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Abstract

The dynamics of the stationary axisymmetric configuration of accreting magnetofluids surrounding a non-
rotating compact object in the final stages of accretion flow is presented here. We discuss two classes of solutions for
the angular momentum: a Keplerian solution, which demands no accretion flow for the fluids, and a non-Keplerian
solution, which requires a radial inflow velocity for the matter. For the special case of no presence of electromagnetic
fields, two sets of self-consistent analytical solutions of fully relativistic fluid equations are obtained separately for
two different equations of state. The effect of the bulk viscosity coefficient on the physical functions was investi-
gated for each state, as well as the bounds that exert on the free parameters due to last stages of the accretion-flow
condition. To resolve the magnetohydrodynamical equations, we were inspired by previous sets of solutions, since
the magnetofluid equations are just the same as the fluid ones in the case of vanishing electromagnetic fields. The
azimuthal current in magnetofluids doesn’t modify the dipolar configuration of the central object magnetic field,
owing to the lack of a finite resistivity. The presence of this magnetic field doesn’t affect the azimuthal velocity of
the plasma, but does slow down its radial inflow, and decrease the density and pressure of the plasma. Despite the
role importance of the bulk viscosity on the fluids’ dynamics in the absence of electromagnetic fields, exerting the
magnetic field decreases this role.
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1. Introduction

The plasma processes in the vicinity of compact objects
are believed to be the main mechanisms for the generation of
energy in them. Falling matter releasing gravitational poten-
tial energy heats the gas, and generates radiation. The process
of angular-momentum removal of the infalling material oper-
ates on slower time-scales as compared to the free-fall time,
so infalling gas with sufficiently high angular momentum can
form a disk-like structure around a central gravitating body.
All accretion-flow models require that the angular momentum
be removed from the flow in some way so that material can
flow inwards. If the velocity field varies significantly in direc-
tions orthogonal to the flow (shearing motions), shear viscous
effects come into play (Frank et al. 1992). Shear viscosity,
which is an angular-momentum transport mechanism, operates
on a finite time-scale of �� . It becomes equal to or larger
than the accretion time-scale, �acc , as the accreted material
approaches the horizon, before the final plunge (Peitz & Appl
1997). Consequently, neglecting the shear viscosity is a wise
assumption during the last stages of accretion flow, while most
of the gas orbital angular momentum has already been removed
and the fluids’ radial inflow is several times faster than its rota-
tion.

Studies of the axisymmetric stationary magnetofluid config-
uration around compact objects in context of high-energy
astrophysics are of long-standing considerable theoretical
interest in both Newtonian and relativistic limits (e.g.,
Kaburaki 1986; Tripathy et al. 1990; Takahashi et al. 1990;
Banerjee et al. 1995, 1997; Ghosh 2000; Tomimatsu &

Takahashi 2001). If the gravitational field is sufficiently
strong, as in the vicinity of a compact object, the Newtonian
description of gravity is only a rough approximation,
and general-relativistic considerations are necessitated. In
studying the relativistic disks, there are two kinds of assump-
tions about the self-gravity of the disks. One is to assume
that the self-gravity is the source of space-time curvature, and
to refer to solve Einstein’s field equations (Lynden-Bell &
Pineault 1978; Cai & Shu 2002). The other idea is that the
self-gravity is negligible compared to the gravitation of the
central compact object, and it is assumed that the basic geom-
etry just produced by the central object is not disturbed by the
self-gravity of the disk (Prasanna 1989; Takahashi et al. 1990;
Kudoh & Kaburaki 1996; Gammie & McKinney 2003; Antón
et al. 2006). The basic equations governing the dynamics of an
axisymmetric stationary magnetofluid disk around a compact
object in curved space-time are given by Prasanna et al. (1989).
Considering the viscosity, in those equations p changes to
p = p � (�b � 2

3
�s)Θ (Prasanna & Bhaskaran 1989;

