The 5th Seminar on Linear Algebra and its Applications, Oct. 28-30, 2009, Babolsar, Iran.

Equivalence Classes of Operators on $\mathcal{B}(\mathcal{H})$

T. Aghasizadeh^a and S. Hejazian^b

^{*a,b*}Department of Pure Mathematics Ferdowsi University of Mashhad

Abstract

Let $\mathcal{L}(\mathcal{B}(\mathcal{H}))$ be the algebra of all linear operators on $\mathcal{B}(\mathcal{H})$ and \mathcal{P} be a property on $\mathcal{B}(\mathcal{H})$. For $\phi_1, \phi_2 \in \mathcal{L}(\mathcal{B}(\mathcal{H}))$ we say that $\phi_1 \sim_{\mathcal{P}} \phi_2$ whenever $\phi_1(T)$ has property \mathcal{P} if and only if $\phi_2(T)$ has this property. In particular, if \mathcal{I} is the identity map on $\mathcal{B}(\mathcal{H})$ then $\phi \sim_{\mathcal{P}} \mathcal{I}$ means that ϕ preserves property \mathcal{P} in both directions. Each property \mathcal{P} produces an equivalence class on $\mathcal{L}(\mathcal{B}(\mathcal{H}))$. We study the relation between equivalence classes with respect to different properties.

Mathematics Subject Classification: Primary 47B49; Secondary 47L05, 47A53

Keywords: Fredholm operator, semi-Fredholm operator, generalized invertible operator, preserving map

1 Introduction

Let \mathcal{H} be an infinite-dimensional separable complex Hilbert space and $\mathcal{B}(\mathcal{H})$ the algebra of all bounded linear operators on \mathcal{H} . We denote by $\mathcal{F}(\mathcal{H})$ and $\mathcal{K}(\mathcal{H})$ the ideals of all finite rank and compact operators in $\mathcal{B}(\mathcal{H})$, respectively. The Calkin algebra of \mathcal{H} is the quotient algebra $\mathcal{C}(\mathcal{H}) = \mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be a Fredholm operator if both its kernel and cokernel are finite-dimensional. An operator which has a closed range and either its kernel or cokernel is finite dimensional is called a semi-Fredholm operator. We denote by $\mathcal{SF}(\mathcal{H})$, $\mathcal{FR}(\mathcal{H})$ the sets of semi-Fredholm and Fredholm operators, respectively. It is easy to see that $U \in \mathcal{B}(\mathcal{H})$ is semi-Fredholm if and only if $U + K(\mathcal{H})$ is right or left invertible in the Calkin algebra $\mathcal{C}(\mathcal{H})$. Let $A \in \mathcal{B}(\mathcal{H})$, if there exists $B \in \mathcal{B}(\mathcal{H})$ such that ABA = A then A is called generalized invertible and B is said to be a generalized inverse of A. Note that $A \in \mathcal{B}(\mathcal{H})$ is generalized invertible if and only if Im(A) is closed, where Im(A) denotes the range of A [4].

Throughout this paper we use the following notations for some specific properties:

(i) "f" is the property of "being finite-rank";
(ii) "k" is the property of "being compact";
(iii) "fr" is the property of "being Fredholm";
(iv) "sf" is the property of "being semi-Fredholm";
(v) "g" is the property of "being generalized invertible";

Let \mathcal{I} denote the identity operator of $\mathcal{L}(\mathcal{B}(\mathcal{H}))$ and $\phi \in \mathcal{L}(\mathcal{B}(\mathcal{H}))$. Then $\phi \sim_{\mathcal{P}} \mathcal{I}$ means that ϕ preserves the property \mathcal{P} in both directions, that is $\phi(T)$ has property \mathcal{P} if and only if T has this property. Mbekhta and Šemrl in [3] study those ϕ which satisfy $\phi \sim_g \mathcal{I}$ and $\phi \sim_{sf} \mathcal{I}$. In general, if ψ is a linear operator on $\mathcal{B}(\mathcal{H})$ which preserves property \mathcal{P} in both directions then $\psi\phi \sim_{\mathcal{P}} \phi$ for all $\phi \in \mathcal{L}(\mathcal{B}(\mathcal{H}))$. Also if v is a linear operator on $\mathcal{B}(\mathcal{H})$ which does not preserve property \mathcal{P} in both directions then for each surjective linear operator $\phi, v\phi \nsim_{\mathcal{P}} \phi$.

