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Abstract 

A structured unsegregated cybernetic model able to describe  a diauxic growth phenomena of cells colony  in aerobic 
condition. In this paper, the model has been proven in the simulation of the behavior of a batch and fed-batch 
bioreactors achieving satisfactory results. For simulating fed batch system, at first, the optimal substrate feeding in to 
bioreactor has been obtained by solving optimal control problem. Applying this profile to process model shows that 
ethanol concentration is much less in comparison with a constant feed rate.  Also, because in many fermentation 
processes, oxygen transfer is the rate limiting step, so for  preventing  from oxygen starvation that causes ethanol 
production, oxygen mass transfer coefficient is simulated on the function of impeller speed and air flow rate and then, 
control of oxygen concentration by PI and GLC controller have been considered. Results show that two controllers have 
a same performance, but because of  simpler structure in PI controllers, PI controller is better than GLC for this process. 
Also cell concentration without using controller have been brought and shown that productivity is smaller in 
comparison with using controllers.     
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1. Introduction 

The Saccharomyces cerevisiae biomass, mainly in the form of baker’s yeast, represents the largest bulk production of 
any single-cell microorganism in the world. Several million tons of fresh baker’s yeast cells are produced yearly for 
human food use [1]. The production of baker’s yeast involves the multi-stage propagation of the selected yeast strain on 
sugar as carbon source. Baker’s yeast is usually produced  from a small quantity of S. cerevisiae added to a liquid 
solution of essential nutrients, at suitable temperature and pH. The effect of variables, such as pH and temperature, is 
well known and their optimal set-points can be easily defined. On the contrary, yield and productiveness can be largely 
affected from the concentration of biomass, sugar, oxygen and ethanol formation, if any. The optimal conditions giving 
maximum yield and productiveness change along with time together with the biomass growth: consequently, the feed 
rate of nutrients in the fed-batch bioreactor must be changed too. Therefore, the feeding rate of the molasses is the most 
critical variable and the problem is to individuate the best feeding rate sequence. This problem could be solved by 
developing a structured unsegregated model to describe a growth rate able to provide information about the metabolic 
routes prevailing at any moment of the cells colony life and about how the growth is influenced from operation 
conditions. Such a model, named cybernetic model, has been proposed for the first time by Straight and Ramkrishna [2] 
and Varner and Ramkrishn [3,4]. More recently, Jones and Kompala [5,6], Di Serio et al. [7,8] have extended the use of 
this model for describing the growth of S. cerevisiae in bioreactors.  In this paper, at first, the result of simulation in 
batch bioreactor has been brought and shown that agreements are quite satisfactory whit experimental data. As we said 
Also, the feeding rate of the molasses plays a very important role in the batch progression as well as the final product 
concentration that is obtained at the end of the batch. Since each reactor run is followed by a personnel intensive, 
cleaning and sterilization operation, determination of the best possible profile may be economically expensive. A 
process model in such a scenario, could be very useful. Using tools from control theory, optimum substrate profiles 
could be determined in much less time compared to experimental determination, thereby resulted in economic savings. 
So in this paper, for simulating feed batch system, the optimal substrate feeding in to bioreactor has been obtained by 
solving optimal control problem [9,10]. Although cybernetic model  empowers microorganisms to allocate cellular 
resources for the uptake of those substrates that best fit the cellular requirements, but in this paper, for  preventing  from 
oxygen starvation that causes ethanol production, oxygen mass transfer coefficient is simulated on the function of 
impeller speed and air flow rate and then, control of oxygen concentration by PI and GLC controller and effect of using 
controllers on biomass concentration have been considered.   
2. The simulation model 

