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ABSTRACT
Observations of the hot gas that surrounds Sgr A* and a few other nearby galactic nuclei imply
that the mean free paths of electrons and protons are comparable to the gas capture radius.
Hot accretion flows therefore likely proceed under weak collision conditions. As a result,
thermal conduction by ions has a considerable contribution to the transfer of the realized heat
in accretion mechanisms. We study a two-dimensional advective accretion disc bathed in the
poloidal magnetic field of a central accretor in the presence of thermal conduction. We find self-
similar solutions for an axisymmetric, rotating, steady, viscous–resistive, magnetized accretion
flow. The dominant mechanism of energy dissipation is assumed to be turbulent viscosity and
magnetic diffusivity due to the magnetic field of the central accretor. We show that the global
structure of advection-dominated accretion flows (ADAFs) is sensitive to viscosity, advection
and thermal conduction parameters. We discuss how the radial flow, angular velocity and
density of accretion flows may vary with the advection, thermal conduction and viscous
parameters.
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1 IN T RO D U C T I O N

The foundations of our present understanding of advection-
dominated accretion flows (ADAFs) were laid out in a series of
papers by Narayan & Yi (1994, 1995a,b), although some ideas
were anticipated much earlier by Ichimaru (1977). The specific ab-
breviation ADAF was introduced by Lasota et al. (1996). An ADAF
is defined as one in which a large fraction of the viscously generated
heat is advected with the accreting gas, and only a small fraction
of the energy is radiated. ADAFs have an opposite regime to that
of the standard model. In the standard model, the flow is described
in such a way that the heat generated by the viscosity radiates out
of the system immediately after its generation (Shakura & Sunyaev
1973).

These advection-dominated accretion flows occur in two regimes
depending on their mass accretion and optical depth. Actually, the
optical depths of accretion flows are highly dependent on their accre-
tion rates. In a high mass-accretion rate, the optical depth becomes
very high and the radiation generated by the accretion flow can be
trapped within the disc. This type of accretion disc is known as
an optically thick or slim disc, terminology that was introduced by
Abramowicz et al. (1988). In the limit of low mass-accretion rate,
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the disc becomes optically thin. In this case, the cooling time of
accretion flows is longer than the accreting time-scale. The energy
generated by accretion flows therefore remains mostly in the discs,
and the discs cannot radiate their energy efficiently. This type of ac-
cretion flow is named a radiation-inefficient accretion flow (RIAF).
This type of accretion flow has been investigated by many authors
(Narayan & Yi 1994; Abramowicz et al. 1995; Chen 1995).

This type of solution has been used to interpret the spectra of X-
ray binary black holes in their quiescent or low/hard state as an alter-
native to the Shapiro, Lightman & Eardley (1976, SLE) solutions.
Since ADAFs have large radial velocities and also the infalling mat-
ter carries thermal energy to the black hole, the energy transported
by advection can stabilize the thermal instability by removing the
steep temperature gradient; thus ADAF models have been widely
used to explain the observations of low luminosity observed in Sgr
A* (Narayan, Maclintock & Yi 1996; Hameury et al. 1997). How-
ever, numerical simulations of RIAFs revealed that low-viscosity
flows are convectively unstable, and therefore convection strongly
influences the global structure of accretion flows (Igumenshchev,
Abramowicz & Narayan 2000). Thus, another type of accretion flow
was proposed, in which convection plays a dominant role in trans-
porting the energy, angular momentum and locally released viscous
energy within the disc.

A notable problem arises when the accretion disc is threaded by
a magnetic field. In the ADAF models, the temperature of the ac-
cretion disc is so high that the accreting materials are ionized. The
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magnetic field therefore plays an important role in the dynamics of
accretion flows. Some authors have tried to solve the magnetohy-
drodynamics (MHD) equations of magnetized ADAFs analytically.
For example, Kaburaki (2000) has presented a set of analytical solu-
tions for a fully advective accretion flow in a global magnetic field.
Shadmehri (2004) has extended this analysis for a non-constant re-
sistivity. Ghanbari, Salehi & Abbassi (2007) have presented a set
of self-similar solutions for two-dimensional (2D) viscous–resistive
ADAFs in the presence of a dipolar magnetic field of the central
accretor. They have shown that the presence of a magnetic field and
its associated resistivity can considerably change the picture with
regard to accretion flows.