Bhaskaran & Prasanna 1990; Peitz & Appl 1997; Banerjee
et al. 1997; Riffert 2000). Prasanna (1989) demonstrated that
an initial spherical matter accretion (i.e., accretion with initial
zero angular momentum and radially falling at infinity) onto
a rotating black hole may acquire angular velocity entirely
due to inertial frame dragging induced by the space-time
surrounding the compact object as it approaches the horizon,
and forms a thin disk structure on the equatorial plane of the
central compact object before the final plunge. In this scenario,
the pressure balance at a marginally stable orbit is provided by
the equality of the radiation pressure and the hydrostatic gas
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pressure. Furthermore, the bulk viscosity does contribute in
the dynamical equations through the nonzero radial velocity.
The existence of such solutions of exact equations gives us
sufficient motivation to study the dynamics of accreting fluids
around a non-rotating compact object during the last moments
of accretion flow. We take up a study of the dynamics of
a disk-like structure around a static compact object in final
stages of accretion flow. Once the specific angular momentum
of the gas is small enough in such a way that in those instants,
the accretion flow more nearly resembles the free-fall on to
the central compact object. Namely, it is assumed that an
accretion disk had previously been formed in the gravitational
field surrounding a non-rotating compact object. We would
now like to investigate the fluids’ dynamical treatments during
the last stages of accretion flow for two different equations of
state in two cases, while the electromagnetic fields are present
and not; also, the role of the bulk viscosity on the dynamics is
considered for each case.

This paper is organized as follows: In section 2, the
governing basic equations are derived according to special
assumptions. Observing the equations of state to close the
system of equations is carried out in section 3. For the special
case of no magnetic field being present, two sets of self-
consistent analytical solutions for two different equations of
state can be found in section 4, and numerical solutions for
magnetofluid case are described in section 5. Conclusions and
possible generalizations are presented in section 6.

2. Basic Equations

The general system that we shall consider is viscous
magnetofluids surrounding a non-rotating compact object. We
ignore a very slow increase in the mass of the central object due
to accretion. The space-time produced by the central compact
object is introduced by the Schwarzschild geometry, and then
the fluids are supported entirely by the object’s gravitational
field. The line element of the space-time is written as

ds2 =
�

1 � 2m

r

�
c2dt2 �

�
1 � 2m

r

��1

dr2

�r2
�
d�2 + sin2�d'2

�
; (1)

where c is the light speed, m = GM=c2 is the Schwarzschild
mass, M denotes the mass of the central compact object and G
is the gravitational constant. The energy-momentum tensor for
an imperfect magnetofluid is given by

T ij =
�

� +
Np

c2

�
ui uj � Np

c2
gij +

2

c2
�s�

ij

� 1

4�c2

�
F i

k F jk � 1

4
gij Fkl F kl

�
; (2)

with Np = p �(�b � 2
3
�s)Θ and Θ = uk

Ik is invariant. Here, �,
p, �b and �s denote the mass density, gas pressure, bulk and
shear viscosity coefficients, respectively.

�ij =
1

2
.ui Ikh

j

k + uj Ikhi
k/ � 1

3
Θhij ; (3)

being the shear tensor wherein hij = gij � ui uj is the projec-
tion tensor. Note that the Roman indices run from 0 to 3 and

the Greek ones run from 1 to 3. The governing magneto-
hydrodynamical equations are obtained (Prasanna et al. 1989)
by considering the conservation laws,

T
ij
Ij = 0; (4)

along with the following Maxwell equations:

F
ij
Ij = � 4�

c
J i ;

Fij;k + Fki;j + Fjk;i = 0:
(5)

We are interested in expressing the dynamical equations in
the orthonormal tetrad frame appropriate to the Schwarzschild
metric,

	i
.˛/ = diag

"�
1 � 2m

r

��1=2

;

�
1 � 2m

r

�1=2

;
1

r
;

1

rsin�

#
I (6)

all variables are then defined in local Lorentz frame as follows:

F.˛/.ˇ/ = 	i
.˛/ 	

j

.ˇ/Fij ;

J .˛/ = 	
.˛/

i J i ;

E.˛/ = F.˛/.t/;

B.˛/ = 
˛ˇ� F.ˇ/.�/;

(7)

where 
˛ˇ� is the Levi–Civita symbol. Using the same
tetrad, the spatial 3-velocity, V ˛, defined through the relation
u˛ = u0V ˛=c, in terms of local Lorentz components are given
by

V .r/ =
�

1 � 2m

r

��1

V r ;

V .�/ = r

�
1 � 2m

r

��1=2

V � ;

V .'/ = r sin�

�
1 � 2m

r

��1=2

V ':

(8)

The Maxwell equations in this coordinates are then written as

@

@�

�
sin� B.'/

�
= �4�r

c
sin�J .r/;

@

@r

"
r

�
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@
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�
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�
sin� E.'/

�
= 0:

(9)
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With the assumption of an insignificant toroidal electric field
(E' = 0), one admissible solution set of the Maxwell equa-
tions (9) is

E.r/ = E0

�
R

r

�3

cos�;

E.�/ =
E0

2

�
R

r

�3�
1 � 2m

r

��1=2

sin�;

B.r/ = B0

�
R

r

�3

cos�;

B.�/ =
B0

2

�
R

r

�3�
1 � 2m

r

�1=2

sin�;

B.'/ =
b'

rsin�

�
1 � 2m

r

��1=2

;

(10)

which gives rise to the following currents:

J .r/ = 0;

J .�/ = 0;

J .'/ =
�3mc

4�

B0

r2

�
R

r

�3

sin�;

J .t/ =
�2mc

4�

E0

r2

�
R

r

�3�
1 � 2m

r

��1=2

cos�:

(11)

Here, R represents the radius of the compact object, with B0

and E0 being the surface field strengths, and b' is an arbitrary
constant. Because of the vanishing of the radial and merid-
ional currents, the toroidal magnetic field doesn’t appear in
the equations. Thus, without any loss of generality, we set
b' = 0 (Prasanna et al. 1989). It is assumed that the matter
distribution and electromagnetic fields are stationary (@t � 0)
and axisymmetric (@' � 0). Also, it is supposed that there is
no meridional flow (V � = 0), and the fluids are settled near
the equatorial plane of the central object (� = �=2) (Tripathy
et al. 1990; Kudoh & Kaburaki 1996) and the system’s physical
functions are independent of � . Thus, with these assumptions,
the conservation equations can be written as a continuity equa-
tion,�

� +
Np

c2

��
dV .r/

dr
+

2

r
V .r/

	
+V .r/ d

dr

�
� � Np

c2

�

=
3m

4�c2

B2
0

r2

�
R

r

�6

V .r/; (12)

a radial component,�
� +

Np
c2

��
1 � V 2

c2

��1�
V .r/ dV .r/

dr

+
mc2

r2

�
1 � 2m

r

��1�
1 � .V .r//2

c2

�
� .V .'//2

r

#

+
d Np
dr

+
3m

8�

B2
0

r2

�
R

r

�6

= 0; (13)

and an azimuthal component of momentum equation,

V .r/ dV .'/

dr
+

1

r

�
1 � 2m

r

��1�
1 � 3m

r

�
V .'/V .r/ = 0:

(14)

Here, V .r/, being the radial inflow velocity, is assumed to
be positive, which indicates the direction toward the central
object. There are two classes of solutions for this set of equa-
tions (12)–(14):
(i) There is no accretion flow, or V .r/ = 0. In this case, equa-
tions (12) and (14) are satisfied identically. Also, one can
assume the quasi-Keplerian form for the toroidal component
of the velocity field (Banerjee et al. 1997) as being

V .'/ =

s�
1 � 2m

r

��1
GM

r
: (15)

