fig. 2, only two 
stable configurations of an electron pair exist. These 
configurations are denoted as cell polarization P = +1 and P = -
1, respectively. Using cell polarization P = +1 to represent logic 
’1’and P = -1 to represent logic’0’, binary information can be 
encoded. 

 
Figure1.   A QCA cell 

_____________________________ 
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Figure 2.   Two polarizations in a QCA cell 

B.   QCA Logic Devices 
The fundamental QCA logic devices are the QCA wire, 

majority gate and inverter. In a QCA wire, a binary signal 
propagates from input to output because of the Coulombic 
interactions between cells. 

The QCA majority gate is a device that implements a 
majority function. The reason why the device cell always 
assumes a majority polarization is that it is in this polarization 
state that the Coulombic repulsion between electrons in the 
input cells is minimized. Assuming A, B, and C as inputs, the 
logic function of the majority gate is: 

                      M(A,B,C)=AB+AC+BC 

By fixing the polarization of one input as logic ’1’or 
’0’we can obtain an OR gate and an AND gate, respectively. 

M(A,B,1)=A+B, M(A,B,0)=AB 

Hence, more complex logic circuits can be constructed from 
OR and AND gates. In a QCA inverter, cells oriented at 45° to 
each other take on opposing polarization. Fig. 3 shows QCA 
wire, majority and inverter gate respectively. 

III.    QCA CIRCUIT OPTIMIZATION USING THE SO-GA 

In [10] an algorithm is proposed for logic optimization of 
QCA circuits based on genetic algorithm (SO-GA). This 
optimization reduces the number of majority gates and 
inverters. Unlike other implementations that generally use 
matrix structure for digital circuit, in this method a tree 

 
Figure 3. a) QCA wire b) QCA majority gate c) inverter gate 

structure is used for chromosome representation. The nodes of 
the tree are the majority-gates and inverter gates, leaves of the 
tree can be either logical '1's or Boolean variables. A majority 
function is denoted by M is defined as: 

M(A,B,C) = AB+AC+BC 

As an example, Fig. 4 shows M(A,C’,M(A,B,1)’).  

The fitness function is defined based on the similarity of the 
chromosome to the expected logical function. In addition, the 
chromosome that has fewer nodes is a better solution. Suppose 
n is the number of variables, F is the Boolean function, and C is 
the chromosome. The fitness function is defined as: 

n

CFNCFit
2

),()( =                                (1) 

where N(F,C) is the number of identical minterms between 
chromosome C and function F.  If a chromosome has the same 
minterms as the function F, then the fitness function defined by 
(1) will become equal to 1. In that case, a different fitness 
function is used: 

)(
11)(

CNodes
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where Nodes(C) denotes the number of nodes in C.  The 
above fitness functions (1) and (2) together can rank the 
chromosomes according to both their similarity to the Boolean 
function F and number of nodes in C. The process starts with an 
initial population created randomly. Evaluation is done by 
mutation and crossover. Mutation [11]gives another chance to a 
lost genome in the population to appear in next generation 
chromosomes. Genome loss happens when it is not produced in 
the initial population at all or due to crossover. To solve the 
problem of the genome loss, mutation in some chromosomes is 
done with some specific probability. In other words, mutation, 
changes one or more genomes in population with some other 
ones from problem space. But the job is too complicated in our 
structure. For example, suppose we want to change the inverter 
node with the majority node. Because there is a difference 
between the number of inputs in the structure of inverter and 
majority, this job becomes intricate. So a new method of 
mutation is used which works properly for this chromosome 
structure. In this method a random chromosome is produced and  

 
Figure 4. A chromosome for M(A,C',M(A,B,1)’) 
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is added to the population instead of some chromosomes that 
has the worst fitness in population. This job will be done in 
some specific probability in generations. The new chromosomes 
can bring back the utilization chance of lost genomes and avoid 
local minima. For crossover, a random node and its sub-tree in 
one chromosome is exchanged by a random node and its sub-
tree in another chromosome. Figs. 5 and 6 show a two point 
crossover. 

 
Figure 5.    Before crossover 

 
Figure 6.   After crossover  

IV.     PROPOSED ALGORITHM 
As mentioned before, SO-GA algorithm is efficient only for 

single-output circuits. But in applicable environment, most of 
circuits have more than one output. Optimizing multi-output 
circuits in such a way that each output is independently 
optimized, does not result in an optimum and efficient solution. 
So in this paper, we extend SO-GA for optimizing multi-output 
circuits. 