Recent observations of hot accretion flows around active galactic
nuclei indicate that they should be based on collisionless regimes.

Chandra observations provide tight constraints on both the den-
sity and temperature of gas at or near the Bondi capture radius in
Sgr A* and several other nearby galactic nuclei. Tanaka & Menou
(2006) have shown through calculation that the accretion discs in
such systems will operate under weakly collisional conditions. Ther-
mal conduction therefore has an important role in energy transport
along the discs. The aim of this work is to consider the effects of
thermal conduction, which has been largely neglected before as an
energy transport mechanism, on the 2D structure of ADAFs. It could
affect the global properties of hot accretion flows substantially. A
few authors have considered the role of turbulent heat transport in
ADAF discs (Honma 1996; Manmoto et al. 2000). Since thermal
conduction acts to oppose the formation of the temperature gradi-
ent that causes it, one might expect that the temperature and density
profiles for accretion flows in which thermal conduction plays a sig-
nificant role are modified to appear different, compared with those
flows for which thermal conduction is less effective (Shadmehri
2008).

The weak-collision nature of hot accretion flows has been ad-
dressed previously (Mahadevan & Quataert 1997). Johanson &
Quataert (2007) studied the effect of electron thermal conduction on
the properties of hot accretion flows under the assumption of spher-
ical symmetry. In another interesting analysis, Tanaka & Menou
(2006) studied the effect of saturated thermal conduction on opti-
cally thin ADAFs using an extension of the self-similar solution
of Narayan & Yi (1994). In their solutions the thermal conduc-
tion is provided with an extra degree of freedom, which affects
the global dynamical behaviour of the accretion flow. Abbassi,
Ghanbari & Najjar (2008) have presented a set of self-similar solu-
tions for ADAFs with a toroidal magnetic field in which the saturated
thermal conduction has an important role in the energy transport in
the radial direction. The tangled magnetic field in accretion flows
would likely reduce the effective mean free path of particles. The
magnitude of this reduction, which depends on the magnetic field
geometry, is still unknown. We have accounted for this possibility
by allowing the value of the saturated constant, φs, to vary in our
solutions. The magnetic field also has an important role in trans-
ferring angular momentum along the disc. The dynamical structure
of the disc will therefore be affected by the magnetic field strength
and configuration. Investigating the case of a magnetized accretion
flow with thermal conduction is thus an important issue.

2 TH E BA S I C EQUAT I O N S

We describe the 2D hot accretion flow in a similar manner to
Narayan & Yi (1995a). We adopt spherical polar coordinates (r ,
θ , φ) for axisymmetric and steady-state flows (∂/∂φ = ∂/∂t =

0). The fundamental MHD governing equations can be written as
follows:

the equation of continuity

Dρ

Dt
+ ρ∇ · u = 0, (1)

the equation of motion

ρ
Du
Dt

= −∇ P − ρ∇φ − μ∇2u

+
(

μb + 1

3
μ

)
∇(∇ · u) + 1

4π
J × B, (2)

the equation of energy

ρ

[
Dε

Dt
+ P

D

Dt

(
1

ρ

)]
= Qvis + QB − Qrad + Qcond, (3)

Gauss’s law

∇ · B = 0 (4)

and the induction equation

DB

Dt
= ∇ × (u × B) + η∇2 B, (5)

where ρ is the density of the gas, P the pressure, ε the internal
energy, u the flow velocity, B the the magnetic field, J = ∇ ×B the
current density, η the magnetic diffusivity, which for simplicity is
assumed to be a constant parameter (see e.g. Kaburaki 2000), and
μ and μb are the shear and bulk viscosities.