During the aerobic growth of S. cerevisiae, sugars and ethanol can be used as carbon and energy sources, whereas 
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nitrogen and other minor nutrient requirements are satisfied by inorganic salts. Sugar can be metabolized via two 
different energy producing pathways, fermentation (1) or oxidation (2), depending on the sugar concentration in the 
medium. Biomass yields on glucose are strongly related to the prevailing metabolic pathway, being maximal only when 
sugar is oxidized. For this reason, in fed-batch processes for yeast production, the carbon source feed must strictly be 
controlled to ensure a biomass yield as close as possible to the theoretical value obtainable. Under oxygen starvation 
conditions, the fermentative metabolic pathway always predominates; at a low sugar concentration,  ethanol is 
produced, too. Ethanol produced during the fermentative metabolic pathway in a batch culture is consumed when 
glucose is no longer available in the medium. This phenomena is named  diauxic behavior of S. cerevisiae.  On the basis 
of above considerations, it is evident that S. cerevisiae has intenal regulating mechanisms which direct the micro-
organism towards the most convenient metabolic pathway able to optimize the use of available resources. The 
cybernetic modeling framework is based on the hypothesis that microorganisms optimize the utilization of available 
substrates to maximize their growth rate at all times. 
The cybernetic variables ui and vi representing the optimal strategies for the synthesis and activity, respectively, of the 
key enzyme of the metabolic pathway, i.  The value of ui can be assessed assuming that cell resources will be allocated 
in such a way to obtain the maximum biomass growth rate.  The variable which controls the inhibition/activation 
mechanism of ei (vi ) is determined considering the inhibition effect null when the microorganism grows on the substrate 
which accelerates the biomass growth rate to the utmost, whereas the inhibition effect progressively increases at a 
decreasing growth rate [7]. Therefore, 
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Sugar can be metabolized via two different energy producing pathways, fermentation or oxidation, depending on the 
sugar concentration in the medium. So, the kinetic modeling of the growth behavior of S. cerevisiae requires a detailed 
knowledge of the intracellular control mechanisms and the Monod classical model is not enough. In this model, specific 
growth rates for the different metabolic ways are modeled according to a modified Monod rate equation, where the 
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This choice introduces an advantage in managing the cybernetic model because the ratios  
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range 0–1, only. Where S1 and S2 represent, respectively, the quantity of sugar and ethanol in the bioreactor, Ox the 
concentration of dissolved oxygen, VL the volume of the liquid in the bioreactor, Ki the saturation constants for the 
substrate of each metabolic pathway (i) and KOx represents the saturation constant for the dissolved oxygen. 
With these growth rate equations, the common balance equations for batch (Fin = 0) and fed-batch (Fin ≠ 0) 
bioreactors can be written as 
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                  respiratory quotient(14) 
where ∗oxaKSFX Lin ,,,, 0

1  are, respectively, the biomass quantity in the reactor, the value of the sugar feed stream, the 
sugar concentration in the feed, the coefficient of gas–liquid mass transfer and the concentration of oxygen at the gas–
liquid interface, and α and β are, respectively, the enzyme decay and synthesis rate constant; α٭ is a small constitutive 
synthesis term for all the enzymes and is important in predicting the induction of enzymes which have been repressed 
for long periods of time and Yi and iφ the yields and stoichiometric coefficients for the different metabolic pathways, 
respectively. The respiratory quotient (RQ) is the ratio of CO2 moles produced on the oxygen moles consumed. RQ is 
higher than 1 when the fermentative glucose metabolic pathway predominates, around 1 when the oxidative glucose 
metabolic pathway predominates, and smaller than 1 in the case of ethanol consumption. 

3. Batch Simulation results  
In Fig.1a, the evolutions with time of concentration of respectively biomass, glucose and ethanol are reported. In Fig. 