With this value of V .'/, the centrifugal force is completely
balanced by the gravitational force, and thus the pressure
gradient needed to balance the magnetic stress is

d Np
dr

= �3m

8�

B2
0

r2

�
R

r

�6

: (16)

The class (i) solutions indicate the outer regions where the
radial inflow velocity is so slow. Prasanna et al. (1989) has
elaborately discussed this class of solution.
(ii) The second class, which is more important for us, is
achieved by omitting V .r/ from equation (14); then, a first-
order homogeneous differential equation is obtained, which is
resolved simply as

V .'/ =
L

r

�
1 � 2m

r

�1=2

; l =
L

cm
; (17)

where L is an integration constant, and l is called the angular-
momentum parameter. As a result, once the centrifugal force
is no longer balanced by the gravitational force, rather it is
smaller than the inward gravitational attraction, radial inflow
will occur for the matter. The transition radius, rtr , between
these two classes of solutions in the initial and middle instants
of accretion flow is obtained by the matching condition,

V
.'/

keplerian jr=rtr = V
.'/

radial inflow jr=rtr ; (18)

which leads to the following equation:�
1 � 2m

rtr

� r
m

rtr

=
1

ltr
; (19)

and / or

x
3=2
tr = lt r .xtr � 2/; (20)

wherein xtr � rtr=m is an ascending function of lt r �
l jr=rtr . This means that the higher the value of the angular
momentum, the further the transition radius from the central
object. However, whereas we are interested in investigating the
accretion flow in the final instants while the angular momentum
must take a lower value compared to the standard Keplerian
solution, the matching condition (18) is no longer satisfied.
Instead, l behaves as a free parameter, and is responsible for
providing the last stages of the accretion-flow condition by
taking the value sufficiently lower than lt r .

3. Considering the Equation of State

With the substitution of V .'/ (equation 17) in equation (13),
there remains just two equations [equations (12)–(13)] and
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three variables. Obviously, to close the system it is necessary
to include an equation of state. We consider two different equa-
tions of state.

3.1. Np = K

Here, K is a constant, which means that if there is no bulk
viscosity, the pressure remains constant throughout the fluids’
flow. Thus, the continuity and radial-momentum equations
[equations (12)–(13)] take the form

N�
�

dV .r/

dr
+

2

r
V .r/

	
+ V .r/ d N�

dr
=

3m

4�c2

B2
0

r2

�
R

r

�6

V .r/;

(21)
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�

1 � V 2
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��1
"

d

dr

�
V .r/

�2
+

2mc2

r2

�
1 � 2m

r

��1

�
 

1 �
�
V .r/

�2
c2

!
� 2L2

r3

�
1 � 2m

r

�#
+

3m

4�

B2
0

r2

�
R

r

�6

=0;

(22)

wherein N� = � + Np=c2.

3.2. Np = �c2

For this equation of state, equations (12) and (13) are
reduced to

2�

�
dV .r/

dr
+

2

r
V .r/

	
=

3m

4�c2

B2
0

r2

�
R

r

�6

V .r/; (23)

2�

�
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��1
"

d

dr

�
V .r/

�2
+

2mc2
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�
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r

��1
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1 �
�
V .r/

�2
c2

!
� 2L2

r3

�
1 � 2m

r

�#
+ 2c2 d�

dr

+
3m

4�

B2
0

r2

�
R

r

�6

= 0: (24)

Thus, we encounter two sets of coupled non-linear ordinary
differential equations; it is so difficult to solve them with the
common methods. As a first step, we are interested in solving
the equations in the special case of no magnetic field being
present.