2 Main Results

In the following lemma $(i) \Leftrightarrow (ii)$ is [2, lemma 2.2] and $(i) \Leftrightarrow (iii)$ is [3, Lemma 2.2].

Lemma 2.1. Let $K \in \mathcal{B}(\mathcal{H})$. Then the following are equivalent

- (i) K is compact,
- (ii) for every $B \in \mathcal{FR}(\mathcal{H})$ we have $B + K \in \mathcal{FR}(\mathcal{H})$,
- (iii) for every $B \in \mathcal{SF}(\mathcal{H})$ we have $B + K \in \mathcal{SF}(\mathcal{H})$.

Take $C = \{T \in \mathcal{B}(\mathcal{H}) \mid \text{ for every operator } A \in \mathcal{B}(\mathcal{H}) \text{ with } Im(A) \text{ not closed, there exists } \lambda \in \mathbb{C} \text{ such that } A + \lambda T \neq 0 \text{ and } Im(A + \lambda T) \text{ is closed } \}.$ It is proved in [1, Lemma 3.1] that $C = S\mathcal{F}(\mathcal{H}).$

Theorem 2.2. If $\phi_1, \phi_2 : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ are surjective linear maps then

As we see in Theorem 2.2, for surjective linear maps ϕ_1 , ϕ_2 on $\mathcal{B}(\mathcal{H})$, $\phi_1 \sim_g \phi_2 \Rightarrow \phi_1 \sim_{sf} \phi_2 \Rightarrow \phi_1 \sim_k \phi_2$, $\phi_1 \sim_{fr} \phi_2 \Rightarrow \phi_1 \sim_k \phi_2$, $\phi_1 \sim_g \phi_2 \Rightarrow \phi_1 \sim_f \phi_2$. In what follows we give some examples to show that the reverse implications do not hold in general.

Example 2.3. Let (α_n) be a sequence of non-zero complex numbers such that $\alpha_n \to 0$ as $n \to \infty$ and let $\{e_n : n \in \mathcal{N}\}$ be an orthonormal basis for \mathcal{H} . Suppose that $T : \mathcal{H} \to \mathcal{H}$ is defined by

Equivalence classes of operators on $\mathcal{B}(\mathcal{H})$

$$T(x) = \sum_{j=1}^{\infty} \alpha_j e_j \otimes e_j(x), \qquad (x \in \mathcal{H}).$$

It is clear that T is an injective bounded linear operator. Also

$$Im(T) = \{ y \in H : \sum_{j=1}^{\infty} \frac{|\langle y, e_j \rangle|^2}{|\alpha_j|^2} < \infty \},$$

since for $y \in \mathcal{H}$, y = T(x) for some $x \in \mathcal{H}$ if and only if

$$\sum_{j=1}^{\infty} e_j \otimes e_j(y) = \sum_{j=1}^{\infty} \alpha_j e_j \otimes e_j(x).$$

This is equivalent to $\langle x, e_j \rangle = \langle y, e_j \rangle / \alpha_j$ $(j \in \mathbb{N})$. Also for $y \in \mathcal{H}$, we have $y = \lim_{n \to \infty} T(x_n)$ where $x_n = \sum_{j=1}^n \frac{\langle y, e_j \rangle}{\alpha_j} e_j$. Thus Im(T) is dense in \mathcal{H} . Suppose that $\sum_{n=1}^\infty |\alpha_n|^2$ converges then $y = \sum_{n=1}^\infty \alpha_n e_n \in \mathcal{H} \setminus Im(T)$. This shows that Im(T) is a proper subspace of H.

Now let $\phi = L_T$ where $L_T : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ is defined by $L_T(S) = TS$ $(S \in \mathcal{B}(\mathcal{H}))$. It is clear that $\phi \sim_k \mathcal{I}$ and $\phi \sim_f \mathcal{I}$ but $\phi \nsim_{fr} \mathcal{I}$, also $\phi \nsim_{sf} \mathcal{I}$ and hence $\phi \nsim_g \mathcal{I}$, because $\mathcal{I}(I)$ is a Fredholm operator but $\phi(I)$ does not have a closed range and hence it is not semi-Fredholm. Here I denotes the identity operator on \mathcal{H} .

