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Abstract  
In this study, the impingement of a vertical liquid jet 
on a solid horizontal surface which leads to the 
formation of a circular hydraulic jump (CHJ) is 
numerically simulated by using the Volume-of-Fluid 
(VOF) method. The results show that increasing the 
volumetric flow rate will increase the radius of the 
jump which is confirmed by the experimental 
observations. Also, the numerical results are 
compared with the CHJ observed in experiments and 
that of the theory.  
 
Keywords: Jet Impingement, Circular Hydraulic 
Jump, Numerical Simulation, Volume-of-Fluid 
Method.  
 
1- Introduction  
At the beginning of the nineteenth century, the great 
British physicist, Lord Rayleigh encountered a 
discontinuity in the geometry of linear one- 
dimensional flow. The structure is called river bore if 
moving, and hydraulic jump, if stationary and is 
created due to e.g. variation in river bed. The 
classical planar hydraulic jump which occurs in open-
channel flows is a very old and well-known 
phenomenon thoroughly considered in the literature. 
However, the Circular Hydraulic Jump (CHJ) and 
consequently Polygonal Hydraulic Jump (PHJ), 
although having a similar name, are completely 
different Phenomena. When a circular vertical liquid 
jet impacts on a solid horizontal surface, which is 
called target plate, the flow spreads radially away 
everywhere – from the stagnation point – until at a 
particular radius, which is called the radius of the 
jump, the thickness of the liquid film increases 
abruptly and a so-called circular or axisymmetric 
hydraulic jump occurs.  

As mentioned earlier, the first person who 
considered CHJ was probably Lord Rayleigh (1914) 
who proposed his model by using the continuity and 
momentum equations and assuming the flow as 
being inviscid [1]. He assumed that mass and 
momentum are conserved across the jump, but 
energy is not. He finally could derive some relations 
for the inviscid jump. Rayleigh’s method was based 
on the analogy of shallow water and gas theories. 
The complete theory of inviscid circular hydraulic 
jump was presented by Birkhoff and Zarantonello in 
1957 [2].  

However, it is clear that the flow in such a 
problem is viscous and the inviscid theory is not 
adequate for predicting the location of the circular 
hydraulic jump occurrence, since the fluid layer 
thickness before the jump is typically sufficiently thin, 
so that the diffusion of vorticity from the lower 
boundary is dynamically significant. Therefore, the 
viscosity must be taken into account.  

The first person, who considered the effect of 
viscosity in CHJ, was E. J. Watson in 1964 who 
solved the problem analytically. He, in a strong, long 
and highly-referred paper, described the flow in 
terms of a Blasius sublayer developing in the vicinity 
of the stagnation point, as on a flat plate, and also in 
terms of a similarity solution. By using the 
momentum equation, he could finally obtain some 
relations for predicting the radius of the jump. 
Watson’s model will be considered in detail in the 
next section.  

The validity of Watson’s theory has been 
investigated experimentally by many different 
researchers throughout the world in the last four 
decades such as Watson himself [3], Olson and 
Turkdogan [4], Ishigai et al. [5], Nakoryakov [6], 
Bouhadef [7], Craik et al. [8], Errico [9], Vasista [10], 
Liu and Lienhard [11], Ellegaard et al. [12], and in 
particular Bush and Aristoff [13, 14]. The agreement 
between the theory and experiment has been very 
diverse, from good to bad, depending on the jump 
conditions. Even Watson himself has presented 
some data that are in poor agreement with his own 
theory.  

Some other investigators also considered the 
problem from different aspects. Bowles and Smith 
studied the circular hydraulic jump -with surface 
tension considerations- and the small standing 
waves preceding the jump [15]. Higuera also 
proposed a model for planar jump by studying the 
flow in transition region in the limit of infinite 
Reynolds number [16]. Bohr et al. in 1993 obtained a 
scaling relation for the radius of the jump [17]. In 
1997, they also proposed a simple viscous theory for 
free-surface flows that can accommodate regions of 
separated flow and yield the structure of stationary 
hydraulic jumps [18]. 

Watanabe et al. presented integral methods for 
shallow free-surface flows with separation in the 
application of circular hydraulic jump and also the 
flow down an inclined plane [19]. Ellegaard et al. who 
in 1996 investigated the CHJ empirically [12], for the 



very first time, observed the polygonal hydraulic 
jumps in their experiments [20] and reported them in 
detail in 1999 [21]. In the same year, Yokoi and Xiao 
considered the transition in the circular hydraulic 
jump numerically [22]. Three years later, they also 
studied numerically the structure formation in circular 
hydraulic jumps with moderate Reynolds numbers 
[23]. Brechet and Neda also investigated the circular 
hydraulic jumps and compared their theory and 
experiments [24]. 