4. Special Case B0 = 0

4.1. Np = K

Equations (21) and (22) are simplified to

d lnV .r/

dr
+

2

r
= �d ln N�

dr
; (25)

d

dr

�
V .r/

�2 � 2m

r2

�
1 � 2m

r

��1 �
V .r/

�2
= �2mc2

r2

�
1 � 2m

r

��1

+
2L2

r3

�
1 � 2m

r

�
: (26)

Integrating them yields

V .r/ =

s
2mc2

r
� L2

r2

�
1 � 2m

r

�
; (27)

N� = K1


"
r2

s
2mc2

r
� L2

r2

�
1 � 2m

r

�#
: (28)

Thus, we have the following relation for the physical density:

� = N� � Np
c2

=
K1

r2

s
2mc2

r
� L2

r2

�
1 � 2m

r

� � K

c2
; (29)

wherein K1 and K are constants. The generalized definition for
the rate of accretion, PM , in relativity (Bhaskaran & Prasanna
1990) is

PM =
�

� +
Np

c2

��
1 � 2m

r

��
1 � V 2

c2

��1

r2 V .r/: (30)

As infered from equation (29), K1 will be the rate of accretion,
i.e., K1 = PM and

K = pR � �bΘjr=R: (31)

Note that it is assumed that the hydrostatic gas pressure at the
inner edge is equal to the radiation pressure [pR = 1

3
a T 4 in the

local thermodynamical equilibrium (LTE)] (Prasanna 1989).
To complete the definitions, it is necessary to expand Θ:

Θ = uk
Ik = ur

;r +
2

r
ur =

u0
;r

c
V r +

u0

c
V r

;r +
2

r

u0

c
V r ; (32)

wherein

u0 =
�

1 � 2m

r

��1=2�
1 � V 2

c2

��1=2

(33)

and

u0
;r = u0

"�
1 � V 2

c2

��1
V

c2

dV

dr
� m

r2

�
1 � 2m

r

��1
#

: (34)

Also, the fluid total velocity is defined as

V 2 = .V .r//2 + .V .'//2 =
2mc2

r
: (35)

Eventually, Θ can be written as

Θ =
u0

c

(
V .r/

"�
1 � V 2

c2

��1�
1 � 2m

r

�
V

c2

dV

dr

+
2

r

�
1 � 2m

r

�
+

m

r2

	
+ V .r/

;r

�
1 � 2m

r

��
; (36)

so the following pressure is achieved:

p = Np + �bΘ = K + �bΘ: (37)

To determine K , it is necessary to assign an appropriate
temperature to the marginally stable orbit. Observations have
shown that at essentially subcritical fluxes of PM = 10�12–
10�10 Mˇ yr�1, the luminosity of the disk is of the order of
L = 1034–1036 erg s�1, and the maximal surface temperatures
are on the order of Ts = 3 � 105–106 K in the inner regions
of the disk where most of the energy is released (Shakura &
Sunyaev 1973). Therefore, assigning these numerical values
for our calculations should not be an odd choice: M =4 Mˇ,
PM = 10�12Mˇ yr�1 and T = 105 K in the inner edge located at
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Fig. 1. (a) Velocity profiles of the Np = K equation of state for different values of l . (b) Azimuthal velocity (‘Δ’-marked line) and radial velocity (solid
line indicates Np = K and dotted lines indicate Np = �c2 equation of state for two values of n represented in legend) profiles in the case of l = 0.5 and
R = 6m.

R = 6m. Close to the black hole event horizon, the gas temper-
ature and the velocities become extremely high (Popham &
Gammie 1998) and gradually fall off outwards (figure 1a).
As l increases, the fluids’ rotation speeds up, whereas the
radial inflow slows down; consequently, the total fluid velocity
remains constant with respect to l . Furthermore, as figure 1a
clearly shows, l increasing makes the slope of the azimuthal
velocity profile steep, and that of the radial velocity profile
gentle. Namely, in the process of ascending the velocities
inward, an increase in l speeds up this process for the azimuthal
velocity and slows it down for the radial velocity. Neglecting
the shear viscosity as an angular-momentum transport mech-
anism necessitates a small gradient for the fluids’ azimuthal
velocity (Frank et al. 1992). This exerts an upper bound on l ,
since beyond l = 1 the gradient becomes significant.

