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a b s t r a c t

In this paper, we consider the product-limit quantile estimator of an unknown quantile
function under a truncated dependentmodel. This is a parallel problem to the estimation of
the unknown distribution function by the product-limit estimator under the same model.
Simultaneous strong Gaussian approximations of the product-limit process and normed
product-limit quantile process are constructed with rate O((log n)−λ) for some λ > 0. The
strong Gaussian approximation of the product-limit process is then applied to derive the
law of the iterated logarithm for the product-limit process.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

Inmedical follow-up or in engineering life testing studies, onemay not be able to observe the variable of interest, referred
to hereafter as the lifetime. Among the different forms in which incomplete data appear, right censoring and left truncation
are two common ones. Left truncation may occur if the time origin of the lifetime precedes the time origin of the study.
Only subjects that fail after the start of the study are being followed, otherwise they are left truncated. Woodroofe (1985)
reviews examples from astronomy and economy where such data may occur. In the left-truncation model, if the lifetime
observations in the sample are assumed to be mutually independent, the nonparametric product-limit (PL) estimator of the
survival function has been studied extensively bymany authors during recent years, such asWoodroofe (1985), Chao and Lo
(1988), Keiding andGill (1990), Stute (1993) and others. However, it is not clear if the properties of the PL-estimator still hold
when observations are dependent. Our focus in the present paper is to study large sample properties of the PL-estimator for
the left-truncated data which exhibit some kind of dependence.
Let X1,X2, . . . ,XN be a sequence of the lifetime variables which may not be mutually independent, but have a common

unknown distribution function (d.f.) F with a density function f = F ′. Let T1, T2, . . . , TN be a sequence of independent
and identically distributed random variables (rv’s) with continuous d.f. G; they are also assumed to be independent of the
random variables Xi’s. In the left-truncation model, (Xi, Ti) is observed only when Xi ≥ Ti. Let (X1, T1), . . . , (Xn, Tn) be the
actually observed sample (i.e., Xi ≥ Ti), and put γ := P(T1 ≤ X1) > 0, where P is the absolute probability (related to the
N-sample). Note that n itself is a rv and that γ can be estimated by n/N (although this estimator cannot be calculated since
N is unknown). Assume, without loss of generality, that Xi and Ti are nonnegative random variables, i = 1, . . . ,N . For any
d.f. L denotes the left and right endpoints of its support by aL = inf{x : L(x) > 0} and bL = sup{x : L(x) < 1}, respectively.
Then under the current model, as discussed by Woodroofe (1985), we assume that aG ≤ aF and bG ≤ bF . Define

C(x) = P(T1 ≤ x ≤ X1|T1 ≤ X1) = P(T1 ≤ x ≤ X1) = γ−1G(x)(1− F(x)), (1.1)
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where P(.) = P(.|n) is the conditional probability (related to the n-sample) and consider its empirical estimate

Cn(x) = n−1
n∑
i=1

I(Ti ≤ x ≤ Xi), (1.2)

where I(.) is the indicator function. Then the PL-estimator F̂n of F is given by

F̂n(x) = 1−
∏
Xi≤x

(
1−

1
nCn(Xi)

)
. (1.3)

The cumulative hazard functionΛ(x) is defined by

Λ(x) =
∫ x

0

dF(u)
1− F(u)

. (1.4)

Let

F∗(x) = P(X1 ≤ x|T1 ≤ X1) = P(X1 ≤ x) = γ−1
∫ x

0
G(u)dF(u), (1.5)

be the d.f. of the observed lifetimes. Its empirical estimator is given by

F∗n (x) = n
−1

n∑
i=1

I(Xi ≤ x).

On the other hand, the d.f. of the observed Ti’s is given by

G∗(x) = P(T1 ≤ x|T1 ≤ X1) = P(T1 ≤ x) = γ−1
∫
∞

0
G(x ∧ u)dF(u),

and is estimated by

G∗n(x) = n
−1

n∑
i=1

I(Ti ≤ x).

It then follows from (1.1) and (1.2) that

C(x) = G∗(x)− F∗(x), Cn(x) = G∗n(x)− F
∗

n (x−). (1.6)

Finally (1.1), (1.4) and (1.5) give

Λ(x) =
∫ x

0

dF∗(u)
C(u)

.