Example 2.4. We show that in general $\phi_1 \sim_{sf} \phi_2$ or $\phi_1 \sim_{fr} \phi_2$ does not imply that $\phi_1 \sim_g \phi_2$.

Theorem 2.5. Let \mathcal{P} be a property on $\mathcal{B}(\mathcal{H})$. If $\phi_1, \phi_2 : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ are bijective linear maps such that $\phi_1 \sim_{\mathcal{P}} \phi_2$ then $\phi_1 \phi_2^{-1}$ preserves property \mathcal{P} in both directions.

Now a question arises in mind: what is the relation between ϕ_1 and ϕ_2 when $\phi_1 \sim_{\mathcal{P}} \phi_2$? The next remark illustrates some situations.

Remark (i) Let $\tau : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ be the linear map which takes T to its transpose. If $\phi \in \mathcal{B}(\mathcal{H})$ then it is easy to see that $\tau \phi \sim_g \phi$ and hence $\tau \phi \sim_{sf} \phi$, $\tau \phi \sim_k \phi, \tau \phi \sim_f \phi$. Also $\tau \phi \sim_{fr} \phi$.

(*ii*) Let A, B be Fredholm operators and $\lambda : \mathcal{B}(\mathcal{H}) \to \mathcal{K}(\mathcal{H})$ a linear map. Suppose that R_B denotes the operator $T \mapsto TB$ on $\mathcal{B}(\mathcal{H})$. If $\phi_1, \phi_2 \in \mathcal{L}(\mathcal{B}(\mathcal{H}))$ are related as $\phi_2 = L_A R_B \phi_1 + \lambda$ or $\phi_2 = L_A R_B \tau \phi_1) + \lambda$, then it is easy to see that $\phi_1 \sim_{sf} \phi_2, \phi_1 \sim_{fr} \phi_2$.

(*iii*) Let A, B be Fredholm operators and $\lambda : \mathcal{B}(\mathcal{H}) \to \mathcal{F}(\mathcal{H})$ a linear map. If $\phi_1, \phi_2 \in \mathcal{L}(\mathcal{B}(\mathcal{H}))$ are such that $\phi_2 = L_A R_B \phi_1 + \lambda$ or $\phi_2 = L_A R_B \tau \phi_1 + \lambda$ then

 $\phi_1 \sim_g \phi_2.$

Question 1. Let $\phi_1 \sim_g \phi_2$. Are there $A, B \in \mathcal{FR}(\mathcal{H})$, and a linear map $\lambda : \mathcal{B}(\mathcal{H}) \to \mathcal{F}(\mathcal{H})$ such that $\phi_2 = L_A R_B \phi_1 + \lambda$ or $\phi_2 = L_A R_B \tau \phi_1 + \lambda$?

Question 2. Let $\phi_1 \sim_{sf} \phi_2$ or $\phi_1 \sim_{fr} \phi_2$. Are there $A, B \in \mathcal{FR}(\mathcal{H})$, and a linear map $\lambda : \mathcal{B}(\mathcal{H}) \to \mathcal{K}(\mathcal{H})$ such that $\phi_2 = L_A R_B \phi_1 + \lambda$ or $\phi_2 = L_A R_B \tau \phi_1 + \lambda$?

References

- J. Hon and J. Cui, Linear maps preserving essential spectral functions and closeness of operator ranges, Bull. London Math. Soc. 39(4) (2007), 575-582.
- [2] M. Mbekhta, Linear maps preserving the set of Fredholm operators, Proc. Amer. Math. Soc. 135, 3613-3619.
- [3] M. Mbekhta and P. Šemrl, Linear maps preserving semi-Fredholm operators and generalized invertibility, Linear and Multilinear Algebra 57(1) (2009), 55-64.r
- [4] M. Z. Nashed(ed.), Generalized inverses and applications, Academic Press, (1976).