1b, the evolution of the respiratory quotient is reported. As it can be seen in both cases agreements are quite satisfactory 
with experimental data. 
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Table 1 
Model parameters values used for the simulation results 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Optimal Control 

 In the case of a fed-batch bioreactor, one goal is to maximize/minimize an appropriate performance objective. 
Towards achieving this goal, it is important to note that decisions made regarding the input during the course of the 

batch play an important role on the objective function. The system dynamics are described by ),,( tuxfx =
⋅

that x(t) 
and u(t) are vector valued state and input respectively and t0 is the initial time. The objective function for the optimal 
control problem is the minimization of ethanol concentration at the end of the batch. The general formulation for the 
objective function is given as, 
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Fig. 1. Experimental data [7] and  model simulation  for cell mass, 
glucose,  ethanol concentration (Fig. 1a) and respiratory quotient 
(Fig. 1b).  
(Fig. 1c) The trends of the relative key enzyme concentration for 
the three metabolic pathways of S. cerevisiae. 
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In this equation, λ  is the co-state variable and is used to incorporate the system dynamics into the objective function. 
The original optimal control problem is then transformed into a two-point boundary value problem, as the differential 
equations for the state and the new co-state variables have boundary conditions defined at t0( )( 0tx ) and at tf 
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5. Optimal Control Results 
In Fig. 2, the result of solving of optimal control problem for  feed rate has been reported. Fig. 3, shows the influence 

of this profile on ethanol concentration and  RQ  in compare with constant feed rate. 
  

  

 

 

 

 

 

 
 
 
 
 

6. Fed-batch Simulation results 
Because in many fermentation processes, oxygen transfer is the rate limiting step, correct measurement of the 

volumetric mass transfer coefficient is a crucial step in the design procedure of bioreactors. In order to ensure full 
aerobic conditions, both air flow and stirring rate are varied to keep the dissolved oxygen concentration higher than a 
critical value. So, by using air flow and stirring rate values, an equation for measuring  oxygen mass transfer coefficient, 
has been proposed. For all kinds of reactors where the sole purpose is mass transfer, multiple-impeller systems are 
advantageous and there will be large savings on an industrial scale, especially for the bioreactors where the reaction 
periods are long and the power consumption cost can be a significant component to the overall production costs [12]. 
So, a stirred tank( D=20cm,H=40cm) with two disc turbine agitators(D=7.5cm,spacing=11cm) has been supposed. In 
fact yeast suspensions in the range of 25-200 kg m-3 are classified as Newtonian liquids. So the viscosity and density of 
the broth are measured during the whole period of fermentation by equations: 
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Where  ρW and ρX are the density of pure water and dry yeast and X is the yeast concentration [13]. With computing 
power number [14],  the real gas power consumption  is calculated  
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 By trial and error, the following equation has been proposed for computing the real  gas power consumption  that 
predicts the Kla values, well. 
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It is obvious that Kla is related to gas power consumption  per unit volume of broth and the superficial velocity: 
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Where the values of α and β depending on the system geometry. The following equation for Kla has been proposed. As 
it has been shown in Fig 5, the proposed equation, has a satisfactory correlation with experimental data. 
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By using this equation, Kla values are calculated and applied to process model.  

In Fig. 6, the evolutions with time of concentration of  biomass and dissolved oxygen have been reported. 

 

 

 

 

 

 

 

7. Dissolved oxygen control  

Oxygen transfer  in aerobic bioprocesses is essential. So any shortage of oxygen drastically affects the process 
performance. Almost always, bioprocesses are carried out in aqueous media where the solubility of oxygen is very low 
owing to the presence of ionic salts and nutrients and the rate of oxygen utilization by the microorganisms is rather 
high. As it's shown in previous step, impeller speed and air flow rate, are two variable that affect on oxygen mass 
transfer coefficient. Because conventional proportional-integral (PI) has a single input-single output structure, these two 
variables must combine in the form of one parameter.  
With substitution the values of  Pg and Vs in proposed equation for Kla , this equation can be established: 
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N and Qg must be defined as a functions of KC. Whit having minimum and maximum of N and Qg and generation some 
numbers between them, values for KC  get. Fitting  equations to these data are the form of below: 
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Now, with having KLa values that get from control law and ρ by solving state functions and the KC values , N and Qg 
values can be found and apply to process model. 