Avedisian and Zhao studied in detail, the effect of 
gravity on the circular hydraulic jump and its different 
parameters experimentally [25]. Rao and Arakeri 
considered the CHJ empirically and measured the 
radius of the jump, film thickness and also the length 
of the transition zone and specially focused on jump 
formation and transition to turbulent flow [26]. In 
2002, Ferreira et al. simulated the circular hydraulic 
jump numerically in order to compare the various 
upwind schemes for convective term of the Navier-
Stokes equations [27].  

Gradeck et al. studied the impingement of an 
axisymmetric jet on a moving surface both 
numerically and experimentally in order to simulate 
the cooling of a rolling process in the steel making 
industry [28]. Ray and Bhattacharjee also studied the 
standing and traveling waves in CHJ [29]. Very 
recently, the Mikielewicz proposed a simple 
dissipation model for the CHJ [30]. Also, Kate et al. 
studied experimentally the impinging of an oblique 
liquid jet on a solid surface which causes non-
circular jumps. They also have measured the film 
thickness and the stagnation pressure for different 
angles of the incoming jet [31].  

In this study, the impingement of a vertical liquid 
jet on a solid surface is simulated by the method of 
Volume-of-Fluid using Youngs' algorithm. The results 
show that this method is capable of simulating the 
formation of the circular hydraulic jump with proper 
accuracy.  
 
2- Theory of Circular Hydraulic jump  
Circular hydraulic jumps might take place, when a 
vertical descending liquid jet impacts a solid 
horizontal surface. Figure 1 shows a sample of an 
empirically observed CHJ.  
 

 
Figure 1: The circular hydraulic jump 

 (Bush and Aristoff, 2003).  

The impingement of this circular jet on the 
mentioned solid surface is important in a variety of 
processes such as the fuel tank of space shuttles, 
aircraft generator coils, coating flows, impingement 
cooling of electronic devices, laser mirrors and 
material processing in manufacturing. The important 
feature of CHJ is its potential for heat loss in 
downstream of the jump, especially for the 
processes in which the purpose is cooling a hot 
surface, such as the research done by Womac et al. 
[32]. The general structure of a circular hydraulic 
jump is shown in Fig. 2.  

As mentioned in previous section, Watson was 
the first person who analyzed the viscous circular 
hydraulic jump and proposed two models for it. His 
first model was an inviscid one for downstream of the 
jump in which he assumed the pressure force to be 
equal to the rate at which momentum is increasing. 
In his second model which was viscous, he had used 
the prandtl boundary layer theory for development of 
the flow which is considered here in brief, since it is 
the first and the only valid theory for CHJ.  
 

 
Figure 2: The general structure of a CHJ 

 
In upstream region where the flow is viscous, 

Watson divided the flow field into four different 
regions: 

 i.) The region very close to the stagnation point 
where the radial distance is of the same order of the 
jet radius ( )( )aOr =  and the boundary layer 
thickness is of order ( )0/UaO υδ =  where a  and 0U  
are the radius and the velocity of the incoming jet 
and υ  is kinematic viscosity (see figure 2);  

ii) The region ar >>  in which the features of 
stagnation region are not important and the 
boundary layer is similar to the Blasius sublayer 
development over flat plate;  

iii) The region from the point where the boundary 
layer spans the whole fluid layer to the point where 
the velocity becomes self-similar that can be called a 
transition region;  

iv) The region in which the similarity solution 
suggested by Watson is valid.  

According to Watson’s theory, the viscous 
solution is valid only in the second and fourth regions 
and for ( ) 1/Re >>= aQ υ  where 0

2UaQ π=  is the 
volumetric flow rate. His approximate solution is 
clearly not correct in the first region, since the radii of 
the jump and the jet are of the same order. By 
neglecting the third region, Watson used the 
Karman-Pohlhausen method [33] to match the 
solution of the second region (from Blasius velocity 



profile) and the solution of the last region for which 
he assumed the following velocity profile:  
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where )(rU is the velocity at the free surface and f  
is the similarity function.  

