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Abstract 
Various sets of experimental data collected from a pilot scale packed absorption column are used  to 
compare the generalization performances of the Back Propagation Multi-Layer Perceptron (BPMLP) 
and the Radial Basis Function (RBF) neural networks. The 11cm diameter packed tower filled with 1.8 
meter ¼ inch ceramic Rashig rings was used for separation of carbon dioxide from air using various 
concentrations and flow rates of Di-Ethanol Amine (DEA) and Methyl Di-Ethanol Amine (MDEA) 
solutions. Two efficient algorithms were employed for optimal training of both neural networks. The 
Leave One Out Cross Validation (LOOCV) criterion was employed to compute the optimum level of 
regularization for RBF networks. An in-house procedure was also exploited to predict the optimal 
widths of isotropic Gaussian basis functions for these networks. Another in-house algorithm was used 
to train the MLP networks more rapidly and efficiently than the conventional procedures. The 
simulation results indicated that the RBF networks can perform more adequately than the MLP 
networks. Because, the RBF networks enjoy a solid theoretical background which enables them to 
successfully filter out the noise and provide more reliable generalization performances.  
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1. Introduction 
Separation of carbon dioxide from air and various industrial gases is essential from both operational 
and environmental views. For example, CO2 must be separated from natural gas to increase its heating 
value or carbon dioxide is usually extracted from various flue gases in beverage industry. To reduce 
global warming, CO2 should be also removed from industrial flue gases before exhausting them to 
atmosphere. 
Although several adsorption and membrane processes are recently used for CO2 separation purposes 
[1-5] absorption processes are still more popular in this area [6-8] Alkanolamines (such as DEA or 
MDEA) are usually used for efficient separation of carbon dioxide from various industrial gases 
Packed towers are usually provide higher mass transfer areas and lower pressure drops when compared 
to tray towers. 
Lin and Shyu [9] investigated the absorption of carbon dioxide from nitrogen using MEA and MDEA 
solutions in a packed column under various operating conditions. A two parameter theoretical model 
was presented for describing the CO2 absorption behavior. The proposed model was validated using 
test data.  
Sultan et al [10] presented a theoretical model to investigate the effect of various operational 
parameters on the performance of a regeneration packed column. The experimental data were then 
correlated to estimate the water evaporation rate from desiccant (CaCl2) at various operating 
conditions. They concluded that “the water evaporation rate increases with increase of air and solution 
inlet parameters, namely, flow rate and temperature”. 
Sharma et al [11] employed back propagation artificial neural networks to investigate the fault 
diagnosis in an ammonia–water packed distillation column. The network was reported to perform 
satisfactorily on detection of the designated faults. The relative importance of various input variables 
on the output parameters was calculated by partitioning the connecting weights. The simulation results 
indicated that “bottoms temperature, overhead composition and overhead temperature are not much 
affected by the disturbances in feed rate, feed composition and vapor rate in the given range”. 
 
2. Experimental Data   
After calibration of the gas analyzer apparatus, various measurements of inlet and outlet gas 
concentrations were performed. The following operating variables were varied during the experiments:  
 

 Type and solvent (DEA, MDEA and pure water), 
 Gas and liquid flow rates,  
 Concentrations of both solvents and gas streams.  
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The small temperature fluctuations during each experiment were ignored and the average temperature 
was calculated using the initial and final conditions. The barometric pressure was close to one standard 
atmosphere for all experiments. Figures 1 and 2 represent typical collected data for the operating 
conditions specified in the Figure 1. The error bars were computed from the conventional statistical 
equations with multiple measurements at selected points. For small CO2 concentrations of entering air 
streams and assuming constant total gas flow rate across the entire column, the percent CO2 absorbed 
from air was computed for both figures as following: 
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Figure 1 – Measured output gas concentrations versus mole fractions for DEA and MDEA solvents at  
                  corresponding operating conditions. 
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      Figure 2 – Calculated values for percents of absorbed CO2 versus input concentrations for various  
                        solvents and operating conditions mentioned in Fig. 1 respectively. 