Hence, a natural estimator ofΛ is given by

Λ̂n(x) =
∫ x

0

dF∗n (u)
Cn(u)

=

n∑
i=1

I(Xi ≤ x)
nCn(Xi)

,

which is the usual so-called Nelson–Aalen estimator of Λ. Moreover, Λ̂n is the cumulative hazard function of the PL-
estimator F̂n defined in (1.3).
In the independent framework, Burke et al. (1981, 1988) used the Komlós, Major and Tusnády theorem to obtain strong

Gaussian approximations of the estimation processes in the random censorship model. For a left-truncated data, Tse (2000)
has established strong Gaussian approximation of the PL-process

√
n[̂Fn(t)− F(t)] by a two parameter Kiefer type process

at the almost sure rate of O(n−1/8(log n)3/2). In left-truncation and right censorship (LTRC) model, Zhou and Yip (1999)
initiated and Tse (2003) established strong Gaussian approximation of the PL-process by a two parameter Gaussian process
at the almost sure rate ofO(n−1/8(log n)3/2), a rate that reflects the two-dimensional nature of the LTRCmodel. Sun and Zhou
(2001) obtained strong representations for both the PL and the Nelson–Aalen estimators in the case of truncated dependent
data.
For 0 < p < 1, the pth quantile of F(t) is defined by

Q (p) = inf{x ∈ R; F(x) ≥ p}, (1.7)

and the sample estimator of Q (p) is defined by

Qn(p) = inf{x ∈ R; F̂n(x) ≥ p}, (1.8)

when F̂n is the PL-estimator define in (1.3).
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The role of the quantile function in statistical data modeling was emphasized by Parzen (1979). In econometrics,
Gastwirth (1971) used the quantile function to give a succinct definition of the Lorenz curve, which measure inequality
in distribution of resources and in size distribution.
In the independent framework with no truncation, the properties of estimator Qn (where F̂n is replaced by the empirical

d.f. Fn) have been extensively studied (see e.g. Csörgő, 1983; Shorack and Wellner, 1986). Gűrler et al. (1993) obtained
weak and strong quantile representations for randomly truncated data. Based on LTRCmodel, Tse (2005), established strong
Gaussian approximation of the normedPL-quantile processρn(p) :=

√
nf (Q (p))[Q (p)−Qn(p)] by a twoparameterGaussian

process at the almost sure rate of O(n−1/8(log n)3/2).
Under φ-mixing condition (for the definition see Doukhan, 1996), the Bahadur representation Qn (where F̂n is replaced

by the empirical d.f. Fn) was obtained by Sen (1972) and the extension to the strong mixing (see definition below) case was
obtained by Yoshihara (1995). Under strong mixing condition, the strong approximation of the normed quantile process
ρn(p) by a two parameter Gaussian process at the rate O((log n)−λ) for some λ > 0, was obtained by Fotopoulos et al.
(1994) and was later improved by Yu (1996).
Themain aimof this paper is to derive strongGaussian approximations of the PL-process andnormedPL-quantile process,

for the case of truncated data which the underling lifetime are assumed to be strongmixingwhose definition is given below.
As a result, we obtain the Law of the iterated logarithm for PL-process.
We consider the strongmixing dependence, which amounts to a form of asymptotic independence between the past and

the future as shown by its definition.

Definition 1. Let {Xi, i ≥ 1} denote a sequence of random variables. Given a positive integerm, set

α(m) = sup
k≥1
{|P(A ∩ B)− P(A)P(B)|; A ∈ F k

1 , B ∈ F ∞k+m}, (1.9)

where F k
i denote the σ -field of events generated by {Xj; i ≤ j ≤ k}. The sequence is said to be strong mixing (α-mixing) if

the mixing coefficient α(m)→ 0 asm→∞.

Among various mixing conditions used in the literature, α-mixing, is reasonably weak and has many practical
applications. There exists many processes and time series fulfilling the strong mixing condition. As a simple example we
can consider the Gaussian AR(1) process for which

Zt = ρZt−1 + εt ,

where |ρ| < 1 and εt ’s are independently identically distributed random variables with standard normal distribution. It
can be shown (see Ibragimov and Linnik, 1971, pp. 312–313) that {Zt} satisfies strong mixing condition. The stationary
autoregressive moving average (ARMA) processes, which are widely applied in time series analysis, are α-mixing with
exponential mixing coefficient, i.e., α(n) = e−νn for some ν > 0. The threshold models, the EXPAR models (see Ozaki,
1979), the simple ARCH models (see Engle, 1982; Masry and Tjostheim, 1995, 1997) and their extensions (see Diebolt
and Guégan, 1993) and the bilinear Markovian models are geometrically strongly mixing under some general ergodicity
conditions. Auestad and Tjostheim (1990) provided excellent discussions on the role of α-mixing for model identification
in nonlinear time series analysis.
Our main assumption is the following.
A. {Xi}i≥1 is a sequence of stationary α-mixing rv’s with mixing coefficient α(n) = O(e−(log n)

1+ν
) for some ν > 0.