By using the above velocity profile in momentum 
integral equation, Watson could derive this explicit 
relation for the thickness of the boundary layer:  
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where 402.1=c  and C  is the integration constant. 
By an order-of-magnitude analysis, Watson showed 
that in the region )(aOr = , ( )0

3 /UaOC υ=  and in the 
region 0rra <<< , ( )33 / raOC =  where 

3/1
0 Re315.0 ar =  is the radial location in which the 

boundary layer absorbs the whole flow and is also 
shown by vr  in the literature. The proportionality 
factor for this critical radius, which is the place that 
the transition from the second region to the forth one 
is occurred, was obtained by matching the two 
different solutions just mentioned. A similar value 
was also obtained by Bowles and Smith by means of 
an exact numerical solution [15].  

The viscosity causes the diffusion of vorticity on 
time scale υδ /~ 2t  across the fluid layer which is 
spreading radially. At this time, the flow travels the 
radial distance tUr 00 ~  which predicts that the 
boundary layer must include the entire fluid layer 
depth at the radius 3/1

0 Re~ ar [13]. The features of 
the fluid flow are thoroughly altering at this critical 
radius. Before this point, the flow is developing as a 
Blasius sublayer over flat plate and the surface 
velocity is of the same order of the incoming jet 
speed, while after the critical radius, the flow is fully-
developed and the surface velocity is negligible in 
comparison with the incoming velocity and so may 
be ignored, although Watson obtained a relation for it 
as:  
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where 402.1=c  and l  is an arbitrary constant which 
is estimated as 3/1Re567.0 al =  by considering the 
initial development of the boundary layer.  

Watson ignored the integration constant C  and 
obtained two relations for predicting the fluid layer 
depthξ  as:  
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For reaching his main goal which was predicting 
the location of the jump occurrence, by assuming the 

downstream height to be known, Watson used the 
momentum balance and eventually could derive 
some relations for the jump radius.  

Watson’s theory for CHJ has been the subject of 
many different investigators. He, in his model, had 
used some assumptions that are very important to 
note. For instance, he had assumed that the flow 
after the jump is unidirectional which we now know 
that is not correct, since the boundary layer 
separates from the surface downstream of the jump. 
He also had ignored the effect of surface tension in 
his analysis.  

Many researchers have mentioned later that the 
surface tension must be taken into consideration to 
improve the accuracy of Watson’s model. Craik et al. 
declared in their paper that if the radius of the jump 
is larger than ten times of the downstream height, 
then the Watson’s theory is accurate enough, but for 
smaller jumps, the accuracy of the theory is curtailed 
[8]. The experimental results of Errico are generally 
far from Watson’s theory, since the flow rates in his 
experiments are low and his jumps are small and 
deep [9]. Vasista also concluded in his study that for 
large radius of the jet and also high outer fluid 
depths, the accuracy of the theory is not good [10]. 
Liu and Lienhard completed this result and stated 
that if the radius of the jump decreases or radius of 
the jet increases, then the upstream Froude number 
will be larger. They concluded finally that for jumps 
with large downstream height and high upstream 
Froude number, the Watson’s model is not accurate 
enough. Therefore, briefly it can be said that the 
accuracy of Watson’s theory is not appropriate for 
jumps of small radius and height, known as weak 
jumps [11].  

Based on the experiments, the surface tension 
influence is underscored in small jumps. The 
empirical observations have shown that reducing the 
surface tension causes the radius of the circular 
jump increase and also makes the jump more 
gradual, i.e. the jump becomes less abrupt.  

Bush and Aristoff in 2003 have considered the 
influence of surface tension on CHJ analytically and 
could propose a very simple valuable relation for the 
curvature force –which for weak jumps is 
comparable with pressure forces in momentum 
equation- and eventually were capable of modifying 
Watson’s theory, i.e. his relations for predicting the 
jump radius. These modified relations are [13]:  
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where d  is the downstream height (or outer depth 
which is also shown by ∞h ), g  is the gravitational 
acceleration, 1r  (also shown by jr  or jR ) is the 
radius of the jump, σρ /HgRBo j∆=  is the Bond 
number and H∆  is the jump height.  

The Bush and Aristoff relations for radius of the 
jump differ from those of Watson only in the term 
including Bond number that contains the surface 
tension effect which is highlighted in the weak jump 
regimes. By this modification to Watson’s theory, 
Bush and Aristoff could improve the accuracy of his 
model in small jump regimes in which his own theory 
had some imperfections. According to the above 
relations, if the jump is big enough, then the Bond 
number will become large and its term in the 
equations becomes negligible and so the old 
Watson’s relations will be obtained.  