QL=2 lit/min 
QG=50 lit/min 

T=29°C, DEA  
 

QL=2 lit/min 
QG=100 lit/min 
T=29°C, DEA  

 

QL=2 lit/min 
QG=50 lit/min 

T=30°C, MDEA  
 

QL=2 lit/min 
QG=100 lit/min 

T=30°C, MDEA  
 



 3

Evidently, the outlet gas concentration increases by increasing the inlet CO2 mole fraction at constant 
solvent concentration as shown in Figure 2. On the other hand, increasing the CO2 mole fraction of 
entering air (provided that all other conditions are kept constant) although increases the absorption rate 
(due to relatively larger driving forces), however it may not necessarily lead to higher percents of CO2 
absorption. Actually, in most cases, the increase in mass transfer rate is much smaller than the increase in 
inlet concentration due to limitations of equilibrium concentrations1 (or limited solvent capacity). In such 
cases, the percent of CO2 absorption will decrease with increase in the CO2 mole fraction of entering air.  
Evidently, the absorption capacity of the solvents increases by increasing the DEA or MDEA 
concentrations of the entering solutions. Furthermore, since DEA is much stronger alkali compared to 
MDEA, hence, DEA solutions are able to absorb more carbon dioxide than MDEA solutions (at 
constant solvent concentrations). The collected experimental data were used to simulate the absorption 
process by employing various artificial neural networks.    
 
3. A brief overview of neural networks  
Neural networks generally consist of several interconnected neurons in one or more hidden layers. 
They can be classified from different points of views such as the type of input transformation, their 
structural architecture and the type of learning algorithm. Neural networks may employ either 
projection or kernel based transformations to account for correlation among the inputs.  
In the first transformation the inputs are projected on a single axis, the projection may be linear or non-
linear. The McCulloch-Pitt neuron, Perceptron and Adaline are examples of linear projections [12]. In 
the second transformation, the norm (usually Euclidean) of the input vector with respect to a fixed 
point (centre) is used. Radial basis function networks are the most popular examples of the kernel 
based input transformations [13]. 
In its simplest form, a feed-forward network is constructed from an input layer of source nodes that are 
projected onto an output layer of computation nodes via synaptic weights. The “single layer” 
designation refers to the output layer containing feed-forward computation nodes (neurons). A linear 
associative memory is an example of a single-layer neural network. The network associates an output 
pattern (vector) with an input pattern (vector), and the information is stored in the network by virtue of 
the modifications made to the synaptic weights of the network.  
Multi-layer feed-forward neural networks contain one or more hidden layer(s), whose corresponding 
computational nodes are called hidden neurons or hidden units. The function of the hidden neurons is 
to intervene between the external input and the network response. By adding one or more hidden 
layers, the network is enabled to extract higher order statistics (more information) by virtue of the extra 
set of synaptic connections and increased neural interactions. The ability of the hidden neurons to 
extract higher order statistics is crucial for large input dimensions. The neurons of each layer may be 
either partially or fully connected to the neighboring layers. 
The learning algorithm of a neural network deals with the adjustment of the network parameters and 
usually settles to solving an unconstrained or constrained optimization problem. In many engineering 
applications we are concerned with the estimation of an underlying trend (or function) from a limited 
number of input-output data points with little or no knowledge of the form of the true function (truth). 
The set of examples (the training set) contains elements that consist of paired values of the independent 
(inputs) and the dependent (outputs) variables. A supervised learning algorithm adjusts the network 
parameters according to the differences between the measured response )( ixy  and the network outputs 

)(ˆ ixy  corresponding to a given input ix . Supervised learning requires a supervisor, to provide the 
target signals. 
 
3.1. Training of the MLP network  
The basic element of a Multi Layer Perceptron (MLP) neural network is the artificial neuron which 
performs a simple mathematical operation on its inputs. The input of the neuron consists of the 
variables pxx ,.....,1  and a threshold (or bias) term. Each of the input values is multiplied by a 

weight, iw , after which the results are added with the bias term to produce z. Finally, as shown in 
Figure 3, a known activation function,ϕ , performs a pre-specified (non-linear) mathematical operation 
on the projected inputs. Various activation functions such as sigmoid or hyperbolic tangent are 
traditionally used for this purpose [13].  