4.2. Np = �c2

In this equation of state, equations (23) and (24) for the non-
magnetofluid reduce to

d lnV .r/

dr
= �2

r
; (38)

1

c2 � V 2

"
d

dr

�
V .r/

�2
+

2mc2

r2

�
1 � 2m

r

��1
 

1 �
�
V .r/

�2
c2

!

�2L2

r3

�
1 � 2m

r

�	
= �d ln�

dr
: (39)

Integrating equation (38) gives

V .r/ = n
m2

r2
c; (40)

wherein n is a free parameter. The radial inflow velocity
(dotted lines in figure 1b) becomes faster inward, as in the
case of the previous model (subsection 4.1). However, the
descending slope of its profile is so much steeper that it falls
off rapidly, and reaches to zero, whereas for the Np = K model
it remains constant after an initial gentle infall. The radial
velocity in the Np = �c2 model is both independent of l and
slower compared with the other model. Furthermore, the upper
bound for l is lower. Since l exceeds 0.5, the azimuthal

velocity becomes higher than the radial velocity, such that it
disturbs the accretion-flow condition during the last stages.
Moreover, beyond r = 20m there is neither radial inflow nor
rotation for the fluids, and thus the accretion region’s vast-
ness for this state is more bounded. Substituting V .r/ in equa-
tion (39) and integrating yields

� = �0

r4 � m2l2r2 + 2m3l2r � n2m4

r3.r � 2m/
; (41)

wherein �0 is the integration constant. Obtaining the density
means identifying the pressure via

p = Np + �bΘ = �c2 + �bΘ; (42)

in which Θ has its previous definition (36); however, the fluid
total velocity is changed as

V 2 = .V .r//2 + .V .'//2 = n2 m4

r4
c2 +

L2

r2

�
1 � 2m

r

�
: (43)

Increased value of n leads to diminishing the density; for this
reason there exists an upper bound for n for which the density
and pressure are meaningful. Figure 2 shows the effect of �b

on the pressure and density distributions for two equations of
state. The density and pressure for both equations of state are
descending functions of r ; however, the slope of the density
profile for the Np = K equation of state is steeper in the sense
that it drops to zero quickly, whereas for the Np = �c2 model
it tends to be constant after an initial falling. The behaviors of
the density and pressure distributions in the Np = �c2 model are
similar, however, for the other state, unlike the density which
falls off rapidly outwards, the pressure remains constant after
an initial decrease. With respect to �b , two equations of state
express similar behaviors for the density and different ones for
the pressure. The distributions of the density and velocities are
not affected by the viscosity parameter. However, regarding
the pressure distribution, in the Np = K model (figure 2a) the
higher is the value of �b , the lower is the value of the pres-
sure in the outer regions, while the pressure descent outward
is appreciable only for a high �b . Also, if there is no bulk
viscosity the pressure remains constant throughout the fluids’
flow. Extending the marginally stable orbit beyond R = 6m
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Fig. 2. Density and pressure profiles for different values of �b for (a) Np = K and (b) Np = �c2 equation of state. In the case of R = 6m, l = 0.5, n = 10,
and �0 = 10�23 kg m�3. The values of �b are given in the legend.

Fig. 3. Same as figure 2a but for R = 15m.

(figure 3) leads to increasing the pressure. This increase is
significant only for a high �b . Incidentally, the descending
slope of the pressure profile becomes more gentle.

However, for the Np = �c2 equation of state, an increase
in �b results in increasing the pressure in the inner regions
(figure 2b). The pressure relation (equation 42) consists of

two non-constant terms. Therefore, the pressure continuously
maintains the descending outward distribution, even in the
case of a vanishing bulk viscosity coefficient, contrary to the
Np = K model. The role of the viscosity term in the pres-

sure (�bΘ) are considered once the two terms are of the same
order. Accordingly, the integration constant, �0, is chosen to be
�0 = 10�23 kg m�3, so that the effect of viscosity is observed
on the pressure distribution. In fact, for densities higher than
this value the importance of the bulk viscosity is negligible;
however, for the lower densities, the presence of this parameter
is more noticeable.