In 1993, Bohr et al. proposed a scaling relation 
for the circular hydraulic jump radius as:  

8/18/38/5~ −− gqR j υ  (8) 
where )2/( πQq =  and jR  is the radius of the jump. 
According to this relation, decreasing gravity and 
viscosity and also increasing the flow rate will result 
in bigger jumps. They verified the validity of this 
scaling relation by their own experimental 
observations.  
 
3- Types of Circular Hydraulic Jumps 
Many different investigators have classified the CHJ 
in their studies. Based on these categories, there are 
generally two different kinds of CHJs whose second 
one has two different types by itself. The type I jump 
is the standard circular hydraulic jump in which the 
surface flow is radially outward everywhere that is 
also marked by unidirectional surface flow in which 
the separation of the boundary layer occurs after the 
jump and on the surface. This kind of jump is also 
called single jump and the eddy formed on the 
surface is also known as separation bubble or 
recirculating eddy. The region is also called 
separated region. The experimental results of Craik 
et al. [8] and also Errico [9] have shown that this 
separated region may be very large and its length 
substantially changes with the flow conditions.  

If the downstream height is increased, the jump 
changes its structure to type IIa jump. This recently 
named jump is marked by an under-surface 
separation bubble on the wall and also by a region of 
reversed surface flow adjoining the jump at its front. 
In other words, in this type of jump, flow has an 
excessive eddy which is called surface roller or 
surfing wave and it is like a broken wave in the 
ocean. In this case, the main stream with high speed 
flows between the two vortices.  

If the downstream height is increased further, the 
jump will convert to type IIb jump which is called 
double or tiered jump in which the thickness of the 

fluid layer increases twice. The interesting feature is 
that if the downstream height is decreased again, 
type IIb will turn back to type IIa. Figure 3 shows 
these different types of CHJ.  

By increasing the outer depth even more, the flow 
becomes turbulent and the symmetry of the flow is 
broken and there will be air entrainment on the 
surface and generally the whole structure will be to 
some extent similar to that of planar classic hydraulic 
jump in open channels.  

 
Figure 3: Schematics of different types of circular 

hydraulic jump (as introduced by Bush and Aristoff (2003)) 
 

The effect of gravity on CHJ was considerably 
studied by Avedisian and Zhao in 2000. They have 
shown experimentally that reducing the gravity will 
make the jump radius larger and its curvature 
smaller. According to their observations, in low 
gravity conditions, the radius of the jump is higher 
than normal gravity conditions and also the length of 
the transition zone becomes larger, i.e. the jump 
occurs more gradually. Also at beginning of reducing 
gravity, there is seen a hump in downstream of the 
jump which is followed by a pattern of regular circular 
waves. They also mentioned that the effect of 
surface tension and viscosity dominate at low gravity 
conditions.  
 
4- Numerical Method   
In this study, the circular hydraulic jump is simulated 
numerically by solving the Navier-Stokes equations, 
along with an equation for tracking the free-surface. 
In this section, we present a brief account of the 
numerical method. The governing equations are the 
continuity and momentum equations:   
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where V
r

is the velocity vector, p is the pressure,τ is 

the stress tensor and bF
r

represents the body forces 
acting on the fluid.  

The free surface is tracked by using the volume-
of-fluid (VOF) method by means of a scalar field f  
(known as volume of fluid fraction) whose value is 
unity in the liquid phase and zero in the vapor. When 
a cell is partially filled with liquid, i.e. the interface, f  
will have a value between zero and one:  
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The discontinuity in f is propagating through the 
computational domain according to:  
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∂
∂

= fV
t
f
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For the advection of volume fraction f  based on 
Equation (12), different methods have been 
developed such as SLIC, Hirt-Nichols and Youngs’ 
PLIC [34]. The reported literature on the simulation 
of free-surface flows reveals that Hirt-Nichols method 
has been used by many researchers. In this study, 
however, we used Youngs’ method [34], which is a 
more accurate technique. Assuming the initial 
distribution of f  to be given, velocity and pressure 
are calculated in each time step by the following 
procedure. The f  advection begins by defining an 
intermediate value of f :  

)(
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Then it is completed with a “divergence correction”:  
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A single set of equations is solved for both 
phases, therefore, density and viscosity of the 
mixture are calculated according to:  
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where subscripts l  and g  denote the liquid and gas, 
respectively. New velocity field is calculated 
according to the two-step time projection method as 
follows. First, an intermediate velocity is obtained:  
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The continuum surface force (CSF) method is 
used to model surface tension as a body force ( bF

r
) 

that acts only on interfacial cells. Pressure Poisson 
equation is then solved to obtain the pressure field:  
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Next, new time velocities are calculated by 
considering the pressure field implicitly:  
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The cell size used in this study was set based on 
a mesh refinement study in which the grid size was 
progressively increased until no significant changes 
were observed in the simulation results. The mesh 
resolution was characterized by the number of cells 
per radius of the jet. From the mesh refinement 
study, the optimum mesh size was found to be 20 
cells per radius of the jet. This mesh size was used 
for all simulations throughout this paper. 

