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Abstract: This paper deals with the novel 
fractional order Linear Quadratic Gaussian 
(FLQG) controller and study of the robustness of 
this proposed controller in comparison with 
classical LQG. The significance of fractional 
order control is that it is a generalization and 
"interpolation" of the classical integer order 
control theory, which can achieve more adequate 
modeling and clear-cut design of robust control 
system. In this paper, LQR controller with 
fractional derivatives and Fractional Kalman 
filters are proposed. In addition fractional LQG 
is used to control the aircraft system. To 
demonstrate the enhancement in using fractional 
LQG, robustness of the control design is 
compared with the integer order LQG in the 
presence of coprime factor uncertainty. 
Simulations confirm much more robustness of 
the fractional order LQG than classical LQG.  
 
Keywords: Fractional order derivatives, LQG 
controller, Kalman filters, coprime factor 
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I. Introduction  
 
Recently, several authors have considered 
mechanical systems described by fractional-
order state equations [1], [2], [3], which mean 
equations involving so-called fractional 
derivatives and integrals (for the introduction to 
this theory see [4]).  
Fractional derivative-based models are more 
adequate than the previously used integer-order 
models. This has been demonstrated, for instance, 
by Caputo [7], [8], Friedrich [6] and [5].  

 
 
 
 
Important fundamental physical considerations 
in favor of the use of fractional-derivative-based 
models were given in [8] and [1]. Fractional 
order derivatives and integrals provide a 
powerful instrument for the description of 
memory and hereditary effects in various 
substances, as well as for modeling dynamical 
processes in fractal (as defined by in [9]) media. 
This is the most significant advantage of the 
fractional-order models in comparison with 
integer-order models, in which, in fact, such 
effects or geometry are neglected. 
However, because of the absence of appropriate 
mathematical methods, fractional-order dynamic 
systems were studied only marginally in the 
theory and practice of control systems. Works in 
[10], [11], [12], [13], and [14] in frequency 
domain must be mentioned, but the study in the 
time domain has been almost avoided. 
Fractional Order Control (FOC) means 
controlled systems and/or controllers described 
by fractional order differential equations. 
Expanding calculus to fractional orders is by no 
means new and actually had a firm and long 
standing theoretical foundation. 
Kiani and his colleagues studied several aspects 
of fractional order systems, such as application 
of Kalman filters in secure communication, the 
novel methodology in designing fractional PID 
and also fractional optimal control [1, 2, and 3].  
In this paper, a fractional order controller is 
implemented in conjunction with the LQR 
algorithm. Based on the Separation Theorem 
LQG problem consists of first determining the 
optimal fractional LQR and finding an optimal 
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estimate x
Ù

of the state x , so that 

{[ ] [ ]}TE x x x x
Ù Ù

- - is minimized. The optimal 
state estimate is given by a fractional order 
Kalman filter. 
An example is provided to demonstrate the 
necessity of such controllers for the more 
efficient control of systems. Also better 
performance of fractional LQG when used for 
the control of aircraft systems than the classical 
LQG will be shown. This paper is organized as 
follow: fractional introduction and fractional 
LQR is described in section 2. Fractional 
Kalman filter is presented in section 3. Fractional 
LQG is discussed in section 4, and finally 
simulation results are presented in section 5 and 
in section 6 robustness of the proposed method is 
compared with classical LQG. 
 

II. Fractional Kalman Filter 
 
The generalization of the discrete state space 
model for fractional order derivatives, which will 
be used later, is presented first. 
Let us assume a traditional (integer order) 
discrete linear stochastic state-space system, 

1k k k k

k k k

x Ax Bu w
y Cx v

+ = + +
 = +

  (1) 

where  kx is a state vector, ku  is a system input, 

ky is a system output, kw  is a system noise and 

kv  is an output noise at time instant k . 
Equation (1) could be rewritten as follows: 
 

1 1
1 1 1

1
1

( )
d

k k k k k k k k k k
A I A

k d k k k

x x x Ax Bu w x A I x Bu w

x A x Bu w
+ + +

− =
+

∆ + = = + + →∆ = − + +

→∆ = + +
 

where dA I A− =  and I  is an identity matrix 

and 1
kx∆  is the first order difference for 

kx sample, , so that 1
1 1k k kx x x+ +∆ = − . 