In the allowed interval for l , the density and pressure distri-
butions for both states do not vary to an appreciable extent
against l . Nevertheless, once l exceeds this limit, the density
and pressure increase with l increasing in the Np = K the equa-
tion of state, and decrease for the other state. Owing to the
fact that this behaviour is beyond the physical limit for l , the
profiles have not been plotted.

5. General Case B0 ¤ 0

The solutions to Maxwell’s equations [equations (10)]
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indicate on dipolar configuration for electromagnetic fields
which could match for the modelling of accretion disks around
neutron stars. Thus, in this case the central compact object is
assumed to be a pulsar with mass M =Mˇ and radius R = 6m.
Though it may be rotating in general, the Schwarzschild geom-
etry is used to describe the space-time curvature. This is
because it is assumed that the angular-momentum parameter
is a � 1, which indeed seems to be the case for most pulsars
(e.g., Gonthier & Harding 1994; Banerjee et al. 1997). Since
the solutions of the magnetofluid case must be the previous
ones in case B0 = 0, we choose the solutions of the equa-
tions in the latter case to be exactly the same as before, plus
terms involving B0, which must be vanished once B0 = 0. For
the magnetized case, we don’t discuss the Np = K equation
of state. This is because this state demands that the pressure
balance at the inner edge is mainly provided by equality of the
hydrostatic gas pressure and the magnetic pressure instead of
the radiation pressure. Therefore, K becomes so much larger
than the second term (�bΘ) in the pressure equation (37), and
the pressure remains constant throughout the accretion flow,
whereas the density increases inward as before, which seems
to be an unreasonable result. For the Np = �c2 equation of state,
the solutions of equations (23) and (24) are presumed to be
as follows:

V .r/ = n
m2

r2
c � B2

0

Pm

c g
� r

m


; (44)

� = �0

r4 � m2l2r2 + 2m3l2r � n2m4

r3.r � 2m/
� B2

0

c2
f
� r

m


; (45)

where g and f are dimensionless functions that are deter-
mined by solving equations (23) and (24) numerically. Pm,
which is the average magnetic pressure throughout the accre-
tion flow, is a constant employed in the equations to fit the addi-
tional magnetic terms from a dimensional point of view. It is
defined as

Pm =
< B2 >

8�

=
1

8�

1

.r2 � r1/

Z r2=50m

r1=RM =10m

�
B2

.r/ + B2
.�/ + B2

.'/


dr

= 2:787 � 1011 pascal: (46)

Here, RM is the radius of the inner edge, where inside it the
matter flows along field-lines (Frank et al. 1992). We choose
a negative sign for the magnetic terms in equations (44) and
(45) since, as we know, the presence of a magnetic field in
the fluids is a decelerating factor in the sense that the flow of
the magnetofluid is stopped by the magnetic pressure associ-
ated with a compact object (Tripathy et al. 1990). The pres-
sure is obtained from equation (42) once more, but with a new
definition for the radial velocity [equation (44)]. The appear-
ance of the magnetic field in the system slows down the radial
inflow; however, doesn’t affect the angular-momentum distri-
bution. As the magnetic field strengthens, the radial inflow both
becomes slower and its slope becomes more gentle (figure 4).
The provision of accretion flow in the last stages puts an upper

Fig. 4. Radial velocity profile of the magnetofluid for different values
of B0, in the case of n = 20, l = 0.1, and Np = �c2 equation of state. The
‘� �’ sign represents V .'/ profile. The values of B0 are represented in
the legend.

Fig. 5. g and f profiles of the magnetofluid for different values of B0 . The values of B0 are represented in the legend.
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Fig. 6. Density and pressure profiles of the magnetofluid for different values of B0 for the Np = �c2 equation of state, in the case of n = 20, l = 0.1, and
�0 = 0.1 kg m�3. The values of B0 are represented in the legend of figure 5.

limit on the value of B0, the surface magnetic field of the
central neutron star. This is because at those instants the radial
inflow must be so faster than the azimuthal velocity.