 
5- Results and Discussion  

The developed code was first run for a case with 
no obstacle which is a very important parameter in 
CHJ studies. Then, a small obstacle was added at 
the end of the domain to see the behavior of the fluid 
flow. The results for a sample case are shown in Fig. 
4 in different time intervals. From this figure, it is 
clear that a steady state position for the jump is 
captured. The liquid considered for this case was tap 
water ( 3/1000 mkg=ρ , sm /10122.1 26−×=υ , and 

mN /073.0=σ ), and the radius of the incoming jet 
was mma 2= and with a flow rate of smLQ /10= . It 
should be mentioned that in order to reduce the time 
required to reach a steady-state hydraulic jump, a 
thin liquid layer with a thickness equal to that of the 
obstacle, is initially added on the solid surface.  

After the impact on the liquid layer, the flow goes 
through a sudden change in its thickness and 
consequently a circular hydraulic jump is formed. 
Figure 5 shows the formation of the jump and the 
velocity distributions during the jump.  

The CHJ is also seen in a 3D view obtained for 
the normal impact of a liquid jet of Ethylene Glycol 
( 3/1130 mkg=ρ , sPa.016.0=µ , mN /048.0=σ ) on a 
solid surface. The jet radius was mma 6.5=  with a 
flow rate of smlQ /46= . Figure 6 shows the 
simulated 3D jump along with the empirically 
observed jump for similar conditions.  

 



 

 

 

 
Figure 4: The evolution of a circular hydraulic jump 

formation from numerical model 
 

 

   
Figure 5: Velocity profiles during the jump  

 
In Fig. 7 the variation of the radius of the jump for 

different flow rates is plotted and accompanied by 
the experimental results of Errico in his PhD 
dissertation [9]. According to this figure, the radius of 
the jump is increased by increasing the volumetric 
flow rate which was sensibly expected too. A good 
agreement between the two results is observed in 
this figure. 

The results of the model for the radius of the jump 
are also compared with those of the theory. Figure 8 
displays such a comparison for a jump case 
considered by Watson [3]. In this figure, the LHS of 
Eqs. (6) and (7) is plotted in terms of the non-
dimensional jump radius. The discrepancies (with an 
error of up to 20%) seen in this figure between the 
theoretical jumps and those of the model may be 
attributed to the many simplifications assumed in the 
theory. 
 
6- Conclusion   
In this study, the impingement of a vertical liquid jet 
on a solid horizontal surface and the occurrence of a 
circular   hydraulic   jump   were   simulated   by   the  

 

 
Figure 6: A qualitative comparison of the impingement of a 

vertical liquid jet on a solid surface and the 
formation of a circular hydraulic jump:  

 a) Experimental result [13]; b) Numerical simulation  
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Figure 7: A quantitative comparison of CHJ radius from 

numerical model and experiments (Errico, 1989) 
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Figure 8: A quantitative comparison of numerical result 

with Watson's theory 



method of Volume-of-Fluid. The results show that the 
numerical model is capable of accurately simulating 
the circular hydraulic jump. A good agreement was 
obtained between the calculated jumps and those of 
the measurements. The two results show that the 
radius of the circular hydraulic jump increases by 
enhancing the volumetric flow rate. Numerical results 
were also compared with those of the theory; the 
observed discrepancies are attributed to the 
simplifications considered in the theory. 
 
7- Nomenclature  
a  Jet Radius  
Bo  Bond Number 

∞hd ,  Downstream Height  
f  Volume of Fluid Fraction 

bF
r

 Body Force  

g  Gravitational 
Acceleration  

p  Pressure  
Q  Volumetric Flow Rate 

1,, rrR jj  Jump Radius  

vrr ,0  Critical Radius 
Re  Reynolds Number 

0U  Incoming Jet Velocity 
V
r

 Velocity Vector  
t Time  
Greek Letters   

δ  Boundary Layer 
Thickness 

ξ  Fluid Layer Depth  
υ  Kinematic Viscosity 
ρ  Density 
σ  Surface Tension 
τ  Stress Tensor  
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