For the case when orders of equations are not 
integer, the following generalized definition is 
introduced: 
Definition1: The generalized linear fractional 
order stochastic discrete state space system is 
given by the following: 
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Where  
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    (4) 

and 1, , Nn n are orders of system equations. 
Results of estimation by fractional Kalman filter 
are obtained by minimizing in each step the 
following cost function: 

( ) ( )1 1ˆ arg min ( ) ( )T T
k k k k k k kx

x x x P x x y Cx R y Cx− − = − − + − − 
 

 

Where *
1|k k kx E x z − =    is a state vector 

prediction at time instant k ,defined as the 
random variable kx conditioned on the 

measurement stream *
1kz − . 

( )( )T
k k k k kP E x x x x = − − 
   is a prediction 

of an estimation error covariance matrix. 
T

k k kR E v v =   is a covariance matrix of an 

output noise kv . T
k k kQ E w w =   is a 

covariance matrix of a system noise kw . 
 
Theorem 1 [4]: For the fractional order 
stochastic discrete state-space system defined by 
Definition & the simplified Kalman Filter (called 
fractional Kalman Filter) is given by the set of 
following equations 
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with initial conditions 
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0(0)x x=  

( )( )0 0 0 0 0
TP E x x x x = − −  

 

And kv  and kw  are assumed to be independent 
and with zero expected value. 
Based on the mentioned theorem, optimal state 
estimation of the fractional model is obtained. In 
the next section fractional LQR is discussed. 
 
III. Fractional LQR: 

 
In this paper, we propose to include fractional 
derivative or integral of the state x in the 
feedback control law as follow : 

( ) LQR FOC
d xu t K x K
dt

α

α= − +   (5) 

Where FOCK is the gain matrix to be found 

using optimization procedures and 
d x
dt

α

α is 

defined as follows (Caputo definition, [9,10]): 
( )

1
0

1 ( )
( ) ( )

t n

n
d x x d
dt n t

α

α α

τ τ
α τ + −=

Γ − −∫   (6) 

Where n   is an integer satisfying 
1n nα− ≤  and Γ  is the Euler’s Gamma 

function. The fractional orderα , a real number 
such that ( 1,1)α ∈ − . 
The classical objective function in LQR problem 
can be defined as: 

0

( )
t

T TJ x Qx u Ru dτ= +∫   (7) 

However one of the biggest issues in 
implementing optimal controllers is selecting the 
best weight parameters. The control gain 
obtained from the LQR algorithm is completely 
dependent on the objective function defined in 
(7). Through this index, designers can emphasize 
attenuating the structural responses that are of 
greatest concern. While this index provides 
intuition to select the pattern for weight matrices, 
it definitely will not result in an optimal design. 
Furthermore, the force capacities of system 
actuators (to apply force) and connections (to 
which force is exerted) are limited, and as a 
consequence, the calculated input force should 
be bounded. This issue also increases the 
complexity of choosing weight matrices. To 
solve this problem, a performance criterion 
different from the one introduced in classical 
LQR is proposed: 

 

1 2
0 0

max( )
( ) max

cc

i i

zRMS zPI
RMS z z

β β= +∑ ∑  (9) 

 
where cz and 0z are the output of the controlled 
and uncontrolled cases, respectively. The first 
component emphasizes the mitigation of the root 
mean square response and the second component 
the peak response. The parameters 1β  and 2β in 
the function give designers the ability to 
specialize the performance index for specific 
purposes. For instance, if the aim is to resist 
against extreme events peak response rather than 
RMS response should be reduced or minimized. 
However, in windy zones where the passengers 
comfort level is of greater concern, RMS 
response would govern design requirements and 
emphasis can be placed on the first component of 
the performance index. In this paper 1β and 

2β are assumed to be 1 and 2 respectively.  

