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Abstract: - This work presents a numerical technique for solving two-dimensional non- Newtonian free surface flows. 
The governing equations are solved by VOF method on a staggered grid. It uses marker particles to describe the fluid. 
To predict the shape of the jet buckling, Navier-Stokes equations are used  while The viscosity ( ( )γυ & ) as a function of 
shear rate ( )γ&  which determined by (  : . A modified Volume-of-Fluid (VOF) technique based on Youngs’ 
algorithm is used to track the jet buckling. As currently implemented, the present method can simulate two-
dimensional non Newtonian flow in which the viscosity is modeled by using the Cross model. Buckling is a physical 
instability; it is the fluid  equivalent of Euler’s slender rod subject to a compressive force .Like the Euler’s rod, the 
fluid may buckle one way or the other and indeed for a 2D fluid jet it may buckle in any direction. the simulation of jet 
buckling is approved by both experimental and theoretical results of Cruickshank and Munson [7] and Cruickshank 
[8]. this concurs with results obtained by Tom´e et al. [9] for the two-dimensional case. 
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1   Introduction 
Non-Newtonian fluid flows with free surfaces become 
visible in many industrial processes: injection moulding 
(plastic industries), container filling (food industry), 
inkjet devices, wire coating, among others, are all 
examples of non-Newtonian free surface flows problems 
The early days (1975–1985) of computational rheology 
are well covered by the reference works of Crochet et 
al.[1] and Keunings [2]. More recent reviews include 
those of Keunings [3] and Owens and Phillips [4]. 35]).  
by regardig the polymeric conformation model as 
coarse-grained, we can employ kinetic theory models 
and these can be treated by stochastic simulation. The 
next level is the macroscopic approach of continuum 
mechanics. At this point, a suitable constitutive equation 
is required for closure of the system and this normally 
leads to a system of partial differential equations. 
However, integral constitutive equations are becoming 
far more prominent (since they may be directly derived 
from molecular theories (see,e.g. Doi and Edwards [6])), 
leading to systems of partial integro-differential 
equations; a recent comprehensive review on integral 
viscoelastic fluids is that by Keunings [3]. Obviously, in 
principle continuum models may be derived from kinetic 
theory. However, only the linear dumbell model leads to 

a constitutive relation from which the Oldroyd B model 
is obtained. In addition to continuum modeling, two 
other approaches are finding favor: dissipative particle 
dynamics.and lattice Boltzmann models.The partial 
differential equations or partial integro differential 
equations are then solved by numerical methods. 
principally finite element but also by finite differences, 
finite volumes and spectral methods (e.g. [4]). 
Computational rheology involving time-dependent free 
surfaces is less common, although many of the 
Lagrangian approaches for confined flows may at least 
in principle be used to solve free surface and interfacial 
flows. The present paper solves for the flow and 
transient non-Newtonian fluid on a highly irregular two 
dimensional region with multiple free surfaces, and with 
the viscosity depending in a prescribed way upon the 
local shear rate. The key features of the method 
proposed are the accurate approximation. The purpose of 
the paper is to describe the numerical algorithm in just 
sufficient detail to make it reproducible and, at the same 
time, display the results of the application of the code to 
jet buckling. 
 The dynamic behavior of two-phase flows is of great 
importance in various processes ranging from 
engineering applications to environmental phenomena. 
A well-known method for tracking the free surface of a 



liquid is Volume-of-Fluid (VOF) technique 
(Passandideh-Fard and Roohi, 2008) where the 
computational domain is characterized by a liquid 
volume fraction function. This function is used to 
determine both the liquid position and the liquid/gas 
interface orientation. Roughly two important classes of 
VOF methods can be distinguished with respect to the 
representation of the interface, namely simple line 
interface calculation (SLIC) and piecewise linear 
interface calculation (PLIC). Earlier works with VOF 
were generally based on the SLIC algorithm introduced 
by Noh and Woodward (1976) and the donor-acceptor 
algorithm published by Hirt and Nicholas (1981). More 
accurate VOF techniques include the PLIC method of 
Youngs (1982). The accuracy and capabilities of the 
older VOF algorithm such as the Hirt-and-Nicholas 
VOF method were studied by Rudman, 1997. 
Front tracking methods (Unverdi and Tryggvason, 1992; 
Esmaeeli and Tryggvason, 1998a, 1998b; Tryggvasson 
et al., 2001) make use of markers (for instance 
triangles), connected to a set of points, to track the 
interface whereas a fixed or Eulerian grid is used to 
solve the Navier-stokes equations. This method is 
extremely accurate but also rather complex to implement 
due to the fact that dynamic re-meshing of the 
Lagrangian interface mesh is required and mapping of 
the Lagrangian data onto the Eulerian mesh has to be 
carried out. Difficulties arise when multiple interfaces 
interact where all require a proper sub-grid model. 
Contrary to most other methods, the automatic merging 
of interfaces does not occur in front tracking techniques 
due to the fact that a separate mesh is used to track the 
interface. In this study, full two-dimensional shear-
thinning multiple 
free surface flows are discussed. The model is the 
generalized Newtonian fluid with the viscosity related to 
the shear rate by the Cross model, by a modified 
Volume-of-Fluid (VOF) technique based on Youngs’ 
algorithm. 
 