The viscous heating rate is defined as the expression

Qvis = 2μEijE
ij +

(
μb − 2

3
μ

)
(∇ · v)2, (6)

where Eij = 1
2 (vi,j + vj,i) is a symmetric tensor and is known as

the rate-of-strain tensor.
We have adopted saturated conduction (Cowie & Mackee 1977)

as

Qcond = −∇ · Fs, (7)

where, as we have already mentioned, F s = 5φsρc3
s is the saturated

conduction flux in the direction of the temperature gradient. Tanaka
& Menou (2006) have shown that for very small φs their solutions
coincide with the standard ADAF solutions. They have shown that
by adding the saturated conduction parameter φs the effect of ther-
mal conduction can be better seen when we approach ∼0.001–0.01.
We have therefore investigated the effect of thermal conduction in
this range.

Magnetic reconnection may thus lead to energy release. Also, we
can consider the viscous and resistive dissipation due to a turbulence
cascade. In this study, the resistive dissipation is defined as

QB = η

4π
J 2. (8)

On the right-hand side of the energy equation we have

Q+ − Q− + Qcond = Qadv = f Q+ + Qcond,

where Q+ = Qvis + QB, Q− = Qrad and Qadv represents the advec-
tive transport of energy and is defined as the difference between the
magneto–viscous heating rate, Q+, and the radiative cooling rate,
Qrad, plus the energy transport by conduction, Qcond. We employ
the parameter f = 1 − (Q−/Q+) to measure the degree to which
accretion flow is advection-dominated. When f ∼ 1 the radiation
can be neglected and the accretion flow is advection-dominated,
while in the case of small f the disc is in the radiation-dominated
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case. We can therefore rearrange the right-hand side of the energy
equation to f Q+ + Qcond, where f ≤ 1. In general, it varies with
r and depends on the details of the heating and cooling processes.
For simplicity, it is assumed to be a constant.

For simplicity, the self-gravity of the disc and the effect of general
relativity have been neglected. Also, we neglect radiation pressure
in the equations because, in optically thin ADAFs, P gas � P rad.
We adopt the dipolar configuration for the magnetic field. Also we
have neglected the θ component of the flow velocity, uθ = 0, and
the bulk viscosity of the flow, μb = 0. Now we formulate the basic
equations (1)–(5) in spherical polar coordinates as follows:
∂ρ

∂t
+ 1

r2

∂

∂r

(
r2ρur

) + 1

r

∂

∂θ
(ρuθ ) = 0. (9)

The three components of the momentum equations are as follows
(e.g. Mihalas & Mihalas 1984):

r component

ρ

[
ur

∂ur

∂r
− u2

ϕ

r

]

= −GMρ

r2
− ∂p

∂r
+ μ

[
4

3

∂2ur

∂r2
+ 8

3

1

r

∂ur

∂r

− 8

3

ur

r2
+ 1

r2
cot θ

∂ur

∂θ
+ 1

r2

∂

∂θ

(
∂ur

∂θ

)]

+ 1

4π

[
−Bθ

r

(
∂

∂r
(rBθ ) − ∂Br

∂θ

)
− Bϕ

r

∂

∂r
(rBϕ)

]
,

(10)

θ component

ρ

[
− cot θ

r
u2

ϕ

]
= −1

r

∂P

∂θ
+ μ

[
8

3

1

r2

∂ur

∂θ
+ 1

3

1

r

∂2ur

∂r∂θ

]

+ 1

4π

[
Br

r

(
∂

∂r
(rBθ ) − ∂Br

∂θ

)

− Bϕ

r sin θ

∂

∂ϕ
(Bϕ sin θ )

]
, (11)

ϕ component

ρ

[
ur

∂uϕ

∂r
+ uruϕ

r

]
= μ

[
∂2uϕ

∂r2
+ 2

r

∂uϕ

∂r
+ 1

r2
cot θ

∂uϕ

∂θ

+ 1

r2

∂2uϕ

∂θ 2
− uϕ

r2 sin2 θ

]

+ 1

4π

[
Bθ

(
1

r sin θ

∂

∂θ
(sin θBϕ)

+ Br

r

∂

∂r
(rBϕ

)]
. (12)

The equation of energy is

ρ

[
ur

∂ε

∂r
− Pur

ρ2

∂ρ

∂r

]