To avoid unfeasible control input, ( )u t can be 
bounded in constraints.  
 
IV. Fractional LQG: Combined optimal 

state estimation and optimal state 
feedback: 

 
In fractional LQG control, it is assumed that the 
plant dynamics are linear and known, and that 
the measurement noise and disturbance signals 
are stochastic with known statistical properties.  
Clearly, for closed-loop control systems, there 
are four situations: 
1) IO (integer order) plant with IO controller;  
2) IO plant with FO (fractional order) controller; 
3) FO plant with IO controller and  
4) FO plant with FO controller. In control 
practice, the fractional-order controller is more 
common, because the plant model may have 
already been obtained as an integer order model 
in the classical sense. From an engineering point 
of view, improving or optimizing performance is 
the major concern [28]. Hence, our objective is 
to apply the fractional-order control (FOC) to 
enhance the (integer order) dynamic system 
control performance [23, 28]. 
 
That is, we have a plant model  

.
x Ax Bu w
y Cx v

 = + +


= +
   (10) 
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where ,w v are the disturbance and measurement 
noise inputs respectively, which are usually 
assumed to be uncorrelated zero-mean Gaussian 
stochastic processes. 
In The classical LQG control problem is to find 
the optimal control ( )u t which minimizes  

0

1{lim [ ] }
T

T TJ E x Qx u Ru dt
T

= +∫  (11) 

Where Q and R are appropriately chosen 
constant weighting matrices. 
 The structure of the LQG controller is illustrated 
in Figure 1. 
 

 
Figure 1: LQG block diagram 

 
 The solution to the LQG problem, known as the 
Separation Theorem consists of first determining 
the optimal control to a deterministic linear 
quadratic regulator (LQR) problem. It happens 
that the solution to this problem can be written in 
terms of the simple state feedback law: 

( ) LQR FOC
d xu t K x K
dt

α

α= − +   (12) 

Where the computation method has been 
explained in section 3. The next step is to find an 

optimal estimate x
Ù

of the state x , so that 

{[ ] [ ]}TE x x x x
Ù Ù

- - is minimized. The optimal 
state estimate is given by a fractional order 
Kalman filter as mentioned above. The required 
solution to the LQG problem is then found by 

replacing x by x
Ù

to give  

( ) LQR FOC
d xu t K x K
dt

α

α

∧
∧

= − +   (13) 

We therefore see that the LQG problem and its 
solution can be separated into two distinct parts, 
as illustrated in Figure 1.  
 
 

V. Implementation of fractional LQG in 
Aircraft system 

 
A simplified configuration of an airframe and the 
body reference frame used in this study are 
shown in Fig. 2. 

 
Figure 2: airframe system 

 
We consider [ , , , , , , , ]Tx u v w p q r q f= where the 
variables ,u v  and w  are the three velocities 
with respect to the body frame, which is shown 
in the figure1. The variables q   and f  are roll 
and pitch, and p, q, and r are the roll, pitch, and 
yaw rates, respectively. The airframe dynamics 
are nonlinear. The equation below shows the 
nonlinear components added to the state space 
equation. 

sin
cos sin
cos cos

0
0
0

0
cos sin

( sin cos ). tan

g
g
g

x Ax Bu

q r
q r

q
q f
q f

f f
f f q

é ù-ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú= + + ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú-ê ú
ê ú+ë û

g
 (14) 

Where 
 

0.04 0.06 0.05 0 0.005 0 0 0
0.16 1.18 7.68 0 0.04 0 0 0

0.16 2.61 3.85 0 0.04 0 0 0
0 0 0 0.33 0.04 6.54 0 0
0 0 0 1.12 0.91 0.36 0 0
0 0 0 0.9931 0.1763 1.2047 0 0
0 0 0.9056 0 0 0 0 0
0 0 0 0 0.9467 0.0046 0 0

A

− 
 − − 
 − −
 − − − =  − − −
 

− − 
 
 