Figure 5 gives the profiles of dimensionless functions g and
f for different values of B0. As one can see, g is not affected
by B0, whereas f decreases as B0 increases. Further, figure 6
shows the effect of B0 on the density and pressure distributions.
As expected, the density as well as the pressure fall off as the
magnetic field strengthens. There exists a lower bound on the
value of �0 below which the density and pressure become nega-
tive (due to presence of magnetic terms with negative sign), and
hence leads to an unphysical situation.

6. Conclusion

We have written the equations describing the viscous
accreting magnetofluids around a static compact object in the
final stages of accretion flow, and solved them not only in the
special case of electromagnetic field absence, but also in the
case of a plasma disk in the presence of a dipole magnetic
field. We have achieved two sets of solutions for two different
equations of state in the non-magnetofluid case. The density
and pressure for both states ascend inward. The increasing
density at the inner regions during the last phases of accre-
tion flow suggests that the inner regions could be blown up
with matter moving along the � direction on either side of
the equatorial plane. The accretion-flow condition during the
last stages demands that the fluids’ radial inflow is carried out
much faster than its rotation. In those situations, there is no
need for any angular-momentum transport mechanism; there-
fore, one may neglect the shear viscosity. Elimination of the
shear viscosity coefficient, �s , both simplifies the equations and
exerts an upper limit on the angular-momentum parameter, l .
Because a small gradient of the angular velocity is incidental to
vanishing the shear viscosity, and since an increase of l makes
the slope of the azimuthal velocity steeper, there should be an
upper bound on it. This upper limit for the Np = �c2 equation
of state is lower than the other state. Thus, the Np = K model
can support a higher value of the azimuthal velocity against the
Np = �c2 model. In any case, for both states it is much slower

than the standard Keplerian solution. The results that we have
attained for the non-magnetofluids surrounding a static black
hole in the case of the Np = K equation of state from the view-
point of the qualitative behavior of the physical functions are
just the same as whatever has been achieved for fluids around
a rotating compact object, whose angular velocity is essentially
due to dragging originating from the surrounding space-time
(Prasanna 1989).

The accreting plasma in the presence of a dipole magnetic
field gives rise to a current in the azimuthal direction and
a charge density, J t . However, this current doesn’t generate
a new magnetic field, because of a loss of the electrical
conductivity. Consequently, the dipolar configuration of the
central pulsar magnetic field isn’t disturbed (Prasanna et al.
1989; Tripathy et al. 1990). The relativistic magnetohydro-
dynamical equations describing the plasma have been resolved
by employing solutions obtained from their hydrodynamical
peers. In order to ensure that the density and pressure are posi-
tive everywhere, the free parameter �0 should not be lower
than 0.1 kg m�3. Under these circumstances, the term �c2

will be much greater than that of �bΘ, and dominates over
it. As a consequence, no longer does the bulk viscosity
affect the pressure distribution. Indeed, with the appear-
ance of electromagnetic fields in the fluids, it seems that the
bulk viscosity doesn’t have the previous importance on the
dynamics, Bhaskaran and Prasanna (1990) also note this point.

In conclusion, the solutions that we have examined here
for accreting fluids confined to the equatorial plane of a non-
rotating compact object may be important in this respect: By
incorporating the effects of other feasible parameters, like
shear viscosity, heat conduction and resistivity, these solutions
can be used plus the terms including the relevant coefficients
(i.e., �s shear viscosity or  heat conduction coefficient and �
conductivity), analogous to what we have done by taking into
account the electromagnetic fields.

To generalize the problem, it is interesting to put aside the
assumptions of the fluids’ equatorial plane confinement and
no meridional flow. We will address this problem in a forth-
coming paper.
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