= −2

3
μf

[
1

r2

∂

∂r

(
r2ur

)]2

+ 2μf

[ (
∂ur

∂r

)2

+ 2
(ur

r

)2
+ 1

2

(
1

r

∂ur

∂θ

)2
]

+ 1

2

{
r

∂

∂r

(ur

r

)}2

+ 1

2

[
sin θ

r

∂

∂θ

( uϕ

sin θ

)]2

+ η

4πr2

[
∂

∂r
(rBθ ) − ∂Br

∂θ

]2

− 1

r2

∂

∂r

(
5�sr

2P 3/2ρ−1/2
)

− 1

r sin θ

∂

∂θ

(
5�s sin θP 3/2ρ−1/2

)
.

(13)

The three components of the induction equation are

ur

∂Br

∂r
= ∂

∂θ

{
r sin θ

(
urBθ − η

r

[
∂

∂r
(rBθ ) − ∂Br

∂θ

])}
, (14)

− 1

r sin θ

(
∂

∂r

{
r sin θ

[
urBθ − η

r

(
∂

∂r
(rBθ ) − ∂Br

∂θ

)]})
= 0,

(15)

1

r

[
∂

∂r
(ruϕBr ) + ∂

∂θ
(uϕBθ )

]
= 0. (16)

Now we have a set of MHD equations that describes the dy-
namical behaviour of magnetized ADAFs. The solutions of these
equations are strongly dependent on viscosity, resistivity, the degree
of advection and the role of thermal conduction for the discs.

These nine partial differential equations govern non-self-
gravitating, magnetized, advection-dominated viscous flows. These
equations relate 15 dependent variables: p, ρ, ε, μ, μb, η and the
components of u, J and B. For the set of equations, we use the
following standard assumptions.

The kinematic viscosity coefficient, ν = μ/ρ, is generally
parametrized using the α-prescription (Shakura & Sunyev 1973),

ν = αcsH, (17)

where H = cs/�k is known as the vertical scaleheight, cs = √
p/ρ

is the isothermal sound speed and the dimensionless coefficient
α is assumed to be independent of r. We therefore introduce the
parameter η to represent the magnetic diffusivity and insert it as a
constant parameter in our equations. Both the kinematic viscosity
coefficient ν and the magnetic diffusivity η have the same units and
are assumed to be due to turbulence in the accretion flow. Thus
it is physically reasonable to express η similarly to ν via the α-
prescription of Shakura & Sunyaev (1973) as follows (Bisnovatyi-
Kogan & Ruzmaikin 1976):

η = η0csH. (18)

To determine the thermodynamical properties of the flow in the
energy equation, we require a constitutive relation as a function of
two state variables. Therefore we choose an equation for the internal
energy of ε = p/[ρ(� − 1)], where � is the ratio of specific heats
of the gas.

To satisfy ∇ · B = 0, we may introduce a convenient functional
form for the magnetic field. Owning to the axisymmetry, the mag-
netic field can be written as

B = Bp(r, θ ) + Bφ(r, θ )eφ. (19)

Angular momentum is expected to be carried away from the disc by
magnetic stresses along the externally given poloidal magnetic lines
of force. In the case of a dipole-type external field it is transferred
to the central accretor (Kaburaki 2000). The effect of magnetic
diffusivity on magnetically driven mass accretion was studied by
Kaburaki (2000). They showed that the effects of resistivity are
that magnetic field lines do not rotate with the same angular speed
as the disc matter and thus it suppresses the injection of magnetic
helicity and magneto-centrifugal acceleration. Thus, by neglecting
the toroidal component of the field, Bφ , we can express the poloidal
component, Bp, in terms of a magnetic flux function �(r , θ ):

B = Bp(r, θ ) = 1

2π
∇ ×

(
�

r sin θ
eφ

)
. (20)

It is clear that the basic equations are non-linear and we cannot
solve them analytically. Therefore, it is useful to have a simple
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means by which to investigate the properties of solutions. We seek
a self-similar solution for the above equations. In the next section
we will present self-similar solutions of these equations.