 
2   Problem Formulation 
In this section, we present a brief account of the 
numerical method. The flow governing equations are: 
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 is the velocity vector, p is the pressure and 
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represents body forces acting on the fluid. Using VOF 
method by means of a scalar field f whose value is unity 
in the liquid phase and zero in the gas. When a cell is 
partially filled with liquid, f  will have a value between 
zero and one. 
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The discontinuity in f is propagating through the 
computational domain according to: 
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Although the velocity field is divergence free, the term 
)( V
rr

⋅∇  has an order of O(ε) in numerical solution. 
Therefore, in order to increase the accuracy of the 
numerical solution, Eq. 4 is used in the conservative 
form as 
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For the advection of volume fraction f based on Eq. 4, 
different methods have been developed such as 
SLIC, Hirt-Nichols and Youngs’ PLIC . The 
reported literature on the simulation of free-surface 
flows reveals that Hirt-Nichols method has been 
used by many researchers. In this study, however, 
we used Youngs’ method  which is a more accurate 
technique. Assuming the initial distribution of f to 
be given, velocity and pressure are calculated in 
each time step by the following procedure. 
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Then it is completed with a “divergence correction”  
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A single set of equations is solved for both phases, 
therefore, density and viscosity of the mixture are 
calculated according to: 
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where subscripts l and g denote the liquid and gas, 
respectively. New velocity field is calculated 
according to the two-step time projection method 
as follows. First, an intermediate velocity is 
obtained, 
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The continuum surface force (CSF) method  is used to 

model surface tension as a body force (
bF
r ) that acts 

only on interfacial cells. Pressure Poisson equation 
is then solved to obtain the pressure field, 
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Next, new time velocities are calculated by considering 

the pressure field implicitly, 
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The local shear rate  is given by 
 

∆∆= :γ&                                                   (13) 
 
In two-Dimensional study  γ& becomes  
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The viscosity ( )γυ &  can be any function of γ& 
representing the shear-thinning nature of the fluid. 
In the simulations presented in this paper, we 
employed the Cross mode 
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where m, °υ , ∞υ and K are given positive constants. 
 
3   Problem Solution 
When a low Reynolds number jet flows onto a rigid 
plate, a phenomenon known as jet buckling can occur if 
the Reynolds number is smaller than a prescribed value. 
This phenomenon has attracted a number of 
investigators and it has been studied both experimentally 
and numerically. Cruickshank and Munson [7] and 
Cruickshank [8] have presented both experimental and 
theoretical results for Newtonian jets. From their study, 
they obtained estimates for when jet buckling might 
occur: these are based upon the Reynolds number and 
the ratio H/D (H is the height of the inlet to the rigid 
plate and D is the jet diameter). In particular, from a 
one-dimensional stability study, they found that a two-
dimensional jet will buckle if the following conditions 
 
             Re <.5  and H/D > 10 
are satisfied. For an ax symmetric jet, they found that the 
buckling conditions were modified to   
               Re < 1.2 and H/D > 7      
we present in this section two calculations that simulate 
the buckling of  an ax symmetric viscous jet hitting a 
rigid plate. For a Newtonian jet, the Reynolds number 
dictates the behavior of the flow, whereas for a 

generalized Newtonian jet the “Reynolds number” We 
consider a flat surface and an ax symmetric jet issuing 
from an ax symmetric nozzle onto the flat surface at a 
prescribed velocity (see Fig. 1). The  following input 
data were employed: domain dimensions, 10 mm × 30 
mm; mesh size, 62 × 102  cells ( yx δδ ≠ ); jet diameter 
(D) = 2.5 mm; fluid velocity at the nozzle (u) = 
0.1 1−ms ;  
 