8. GLC Method  

a globally linearizing control (GLC) and a conventional proportional-integral (PI) controller have been designed for 
controlling the total oxygen concentration, and performance of these controllers have been compared through 
simulation. The GLC method is a nonlinear control algorithm based on differential geometric approach. The first step in 
the GLC synthesis is the calculation of a state feedback, under which the closed loop input/output system is exactly 
linear. Then for linearized system, a controller with integral action such as PI can be designed. To implement the state 
feedback of the GLC, all the process state variables must be measured or estimated. Consider SISO processes with the 
following model:   
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where βi's are tunable parameters, the closed loop v-y behavior is linear and described by the following equation: 
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Some guidelines for tuning of βi's  parameters and other  remarks for using GLC method have been described by 
Soroush and Kravaris [15]. The input of the linearized system (v) can be generated by a PI controller as  below:  
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Where ox* is the desired profile of oxygen concentration in the bioreactor and Kc and τI are gain and integral time 
constant of PI controller, respectively. 

9. Theoretical results  

In this section, performance of GLC and PI controllers  on cell concentration, have been compared. Also, how these 
controllers perform on control of oxygen amount in bioreactor has been surveyed. Also cell concentration without using 
controller have been brought and shown that productivity is smaller than using controllers.  Effects of uncertainty in 
process model on performance of control methods, have been brought, and ramp function as an input, has been applied 
to process model. The resulting control algorithm (GLC), has three parameters β , Kc and τI that must be tuned by trial 
and error.  

 
 
 

 
  
 
 
 
 
 
 
 

 

 
Fig 7. Closed loop response of oxygen concentration, GLC 
method (dash line), PI controller (line) 

Fig 8. Closed loop response of cell concentration, GLC 
method (line), PI controller (line-star), without controller 
(line- square) 
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10. Conclusions 

  Simulation results show that agreements are quite satisfactory with experimental data. In particular, it can be seen 
that the cybernetic model performs well in the simulation of the lag-phases and the diauxic growth. In batch system, 
when growth begins after an initial lag-phase, the yeast has a high growth rate mainly with a fermentative metabolic 
pathway with ethanol production; this is confirmed from the high values of the respiratory quotient. After the whole 
available glucose is consumed and after a new lag-phase, S. cerevisiae starts metabolizing ethanol. All these aspects of 
yeast growth are well simulated from the model. Initially, in the presence of a high glucose concentration, the relative 
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consumption during the diauxic lag-phase, the key enzyme that just promote ethanol oxidation, is synthesized and 
ethanol consumption starts with a different rate. 
In fed-batch system, applying the optimal substrate feeding in to bioreactor cause the ethanol concentration and the 
respiratory quotient become much less in compare with a constant feed rate.  

Results of using controllers on oxygen concentration show that although performance of GLC on the control of oxygen 
is more smooth than PI controller, but because of the main goal  is reach to maximum of cell mass and these controllers 
have approximately the same performance to reach it and as a PI controller doesn't need the process model and has a 
simpler structure than GLC, so it seems that PI controller is better than GLC for this process. Also the effect of oxygen 
control on cell concentration shows that by using controller, rate of biomass production during the operation and also 
concentration at the end of the process is higher than natural condition. On the other hand, it is obvious that with 
passing the time, difference between two mode becomes higher and it's because of the bulk liquid oxygen concentration 
decreases with time; so the oxygen mass transfer rate becomes insufficient as a consequence of the increasing biomass 
concentration. Therefore, it is possible to conclude that in spite of the cybernetic model empowers microorganisms to 
allocate cellular resources for the uptake of those substrates that best fit the cellular requirements, for ensuring  full 
aerobic conditions; it is necessary to use reasonable controller in order to optimize the biomass production in a 
bioreactor.  
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