The layout of the paper is as follows: Section 2, contains main results. The proofs of the main results are relegated to
Section 3.

2. Main results

In this section, we construct a two parameter mean zero Gaussian process that strongly uniformly approximate the
empirical process αn(t) :=

√
n[Λ̂n(t) − Λ(t)]. Utilizing the relationship between αn(t) and βn(t), where βn(t) :=√

n[̂Fn(t) − F(t)] we then establish similar result for βn(t). The counterpart of these results for the censored dependent
model was established by Fakoor and Nakhaei Rad (2009).

Theorem 1. Let aG < aF and b < bF . Suppose that Assumption A is satisfied. On a rich probability space, there exists a two
parameter mean zero Gaussian process B(u, v) for u, v ≥ 0, such that,

sup
0≤t≤b
|αn(t)− B(t, n)| = O((log n)−λ) a.s., (2.1)

sup
0≤t≤b
|βn(t)− (1− F(t))B(t, n)| = O((log n)−λ) a.s., (2.2)

for some λ > 0.
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Remark 1. In theα-mixing case, we cannot achieve the same rate as in the iid case i.e.O(n−1/8(log n)3/2) (see Tse, 2000). The
main reason is that our approach utilizes the strong approximation introduced by Dhompongsa (1984) as a Kiefer process
with a negligible reminder term of order O(n−1/2(log n)−λ). This is not as sharp as in iid case.

Corollary 1. Under Assumption A, we have,

sup
0≤t≤b
|Λ̂n(t)−Λ(t)| = O

(
log log n
n

)1/2
a.s., (2.3)

sup
0≤t≤b
|̂Fn(t)− F(t)| = O

(
log log n
n

)1/2
a.s. (2.4)

In the next theorem, we construct a two parameter mean zero Gaussian process that strongly uniformly approximate the
normed PL-quantile process ρn(p).

Theorem 2. Let 0 < p0 ≤ p1 < 1. Under Assumption A, assume that F is Lipschitz continuous and that F is twice continuously
differentiable on [Q (p0)−δ,Q (p1)+δ] for some δ > 0, such that f is bounded away from zero, then there exists a two parameter
mean zero Gaussian process B(x, u) for x, u ≥ 0, such that,

sup
p0≤p≤p1

|ρn(p)− (1− p)B(Q (p), n)| = O((log n)−λ) a.s.,

for some λ > 0.

3. Proofs

Proof of Theorem 1. We start with the usual decomposition of αn(t).

αn(t) =
√
n[Λ̂n(t)−Λ(t)] =

√
n[F∗n (t)− F

∗(t)]
C(t)

+

∫ t

0

F∗n (u)− F
∗(u)

C2(u)
dC(u)+ Rn1(t).

where

n−1/2Rn1(t) =
∫ t

0

C(u)− Cn(u)
Cn(u)C(u)

dF∗n (u).

Furthermore, it follows from Theorem 3 of Dhompongsa (1984) that there exists a Kiefer process {K(s, t), s, t ≥ 0}, with
covariance function

E[K(s, t)K(s′, t ′)] = Γ (s, s′)min(t, t ′),

where

Γ (s, s′) = Cov(g1(s), g1(s′))+
∞∑
j=2

[Cov(g1(s), gj(s′))+ Cov(g1(s′), gj(s))],

gj(s) = I(Xj ≤ s)− F∗(s), such that for some λ > 0 depending only on ν,

sup
x≥0
|F∗n (x)− F

∗(x)− n−1K(x, n)| = O(n−
1
2 (log n)−λ) a.s. (3.1)

Define, for 0 ≤ t ≤ b the sequence of Gaussian processes

B(t, n) :=
K(t, n)/

√
n

C(t)
+

∫ t

0

K(u, n)/
√
n

C(u)2
dC(u), (3.2)

where K(s, t) is the Kiefer process in (3.1). Let

β(t, n) =
√
n[F∗n (t)− F

∗(t)] − K(t, n)/
√
n

Theorem 1 is about the order

sup
0≤t≤b
|αn(t)− B(t, n)| = sup

0≤t≤b
|Rn1(t)+ Rn2(t)|, (3.3)

where

Rn2(t) =
β(t, n)
C(t)