                                                 
1 Note that the equilibrium constant is actually a function of solute concentration in both phases as well 
as the operating temperature and pressure. 
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The MLP network is trained by adapting the synaptic weights using a back-propagation technique or 
any other optimization procedure. During training phase, the network output is compared with a 
desired output. The error between these two signals is used to adapt the weights. This rate of adaptation 
may be controlled by a learning rate. Additional linear weights ( s'α , as shown in Fig. 3) were used in 
this work to accelerate the network convergence. The optimal values of these linear parameters were 
updated after each back-propagation iteration using the following set of linear equations: 
                                                      ( ) yTT Φ=ΦΦ α                                                    (1) 

where MjNiz jiji ,....,1&,...,1),( ,, ===Φ ϕ  and y is the 1×N  vector of measured values. The 
parameters N and M represent number of training data and number of neurons respectively. The 
training flow chart of such MLP network is given in our previous articles [13]. 
3.2. Training of the RBF network  
The training of a projection based network (such as MLP) always reduces to the solution of a large-
scale non-linear optimization problem. Such problems are usually very time demanding and often 
encounter severe convergence problems. In contrast, the training of RBF networks with pre-specified 
non-linearities (centers and spreads) reduces to the solution of an over-determined set of linear 
equations which can be solved by a variety of highly stable techniques. An efficient in-house algorithm 
is used to effectively train the so called Regularization or Radial Basis Function (RBF) neural networks 
with isotropic spreads. 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
4. Simulation results   
The entire collection of experimental data for CO2 outlet concentrations and percentage of absorbed 
CO2 were used to train both MLP and RBF networks.  By definition, the RBF regularization network 
employs the same number of neurons as the data points. For better comparison of both networks 
performances, the number neurons of MLP networks were kept equal to the number of training 
exemplars.  
The regularization network was completely self-sufficient and did not require any initial values for its 
linear and non linear parameters. As it was mentioned in the theoretical section, these networks use all 
the input data as their centers. Furthermore, our in-house optimization technique [12-15] was used to 
select the optimal value of isotropic spreads at each case, separately. The leave one out cross validation 
(LOOCV or CV in brief) criterion was also employed to provide the optimum level of regularization 
for a given set of centers and the optimal isotropic spread. 
In contrast, the MLP networks performances completely depended on the set of initial values selected 
for their synaptic weights. In this work, various initial synaptic values were tried for each training data 
set and then the best values were selected based on visual considerations. Evidently, the above 
procedure for training of MLP networks is much more time demanding than the previously described 
[15] straightforward method for training of Regularization networks.  
Figures 4 and 5 compare typical performances of optimally regularized RBF networks with the best 
selected MLP network for prediction of CO2 outlet concentrations and percents of CO2 absorption 
versus CO2 mole fractions of the entering air streams for the experimental data depicted in Figures 1 
and 2. Although both networks performs very close to each other, however, the RBF network provides 

          Figure 3 – Schematic representation of MLP and RBF feed-forward neural networks. 
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slightly better performances with less oscillations due to its noise filtering  capability. Furthermore, as 
it was mentioned above, the appropriate choice of initial synaptic weights was crucial for the proper 
performance of MLP network, while RBF does not need any initial values for its synaptic weights.  
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Figure 4 -  Typical comparison and predicted values by MLP network (top) with RBF network   
                  (bottom)  for outlet carbon dioxide concentration and percentage absorption.  
                  (QG=50lit/min, QL=2 lit/min, DEA solvent)  
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Figure 5 -  Typical comparison of predicted values by MLP network (top) with RBF network   
                  (bottom)  for outlet carbon dioxide concentration and percentage absorption.  
                  (QG=50lit/min, QL=2 lit/min, MDEA solvent). 
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5. Conclusion 
The experimental data collected in this article can be used as an influential tool to improve our 
understandings of the packed absorption processes especially the absorption of CO2 from air by various 
alkanolamine solutions. The simulation results presented here show that both MLP and RBF networks 
can perform adequately for prediction of outlet CO2 concentrations or the percent of absorption. The 
RBF network with isotropic spreads does not need initialization and usually perform more 
appropriately due its solid theoretical background (multivariate linear regularization theory) and its 
noise filtering capability.   
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