3 SE LF-SIMILAR SOLUTIONS

To understand better the physical processes of our viscous–resistive
ADAF accretion discs, we seek self-similar solutions of the above
equations. The self-similar method is familiar from its wide appli-
cations to the full set of MHD equations. The self-similar method is
not able to describe the global behaviour of accretion flows, because
no boundary conditions have been taken into account. However, as
long as we are not interested in the behaviour of the flow near the
boundaries, such solutions are very useful.

Writing the equations in non-dimensional form, i.e. scaling all
the physical variables by their typical values, brings out the non-
dimensional variables. We can simply show that solutions of the
following form satisfy the equations of our model:

ρ(r, θ ) = ρ0ρ(θ )(r/r0)−3/2, (21)

p(r, θ ) = p0P (θ )(r/r0)−5/2, (22)

ur(r, θ ) = r�K(r)U (θ ), (23)

uϕ(r, θ ) = r sin θ�K(r)�(θ ), (24)

Br(r, θ ) = B0

2π sin θ

d�(θ )

dθ
(r/r0)−5/4, (25)

Bθ (r, θ ) = −3B0�(θ )

8π sin θ
(r/r0)−5/4, (26)

where ρ0, p0, B0 and r0 provide convenient units with which the
equations can be written in non-dimensional form. Substituting the
above solutions in equations (10)–(16), we obtain a set of coupled
ordinary differential equations in terms of θ :

dP

dθ
= 3αP

2(1 − αU )

dU

dθ
+ 3ρKU

16π2β0η0c1P�2 sin2 θ (1 − αU )

d�

dθ

+ ρ�2 sin θ cos θ

c1(1 − αU )
, (27)

d2U

d2θ
= −2.5

α
− U − cot θ

dU

dθ
− 1

P

dP

dθ

dU

dθ

+ ρ

c1αP

(
1 − U 2

2
+ �2 sin2 θ

)

+ 2UKρ

β0η0αc1�

(
3

8πρ sin θ

)2

, (28)

dρ

dθ
= 2

5

c
−1/2
1 P −1/2ρ3/2

φs

[
U (3γ − 5)

2(γ − 1)
− αf

{
3U 2 +

(
dU

dθ

)2

+ 9

4
�2 sin2 θ +

(
d�

dθ

)2

sin2 θ

}]

− 2

5

f c2η0c
−5/2
1 P −5/2ρ5/2K

16π3φs�

(
3U

4η0 sin θ

)2

− 2(1 − cot θ )ρ + 3
ρ

P

dP

dθ
, (29)

d�

dθ
= −A ± √

A2 + 3B

3
. (30)

Finally, by definition β0 = P 0/(B2
0/8π) and ��2 = K ,

where K is an arbitrary constant, so c1 = (p0/ρ0) (GM/r0)−1 =
(2p0)/(ρ0u

2
ff ) and c2 = (B2

0/ρ0)(GM/r0)−1.
In equation (30) we have the following:

A = �

P

dP

dθ
+ 4� cot θ,

B =
[

9

4
+

(
1

α
+ 3

η0

)
ρU

c1P

]
�2.

Equations (27)–(30) constitute a system of ordinary non-linear
differential equations for the four self-similar variables �, P , U and
ρ.

There are many techniques for solving these non-linear equations.
Analytical methods can yield solutions for some simplified prob-
lems. In general, however, this approach is too restrictive and we
have to use numerical methods. Here, one can employ the method of
relaxation to the fluid equations (Press et al. 1992). In this method
we replace ordinary differential equations by approximate finite-
difference equations on a grid of points that spans the domain of
interest. The relaxation method determines the solution by starting
with a guess and improving it, iteratively. Based on it, this system
of equations can be solved for all unknowns as a function of θ ,
once we are given a set of boundary conditions where constraints
are placed on the flow. The boundary conditions are distributed be-
tween the equatorial plane, θ = π/2, and the rotation axis, θ = 0.
We can use the Narayan & Yi (1995a,b) boundary conditions at
both boundaries: the boundary conditions at θ = 0 are

dU

dθ
= d�

dθ
= dP

dθ
= dρ

dθ
= 0, U = 0, ρ = 0, (31)

and in this method the boundary conditions at θ = π/2 are

dU

dθ
= d�

dθ
= dP

dθ
= dρ

dθ
= 0. (32)

The boundary conditions for the above equations require that vari-
ables are assumed to be regular at the endpoints. Also, the net mass
accretion rate (9) provides one boundary condition for ρ:∫ π/2

0
ρ(θ )U (θ ) sin θ dθ = −1

2
.