+

∫ t

0

β(u, n)
C(u)2

dC(u).
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To deal with Rn1(t), it follows from Theorem 3.2 of Cai and Roussas (1992) that

sup
t≥0
|F∗n (t)− F

∗(t)| = O

(√
log log n
n

)
a.s., (3.4)

and

sup
t≥0
|G∗n(t)− G

∗(t)| = O

(√
log log n
n

)
a.s. (3.5)

By (1.6), (3.4) and (3.5),

sup
t≥0
|Cn(t)− C(t)| = O

(√
log log n
n

)
a.s. (3.6)

Therefore, by (3.6), we have

sup
0≤t≤b
|Rn1(t)| = O

(√
log log n
n

)
a.s. (3.7)

Note that inf0≤x≤b C(x) > 0.
Next, by applying (3.1), we have

sup
0≤t≤b
|Rn2(t)| = O((log n)−λ) a.s. (3.8)

Combining (3.3), (3.7) and (3.8) we obtain (2.1). It can be shown that

F̂n(t)− F(t) = (1− F(t))[Λ̂n(t)−Λ(t)] + O
(
log log n
n

)
a.s. (3.9)

Therefore (2.2) is proved via (3.9) and (2.1). �

Proof of Corollary 1. . By (3.2) and the law of the iterated logarithm for Kiefer processes (see, Theorem A. in Berkes and
Philipp, 1977), we have,

sup
0≤t≤b
|B(t, n)| ≤ C sup

0≤t≤b
|K(t, n)|/

√
n = O(log log n)1/2 a.s.,

where C is a positive constant. From (2.1) and (2.2) and the above inequality we obtain the results. �

The proof of Theorem 2, is mainly based on the following Lemmas of Lemdani et al. (2005). Lemma 1 shows that F̂n
composed with Qn is an approximate identity up to order O(n−

1
2 (log n)−λ). Lemmas 2 and 3 give global and local bounds for

the deviation between Qn and Q .

Lemma 1. Let 0 < p0 ≤ p1 < 1. Under Assumption A, assuming that F continuous, then

sup
p0≤p≤p1

|̂Fn(Qn(p))− p| = O
(
n−

1
2 (log n)−λ

)
a.s.

Lemma 2. Let 0 < p0 ≤ p1 < 1. Under Assumption A, assuming that F ′ = f is bounded away from zero on [Q (p0)−δ,Q (p1)+
δ] for some δ > 0, we have

sup
p0≤p≤p1

|Qn(p)− Q (p)| = O

(√
log log n
n

)
a.s.

Lemma 3. Let K2 > 0 and 0 ≤ b < bF . Under Assumption A, assuming that F Lipschitz continuous on [0, b]. Then

sup
t,s∈Jn
|βn(t)− βn(s)| = O((log n)−λ) a.s.

for some λ > 0, where Jn = {t, s : |t − s| < K2ηn, 0 ≤ s, t ≤ b} and ηn = O
(√

log log n
n

)
.

Proof of Theorem 2. Let s = Qn(p) and t = Q (p), p0 ≤ p ≤ p1, Lemma 2 yields
√
n|s − t| = O(log log n) almost surely.

Applying Lemma 3 gives,
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F̂n(Qn(p))− F̂n(Q (p)) = F(Qn(p))− F(Q (p))+ O(n−
1
2 (log n)−λ) a.s. (3.10)

By Lemma 1, F̂n(Qn(p)) can be replaced by p up to O(n−
1
2 (log n)−λ). For the right hand side, a Taylor expansion of the first

term about Q (p) up to second order term gives,

f (Q (p))[Qn(p)− Q (p)] + O([Qn(p)− Q (p)]2)+ O(n−
1
2 (log n)−λ) a.s., for p0 ≤ p ≤ p1.

Invoking Lemma 2 and rearranging terms in (3.10), we have,
√
nf (Q (p))[Qn(p)− Q (p)] =

√
n[p− F̂n(Q (p))] + O((log n)−λ) a.s., for p0 ≤ p ≤ p1.

Since F is continuous, F(Q (p)) = p. Recalling the definitions of the PL-process βn and the normed PL-quantile process ρn,
we have,

ρn(p) = βn(Q (p))+ O((log n)−λ) a.s., (3.11)

for p0 ≤ p ≤ p1. By using Theorem 1 and (3.11), the theorem is proved. �
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