Suppose we want to optimize the logic of multi-output 
circuit. First consider a circuit with two outputs, out1 and out2. 
A tree structure with two outputs is used as chromosome 
representation.  Fig. 7 illustrates such a chromosome. In this 
chromosome, outputs are as below: 

Out1=M(M(A’,B,C),A,M(A,B,1)’) 

Out2=M(M(A’,B,C), M(A,B,1),0)’ 

Before explaining the algorithm it is necessary to define two 
functions: Nodes(C) and Combine(ch1,ch2). 

Nodes(C) returns the number of nodes in chromosome C as 
mentioned before. Combine(ch1,ch2) gets two chromosomes as 
input and returns a chromosome with two outputs that is a 
combination of ch1 and ch2. The common nodes of ch1 and ch2 
appear once in the combined chromosome. Fig. 8 is an example 
for explanation of this function. 

 
Figure 7.  A two output chromosome 

 
Figure 8.  (a) ch1, (b) ch2, (c) combined chromosome 

The algorithm is started by running SO-GA for the first 
output (out1). We run the SO-GA with sufficient number of 
generations to get some chromosomes with the fitness more 
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than one, and then we store them. We call each of these 
chromosomes CorrectFinalChromosome1. Then for each 
CorrectFinalChromosome1, the proposed algorithm is run. Fig. 
9 shows the pseudo code of the algorithm and Fig. 11 shows its 
flow chart. 

In this algorithm the set of chromosomes for out2 is called 
Chromosome2; and Chromosome[j,i] denotes the i-th 
chromosome in the j-th  generation. A FinalChromosome2[j,i] 
is obtained by combining a CorrectChromosome1 with a 
Chromosome2[j,i]. Then, FinalChromosome2 with the best 
fitness is stored. We call each of these chromosomes 
CorrectFinalChromosome2. 

After running the algorithm for each 
CorrectFinalChromosome1 the best chromosome among the 
CorrectFinalChromosomes2 is selected as the final solution. 

Generate a random first generation for Chromosome2 
For  j=1 to number of generations do 

  For i=1 to number  of chromosomes in generation do 
                   Generate a random number num_of_cuts between 1  
                            and Nodes(CorrectFinalChromosome1 ) 

//merge operation(Fig 10) 
                    For k=1 to num_of_cuts  do 
                            Generate a random number M between 0 and    
                                      Nodes(Chromosome2[j,i])  
                            Generate a random number N between 0  

and Nodes(CorrectFinalChromosome1).  
                            If one of the variables M, N  is zero,   
                                          do nothing. 
                            Else replace the node number M and its sub- 

tree in Chromosme2[j,i] by the node  
number N and its sub-tree. 
 in the CorrectFinalChromosome1 
//notice that CorrectChromosome1 does 
not change  

FinalChromosme2[j,i]= 
Combine(CorrectFinalChromosome1 
,Chromosme2[j,i])   
Do the selection, crossover and mutation for 
Chromosome2 (in the same way as SO-GA in order to 
generate the next generation of Chromosome2). The 
number of nodes in the FinalChromosome2 is used in 
the calculation of fitness as follows:   
         Nodes(FinalChromosome2) =  
         Nodes(CorrectChromosome1) + 
         Nodes(Chromosome2) – (number of common 

nodes) 
 
Store CorrectFinalChromosome2. (the best chromosome in the 
last generation). 

Figure 9.   The proposed algorithm 

The algorithm is apriority extendable to circuits with n-
outputs. To do this, in the i-th step, the algorithm in Fig. 9  is 
run for each of  CorrectFinalChromosome i-1 to obtain 
CorrectFinalChromosomes i. Finally, after n steps the best 
chromosome among the CorrectFinalChromosomes n is 
selected as the final solution. 