We obtain numerical solutions for the flows with fixed values of
η0 = 0.1, � = 4/3, α = 0.01, 0.05, 0.1, f = 0.1, 0.3, 0.7 and φs =
0.001, 0.007, 0.01. We consider c1 = 0.8, c2 = 2 × 103 and β0 =
0.01 (Ghanbari et al. 2007).

4 R ESULTS

We have obtained numerical solutions of equations (27)–(30) for
a variety of viscosity α, advection f and the thermal conduction
φs parameters. The three panels in Fig. 1 show the variations of
various dynamical quantities in terms of polar angle θ for fixed
values of viscosity and thermal conduction parameters with a se-
quence of increasing advection parameter f . The top panel displays
the dimensionless radial velocity U (θ ). U (θ ) is zero at θ = 0 (this
is a boundary condition) and maximum at θ = π/2 . Thus, the
inflow velocity reaches its maximum in the equatorial plane and
vanishes along the polar axis. As expected, the velocity is sub-
Keplerian. The middle panel shows the density profile ρ(θ ) of the
solutions. The density contrast in the equatorial and polar regions
increases with a decrease in the advection parameter f . For a given
α and φs, solutions with small values of f behave like standard thin
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Figure 1. The self-similar solutions of radial velocity U (θ ) (top), density
ρ(θ ) (middle) and angular velocity �(θ ) (bottom) as a function of polar
angle θ corresponding to � = 4/3, η0 = 0.1, β0 = 0.01 and f = 0.1, 0.3, 0.7
for α = 0.01 and φs = 0.001.

discs; as might be expected, these solutions correspond to f → 0
and so a small fraction of energy would be advected. In the op-
posite advection-dominated limit, f → 1, our solutions describe
nearly spherical flows which rotate with velocities far below the
Keplerian. The bottom panel shows the profile of the angular ve-
locity �(θ ). �(θ ) decreases with increases in the advection in the
accretion discs. We find that in the inner boundary U (θ ) is essen-
tially independent of advection parameter f , but at intermediate
values of θ the radial velocity is modified by f ; in Shadmehri’s
(2004) solutions, two distinct regions in the U (θ ) profile could be
recognized. The bulk of accretion occurs from the equatorial plane
at θ = π/2 to θ = θ s, where the radial velocity is zero. In the
Narayan & Yi solutions there is no zero inflow at 0 < θ < π/2. Our
solutions show that at any given θ the radial velocity is non-zero, and
when we increase the advection parameter the radial velocity will be
increased.

Here we may comment on the fact that when the advection pa-
rameter, f , tends to zero, our disc does not correspond to a globally
cooling flow because of the appearance of a thermal conduction
term in the energy transport equation. When f tends to 1 our discs
are not fully advective, because some part of the energy generated
by viscosity will be transported by thermal conduction.

Fig. 2 displays the behaviour of the radial and angular velocities
and density profile for different values of the viscosity parameter,
for fixed advection and thermal conduction parameters. We find that
the value of the viscous parameter, α, quantitatively (but not qual-
itatively) affects the dynamical variables of the accretion flow. For
a larger value of the viscous parameter, the radial inflow decreases
and the density would be increased overall, which is compatible
with the results presented by Ghanbari et al. (2007).

The panels in Fig. 3 show, for fixed advection and viscosity pa-
rameters with a sequence of thermal conduction parameters, (1)
the radial velocity increases with an increase in the thermal con-
duction parameter, (2) the density profile increases with a decrease
in the thermal conduction parameter and (3) the angular velocity
decreases with an increase in φs in the accretion discs.