−  
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20.39 0.46 0.24 0.71
0.12 2.7 0.01 0.03
64.69 75.62 0.6 3.23

0 0 0.19 3.66
0 0 23.6 5.6
0 0 3.94 41.41
0 0 0 0
0 0 0 0

B

− − − 
 − 
 − −
 
 =  
 

− 
 
 
  

 

 
 

8 8

y Cx
C I ×

=
=

 

 
For fractional LQG design purposes, the 
nonlinear dynamics are trimmed at 15f = o  and 
p, q, r, and q   set to zero. Since u, v, and w do 
not enter into the nonlinear term in equation 14, 
this amounts will become linear around  with all 
remaining states set to zero. The goal is to 
control the system at steady state turn by going 
through a 60o roll. 
In the next section, both roll angle and pitch 
angle is controlled and robustness of the system 
is studied. 
  
VI. Robustness Study of Fractional LQG 

 
For an LQG-controlled system with a combined 
Kalman filter and LQR control law there are no 
guaranteed stability margins. This was brought 
starkly to the attention of the control community 
by Doyale (1978). He showed, by example, that 
there exist LQG combinations with arbitrarily 
small gain margins.  
In this paper, also by example, we will compare 
the robustness of fractional order LQG with 
integer order LQG in the presence of coprime 
uncertainty. This uncertainty description is 
surprisingly general, it allows both zeros and 
poles to cross into right-half plane, and has 
proved to be very useful in applications [3].   
One important uncertainty description can be 
shown as: 

[ ]

1( ) ( )p l lG M M N N

N M ε

−

∞

= + ∆ + ∆

∆ ∆ ≤
  (15) 

Where 1
l lG M N−= is a left coprime 

factorization of the nominal plant. 
 
 

VII. Simulation Results:  
 
This section provides the simulation results of 
fractional LQG controller for the airframe 
system. The MATLAB SIMULINK package and 
Optimization Toolbox were used to simulate the 
system under control. In these simulations we 
consider: 
 

8 8 8 8[ ] 0.3 , [ ] 0.3T T
k k k kE v v I E w w I× ×= =  

Fractional Kalman filter parameters used in this 
simulation are: 

0 8 8 8 8

8 8

100 , 0.3
0.3

P I Q I
R I

× ×

×

= =

=
 

The resulting roll angle is shown in figure3. In 
this figure the step response of both classical 
LQG and fractional LQG is plotted. As can be 
seen, the response quality of fractional order 
controller is much better than classical LQG. 
Figure4 is the output signal of q  with both 
classical LQG and fractional LQG. The most 
important contribution of this proposed method 
is enhancing the robustness in the presence of 
uncertainty in fractional LQG.  As can be seen in 
figure5, classical LQG losses its robustness with 

[ ] {0.2}N M diag∆ = ∆ ∆ =  which it 
means that system is robust stable with 20% 
uncertainty. On the other hand, by implementing 
fractional LQG system remains robust with 
about 45% uncertainty, as can be seen in figure 5.  
In this study, coprime uncertainty is used 
because this model of uncertainty is the most 
general form.  
 

VIII. Conclusion  
 
In this paper, fractional derivative concept is 
implemented to design fractional order LQG 
controller. The proposed controller is used to 
control airframe system. We briefly describe the 
fractional LQR design and fractional Kalman 
filter and LQG as a combination of optimal 
feedback control and optimal state estimation. In 
this paper, the novel objective function for 
designing optimal state feedback is presented 
which is significant in our benchmark problem 
both to resist against extreme events and also to 
concern the passengers comfort level. 
Finally, the stability of the proposed method in 
the presence of uncertainty is studied. The 
robustness of classical LQG and fractional LQG 
are compared with the coprime factor uncertainty 
model. As a result, fractional LQG controller 
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improves both transient response and also 
robustness of the closed-loop system.  
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Figure 3: Roll angle output 
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Figure4: Pitch angle output 
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Figure 5: Classical LQG and Fractional LQG in 
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