 
Fig. 1. Numerical simulation and meshing of a 

non-    Newtonian jet onto a flat 
surface at times  t = 0 s 

 
flat surface dimensions, 10 mm×30 mm ; nozzle 
dimensions, 2.5 mm diameter and  2mm height; height 
of nozzle (H) = 28 mm (distance of the nozzle to the flat 
surface); gravity was taken to act in the negative y-
direction with yg  = −9.81 2−ms . The fluid properties 
were chosen to be  
 

∞υ =0.006 12 −sm   ,                       °υ =0.0006  12 −sm ,             
K=.3,                                                   m=.4 
   
The inlet diameter is D = 3mm and the inlet velocity is 
U = 0.1 

1−ms . This gives Re = UD/ °υ  = 0.4 and a 
slenderness ratio of H/D = 11. Again, Cruickshank’s 
analysis predicts that the non Newtonian jet will buckle. 



As it is seen we show all domain in Fig. 2,3. It is 
obvious that   the non Newtonian jet becomes thick on 
hitting the rigid plate and then at time t = 1.4050e-1  s, it 
buckles whereas the two- dimensional  Newtonian jet 
does not become noticeably thicker but flows radially 
without any evidence of buckling. 
 
  
 
  

 
 Fig. 2. Numerical simulation 
 of two-dimensional non Newtonian 
jet buckling at t=1.4050e-1 s 

 
 
 
Indeed, as the flow is hindered by the no-slip condition 
on the rigid plate,  the non Newtonian fluid accumulates, 
and by obstructing the oncoming fluid initiates buckling. 
as it is exposed in Fig.4, Fig.5 we only show the region 
that  we guess buckling happened at t= 1.5216e-1 s. It is  

observable  that in non-Newtonian case jet becomes 
thick but in Newtonian jet we can see the jet dos not 
become thick from middle of the jet.   Fig.6, Fig.7 also 
show the same result at t=1.7591e-1 s.Fig.8, Fig.9 are 
presenting the  
identical  results at  t=2.8791e-1 s, that non-Newtonian 
fluid buckles at different times while Newtonian fluid 
dose not buckle  
. 

 
Fig. 3. Numerical simulation 

of two-dimensional 
Newtonian jet at t=1.4050e-1 s 

 
 



Fig. 4. Numerical simulation 
 of two-dimensional non Newtonian 
jet buckling at t=1.5216e-1s 

 
 
 
 
 

 
Fig. 5. Numerical simulation 

of two-dimensional 
Newtonian jet at t=1.5216e-1s 

z
Fig.6. Numerical simulation 
 of two-dimensional non Newtonian 
jet buckling at t=1.7591e-1s 

 
 
 
 
 

Fig.7. Numerical simulation 
of two-dimensional 

newtonian jet at t=1.7591e-1s 



Fig. 8. Numerical  simulation 
of two-dimensional non Newtonian 
jet buckling at at t=2.8791e-1s 

 
 
 
 
 
 
 

Fig. 9. Numerical simulation 
of two-dimensional 

newtonian jet at t=2.8791e-1s 
 
 
 
 

 Buckling is a physical instability; it is the fluid  
equivalent of Euler’s slender rod subject to a 
compressive force .Like the Euler’s rod, the fluid may 
buckle one way or the other and indeed for a 2D fluid jet 
it may buckle in any direction. Of course, a small 
perturbation is required for the fluid to buckle. 
                                
4   Conclusion 
This paper presented VOF technique for solving two-
dimensional non Newtonian free surface flows. In this 
work, attention has been given to the  implementation of 
the 2D-free surface conditions. The finite difference 
equations presented have been implemented to produce 
a two-dimensional code. jet buckling  simulation clearly 
displayed the behavior of shear-thinning fluids. the 
simulation of jet buckling is approved by both 
experimental and theoretical results of Cruickshank and 
Munson [18] and Cruickshank [19]. the simulation of jet 
buckling showed that under certain circumstances a non 
Newtonian jet may buckle while a generalized 
Newtonian jet may not; this concurs with results 
obtained by Tom´e et al. [20] for the two-dimensional 
case.  
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