In Fig. 4 we display the isodensity contours in the meridional
plane. The top, middle and bottom panels display the isodensity
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Figure 3. The self-similar solutions of radial velocity U (θ ) (top), density
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profiles for different values of conduction, advection and viscous
parameters, respectively. The panels in Fig. 4 show that the disc
seems to be thick. Solutions with the same f but different values
of α are distinguishable from one another. By adding a viscous
parameter the geometrical shape of the disc becomes more and
more thick. These advection-dominated solutions have very similar
properties to the approximated solution derived by Narayan & Yi
(1994), Ghanbari et al. (2007) and Shadmehri (2004).

The overall structure of the dynamical variables remains very
close to the original two-dimensional ADAF solutions of Narayan
& Yi (1995a,b). This solution is denser close to the equator than at
the pole, and it is something like a ‘thin disc’ surrounded by a hot
coronal atmosphere.
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As the values of φs are increased, the solutions start to deviate
substantially from the standard solutions, with faster radial flow
and slower rotation (i.e. becoming more pressure-supported) at the
equator. By increasing φs, the density reduces in the equatorial
plane, and the density profile becomes more uniform. It gradually
approaches spherical symmetry. This behaviour of the solutions is
shared by the original ADAF solutions and Ghanbari et al.’s (2007)
work.

5 SU M M A RY A N D C O N C L U S I O N

The main aim of this investigation was to obtain an axisymmet-
ric self-similar advection-dominated solution for viscous–resistive
accretion flow with a poloidal magnetic field in the presence of
thermal conduction. Using the basic equations of fluid dynamics in
spherical polar coordinates (r , θ , ϕ), we have found the self-similar
solutions for thick discs to derive a set of coupled differential equa-
tions that govern the dynamics of the system. We have then solved
the equations using the relaxation method, by considering boundary
conditions and using the α-prescription (Shakura & Sunyaev 1973)
in order to extract some of the similarity functions in terms of the
polar angle θ .

We showed that the radial and rotational velocities are well below
the Keplerian velocity. The bulk of accretion with nearly constant
velocity occurs in the regions that extend from the equatorial plane
to a given θ , which strongly depends on the advection parameter f .
In a non-advective regime (low f ) we have a standard thin accretion
disc, but for high f the accretion is nearly spherical.

It is difficult to evaluate the precise picture of radiatively ineffi-
cient accretion flow in the presence of thermal conduction with a
self-similar method. However, this method can reproduce the over-
all dynamical structure of the discs with a set of given physical
parameters. Even though conduction heats up the accretion flows
locally, the reduced density resulting from the larger inflow velocity
leads to a net decrease in the expected level of free–free emission.
The very steep dependence of synchrotron emission on the electron
temperature (e.g. Mahadevan & Quataert 1997) suggests that hot-

ter solutions (with conduction) may be more efficient radiatively
(Tanaka & Menou 2006). From self-similar solutions alone, we can
determine how the global structure of the flow can be affected by
thermal conduction. For small enough values of φs the solutions
remain very close to the Ghanbari et al. (2007) solutions. The main
difference between their solution and the standard solution of 2D
ADAFs of Narayan & Yi (1995a) is the presence of a dipolar mag-
netic field and its corresponding resistivity. In our case, we add
extra physics by adding the thermal conduction as a mechanism for
energy transport. By adding the thermal conduction, the solution
starts deviating substantially from the original ADAFs, with faster
radial inflow at the equator. These results well agree with Tanaka &
Menou (2006).

The presence of a magnetic field with a poloidal configuration
will affect the role of thermal conduction. Compared with the non-
magnetic field solution (Tanaka & Menou 2006), in our case the
existence of magnetic resistivity can produce more energy to be
advected. The B-field configuration can also affect the energy trans-
portation along accretion discs. However, the main aim of this work
is to study a quasi-spherical magnetized flow directly by solving
the relevant MHD equations. Although we have made some simpli-
fications in order to treat the problem analytically, our self-similar
solutions show that the input parameters, such as thermal conduc-
tion and viscous parameters, the magnetic field and its resistivity
can really change the typical behaviour of the physical quantities
of ADAF discs. Of course, our self-similar solutions are too sim-
ple to make any comparison with observations. However, we think
that one may relax the self-similarity assumptions and solve the
equations of the model numerically. This kind of similarity solution
could greatly facilitate testing and interpretation of the results.
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