 
Figure 10.    The merge operation for num_of_cuts=2 and N(1)=2 and 

N(2)=8, M(1)=3, M(2)=7. (a) correct final chromosome 1, (b)  Chromosome2, 
(c) chromosome 2 after getting some common nodes from correct chromosome 
1, (d) the final chromosome2 (with two output) 

V.     SIMULATION RESULTS 
We applied our proposed algorithm on 1000 3-input/2-

output and 1000 4-input/2-output Boolean functions that were 
randomly generated. For each function, first, we applied the 
SO-GA for both outputs, independently. Then, we applied our 
proposed MO-GA. In both cases, we counted the number of 
required gates. The Roulette Wheel algorithm is used for 
selection. The number of population and the number of 
generations are100 and 5000, respectively. In 42% of 3-input 
circuits, and in 38% of 4- input circuits, our algorithm achieves 
up to 24% reduction of gate counts.  In the remaining cases, the 
two algorithms produced the same results. This happens when 
the logic circuits implementing each output have no common 
parts. Table. I shows a sample of comparisons between the 
results of the two algorithms. 

TABLE I.  Simulation results for a function  
 out1=∑m(0,2,4,7), out2=∑m(0,2,3,4)  

Out1(minterms) ∑m(0,2,4,7) 
Out2(minterms) ∑m(0,2,3,4)

Result of both algorithms for 
out1 M(M(C,1,M(A,B,C))’,M(A’,C,M(1,B,A’)),A) 

Result of SO_GA for out2 M(M(B,C,1),A,M(1,A,B)’)’ 

Result of MO_GA for out2 M(M(1,B,A),A’,M(1,C,M(A,B,C)’)) 

 required gates 
for out1 

required 
gates for 

out2 
Common gates Total number of 

gates 

SO_GA 7 5 0 7+5=12 

MO_GA 7 6 3 7+6-3=10 
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Figure 11.   The flowchart of the proposed algorithm 

VI.     CONCLUSION 
In this paper, a method is proposed for reducing the 

number of gates in multi-output QCA circuits based on 
genetic algorithm. Multi-output QCA circuits are common 
and reducing the number of required gates to implement 
them is of much interest. Simulation results for two output 
circuits show that our method produces fewer number of 
gates compared to independent runs of SO-GA.  The 
algorithm is easily extendable to circuits with more than 
two outputs. 

REFERENCES 
[1] N. Gergel, S. Craft, and J. Lach, “Modeling QCA for area 

minimization in logic synthesis,” Proc. ACM Great Lakes 
Symposium VLSI, April 2003. 

[2] M. Wilson , nanotechnology: Basic Science and Emerging 
Technologies, London, U.K.: Chapman & Hall, 2002. 

[3]  C. S. Lent, “Quantum cellular automata, Nainventerechnology, ”    
vol. 4, pp. 49–57, 1993. 

[4]  C. S. Lent and P. D. Tougaw, A device architecture for computing 
with quantum dots, Proc. IEEE, vol. 85, pp. 541–557, Apr. 1997. 

[5]  G. Toth and C. S. Lent, “Quasiadiabatic switching for metal-island 
quantum-dot cellular automata,” J.  Appl. Phys., vol. 85, no. 5, pp. 
2977–2984, 1999. 

[6]  I. Amlani et al, “Experimental demonstration of a leadless 
quantum-dot cellular automata cell,” Appl. Phys. Lett., vol. 77, no. 
5, pp. 738–740,2000. 

[7] Rui Zhang, P. Gupta, and N. K. Jha, “Synthesis of majority and 
minority networks and its applications to QCA, TPL and SET 
based nainventerechnologies,” Int. Conference on VLSI Design, 
2005. 

[8] R. Zhang, K. Walnut, Wei Wang and G. Jullien, “A method of 
majority logic reduction for quantum cellular automata,” IEEE 
Trans. Nainventerechnology, Vol. 3 , no. 4, Dec. 2004. 

[9] Zhi Huo , Qishan Zhang , Zhi Huo and Qishan Zhang, “Logic 
optimization for Majority Gate-Based Nanoelectronic Circuits,” 
ISCAS 2006. 

[10] M.R. Bonyadi , S.M.R. Azghadi, N.M. Rad, K. Navi and E. Afjei, 
“Logic optimization for Majority Gate-Based Nanoelectronic 
Circuits Based on Genetic Algorithm,” International Conference on 
Electrical Engineering, ICEE, 2007. 

[11] Mitchell Melanie , An Introduction to Genetic Algorithms,  A 
Bradford Book The MIT Press, Cambridge, Massachusetts, 
London, England, fifth printing 1999. 

588




